
Multiple-choice Vector Bin Packing:
Arc-flow Formulation with

Graph Compression

Filipe Brandão
INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal

fdabrandao@dcc.fc.up.pt

João Pedro Pedroso
INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal

jpp@fc.up.pt

Technical Report Series: DCC-2013-13

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/



Multiple-choice Vector Bin Packing:

Arc-flow Formulation with Graph Compression

Filipe Brandão
INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal

fdabrandao@dcc.fc.up.pt

João Pedro Pedroso
INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal

jpp@fc.up.pt

December 12, 2013

Abstract

The vector bin packing problem (VBP) is a generalization of bin packing with multiple constraints.
In this problem we are required to pack items, represented by p-dimensional vectors, into as few bins
as possible. The multiple-choice vector bin packing (MVBP) is a variant of the VBP in which bins
have several types and items have several incarnations. We present an exact method, based on
an arc-flow formulation with graph compression, for solving MVBP by simply representing all the
patterns in a very compact graph. As a proof of concept we report computational results on a
variable-sized bin packing data set.
Keywords: Multiple-choice Vector Bin Packing, Arc-flow Formulation, Integer Programming.

1 Introduction

The vector bin packing problem (VBP), also called general assignment problem by some authors, is
a generalization of bin packing with multiple constraints. In this problem, we are required to pack
n items of m different types, represented by p-dimensional vectors, into as few bins as possible. The
multiple-choice vector bin packing problem (MVBP) is a variant of VBP in which bins have several types
(i.e., sizes and costs) and items have several incarnations (i.e., will take one of several possible sizes);
this occurs typically in situations where one of several incompatible decisions has to be taken (see, e.g.,
Patt-Shamir and Rawitz 2012).

Brandão and Pedroso (2013) present a general arc-flow formulation with graph compression for vector
packing. This formulation is equivalent to the model of Gilmore and Gomory (1963), thus providing a
very strong linear relaxation. It has proven to be very effective on a large variety of problems through
reductions to vector packing. In this paper, we apply the general arc-flow formulation to the multiple-
choice vector packing problem.

The remainder of this paper is organized as follows. Section 2 presents the arc-flow formulation for MVBP.
Some computational results are presented in Section 3 and Section 4 presents the conclusions.

2 Arc-flow formulation with graph compression for MVBP

In order to solve a cutting/packing problem, the arc-flow formulation proposed in Brandão and Pedroso
(2013) only requires the corresponding directed acyclic multigraph G = (V,A) containing every valid

2



packing pattern represented as a path from the source to the target. In order to model MVBP, we will
start by defining the underlying graph.

For a given i, let Ji be the set of incarnations of item i, and let I = {(i, j) : i = 1..m, j ∈ Ji} be the set
of items. Let itji = (i, j) ∈ I be the incarnation j of item i and w(itji ) its weight vector. For the sake
of simplicity, we define it00 as an item with weight zero in every dimension; this artificial item is used to
label loss arcs. Let bi be the demand of items of type i, for i = 1, . . . ,m. Let q be the number of bin
types. Let W (t) and C(t) be the capacity vector and the cost of bins of type t, respectively.

Example 1 Figure 1 shows the graph associated with a two dimensional (p = 2) instance with bins of
two types (q = 2). The bins of type 1 have capacity W (1) = (100, 75) and cost C(1) = 3. The bins
of type 2 have capacity W (2) = (75, 50) and cost C(2) = 2. There are three items (n = 3) to pack
of two different types (m = 2). The first item type has demand b1 = 2, and a single incarnation with
weight w(it11) = (75, 50). The second item type has demand b2 = 1, and two incarnations with weights
w(it12) = (40, 15) and w(it22) = (25, 25).

We need to build a graph for each bin type considering every item incarnation as a different item. The
arc-flow graphs must contain every valid packing pattern represented as a path from the source to the
target, and they may not contain any invalid pattern. These graphs – say, G1, . . . , Gt – can be built
using the step-by-step algorithm proposed in Brandão (2012) or the algorithm proposed in Brandão and
Pedroso (2013) (recommended for efficiency). Both algorithms perform graph compression and hence
the resulting graphs tend to be small.

Figure 1 shows an arc-flow graph for Example 1. Paths from st to tt represent every valid pattern for
bins of type t, for t = 1, . . . , q. Each of these subgraphs is built considering every item incarnation as
a different item. We connect a super source node s to every st, and every tt to a super target node t.
Paths from s to t represent every valid packing pattern using any bin type.

Figure 1: Arc-flow graph containing every valid packing pattern for Example 1.

s

s1 u1 u2 t1

s2 v1 v2 t2

t

it11

it12

it22

it12

it11

it22

Paths from st to tt represent every valid pattern for bins of type t, for each t. Paths from s to t represent
every valid packing pattern using any bin type.

Graphs G1, . . . , Gt are already compressed, but in order to reduce the whole graph size even more, we
apply again to G the final compression step of the method proposed in Brandão and Pedroso (2013).
Note that this compression step can only be applied if the set of item incarnations does not depend
on the bin type. We relabel the graph using the longest paths from the source in each dimension. Let
(ψ1(v), ψ2(v), . . . , ψp(v)) be the label of node v in the final graph, where

ψd(v) =

{
0 if v = s,

max(u,v′,itji )∈A:v′=v{ψ
d(u) + w(itji )

d} otherwise.
(1)

The final graph may contain parallel arcs for different incarnations of the same item. Since having
multiple parallel arcs for the same item is redundant, only one of them is left.

3



Figure 2: After applying the final compression step to the graph of Figure 1.

s

75, 50 100, 75 t1

40, 25 t2

t

it11

it12 it22

it12

it22

The final compression step removed 3 vertices and 3 arcs on this small example.

The arc-flow formulation for multiple-choice vector bin packing is the following:

minimize

q∑
t=0

C(t)ftt,t,it00
(2)

subject to
∑

(u,v,it)∈A:v=k

fu,v,it −
∑

(v,r,it)∈A:v=k

fv,r,it =

 −z if k = s,
z if k = t,
0 for k ∈ V \ {s,t},

(3)

∑
(u,v,itji )∈A:i=k

fu,v,itji
≥ bk, k ∈ {1, . . . ,m} \ J, (4)

∑
(u,v,itji )∈A:i=k

fu,v,itji
= bk, k ∈ J, (5)

fu,v,itji
≤ bi, ∀(u, v, itji ) ∈ A, if i 6= 0, (6)

fu,v,itji
≥ 0, integer, ∀(u, v, itji ) ∈ A, (7)

where z can be seen as a feedback from t to s; m is the number of different items; q is the number
of bin types; bi is the demand of items of type i; V is the set of vertices, s is the source vertex and
t is the target; A is the set of arcs, where each arc has three components (u, v, itji ) corresponding to
an arc between nodes u and v that contributes to the demand of items of type i; arcs (u, v, it00) are loss
arcs; fu,v,it is the amount of flow along the arc (u, v, it); and J ⊆ {1, . . . ,m} is a subset of items whose
demands are required to be satisfied exactly for efficiency purposes. For having tighter constraints, one
may set J = {i = 1, . . . ,m : bi = 1} (we have done this in our experiments). The main difference between
this and the original arc-flow formulation is the objective function.

Algorithm 1 illustrates our solution method. More details on algorithms for graph construction and
solution extraction are given in Brandão and Pedroso (2013) and Brandão (2012).

3 Computational results

As a proof of concept, we used to the arc-flow formulation to solve variable-sized bin packing. A specific
method for solving this problem has been presented in Alves and Valério de Carvalho (2007); here we
proposed to simply model it as a unidimensional multiple-choice vector bin packing problem. We solved
the benchmark data set of Monaci (2001), which is composed of 300 instances. In this data set, the items
sizes were randomly generated within three different ranges: wi ∈ [1, 100] (X=1), wi ∈ [20, 100] (X=2)
and wi ∈ [50, 100] (X=3). There are instances with three (q = 3) and five (q = 5) bin types; the bin
sizes are [100, 120, 150] for q = 3 and [60, 80, 100, 120, 150] for q = 5. For each range and each number of
bin types, there are 10 instances for each n ∈ {25, 50, 100, 200, 500}. The average run time on the 300
instances was less than 1 second and none of these instances took longer than 6 seconds to be solved
exactly.

4



Algorithm 1: MVBP Solution Method

input : I - set of items; m - number of different items; w(itji ) - weight vector of the incarnation j of
item i; bi - demand of item i; q - number of bin types; W (t), C(t) - capacity and cost of bins of
type t, respectively;

output: MVBP Solution
1 function solveMVBP(I,m,w, b, q,W,C):
2 V,A← ({s,t}, ∅);
3 for t← 1 to q do // for each bin type t

4 labels← I;

5 weight← [w(itji ) : itji ∈ I];

6 demand← [bi : itji ∈ I];

7 (Gt, st,tt)← buildGraph(m, labels,weight, demand,W (t)); // build the arc-flow graph Gt for bins of type t

8 (Vt, At)← Gt;
9 V ← V ∪ Vt;

10 A← A ∪At ∪ {(s, st, it00), (tt,t, it
0
0)};

11 G← (V,A);

12 G← compress(G); // apply the final compression step to G

13 f ← MIPSolver(arc-flow model, q, C,G, b); // solve the arc-flow model over G

14 return extractSolution(f); // extract the MVBP solution from the arc-flow solution

Table 1 presents the results. The meaning of each column is as follows: q - number of different bin types;
n - total number of items; m - number of different items; #v, #a - number of vertices and arcs in the final
arc-flow graph; %v,%a - percentage of vertices and arcs removed by the final compression step; tip - time
spent solving the model; nbb - average number of nodes explored in the branch-and-bound procedure;
ttot - run time in seconds. The values shown are averages over the 10 instances in each class.

CPU times were obtained using a computer with two Quad-Core Intel Xeon at 2.66GHz, running Mac
OS X 10.8.5. The graphs for each bin type were generated using the algorithm proposed in Brandão and
Pedroso (2013), which was implemented in C++, and the final model was produced using Python. The
models were solved using Gurobi 5.5.0 (Gu et al. 2013), a state-of-the-art mixed integer programming
solver. The parameters used in Gurobi were Threads = 1 (single thread), Presolve = 1 (conservative),
Method = 2 (interior point methods), MIPFocus = 1 (feasible solutions), Heuristics = 1, MIPGap = 0,
MIPGapAbs = 1−10−5 and the remaining parameters were Gurobi’s default values. The branch-and-cut
solver used in Gurobi uses a series of cuts; in our models, the most frequently used were Gomory, Zero
half and MIR. The source code is available online1.

4 Conclusions

We propose an arc-flow formulation with graph compression for solving multiple-choice vector bin packing
problems. This formulation is simple and proved to be effective for solving variable-sized bin packing as a
unidimensional multiple-choice vector packing problem. This paper shows the flexibility and effectiveness
of the general arc-flow formulation with graph compression for modeling and solving cutting and packing
problems, beyond those solved through reductions to vector packing in the original paper.

1http://www.dcc.fc.up.pt/~fdabrandao/code

5

http://www.dcc.fc.up.pt/~fdabrandao/code


Table 1: Results for variable-sized bin packing.

Range q n m #v #a %v %a nbb tip ttot

X=1 3 25 22.0 71.1 616.9 41.90 13.68 13.5 0.15 0.23
X=1 3 50 38.3 115.1 1,641.7 53.38 26.39 7.2 0.56 0.69
X=1 3 100 62.3 134.3 3,128.8 56.89 38.49 3.2 1.70 1.94
X=1 3 200 86.8 142.9 4,930.3 57.86 43.33 0.0 1.35 1.72
X=1 3 500 98.8 148.3 6,047.9 58.34 46.07 0.0 1.41 1.91

X=1 5 25 22.4 91.8 807.8 48.64 16.40 0.0 0.11 0.21
X=1 5 50 39.1 122.9 1,947.6 60.62 27.83 0.8 0.57 0.73
X=1 5 100 61.8 139.3 3,518.9 66.12 40.94 0.0 0.73 1.01
X=1 5 200 85.6 147.1 5,289.6 68.06 48.89 0.0 2.19 2.62
X=1 5 500 98.5 151.9 6,459.6 69.02 52.91 0.0 1.26 1.85

X=2 3 25 21.6 38.4 307.0 35.46 10.27 0.0 0.04 0.10
X=2 3 50 36.9 72.8 1,020.7 43.19 10.25 0.0 0.12 0.21
X=2 3 100 58.7 96.0 2,379.0 50.36 13.30 0.0 0.33 0.49
X=2 3 200 73.1 108.7 3,554.2 53.70 16.11 0.0 0.67 0.90
X=2 3 500 80.0 113.3 4,076.2 54.39 17.39 0.0 0.41 0.68

X=2 5 25 22.2 43.3 348.7 39.33 11.63 0.0 0.02 0.09
X=2 5 50 37.4 75.3 1,037.8 46.88 10.82 0.0 0.09 0.20
X=2 5 100 57.5 96.0 2,275.6 54.26 13.10 0.0 0.30 0.47
X=2 5 200 73.7 110.2 3,757.8 59.99 17.17 0.0 0.49 0.75
X=2 5 500 79.7 115.5 4,267.1 60.94 18.75 0.0 0.84 1.20

X=3 3 25 19.4 15.6 90.4 16.69 3.48 0.0 0.00 0.06
X=3 3 50 30.7 22.8 148.0 12.69 2.78 0.0 0.01 0.07
X=3 3 100 44.8 36.5 228.0 7.86 1.35 0.0 0.01 0.07
X=3 3 200 49.3 41.9 254.8 6.69 1.16 0.8 0.01 0.08
X=3 3 500 50.0 43.0 260.0 6.52 1.14 0.0 0.01 0.07

X=3 5 25 18.5 18.2 101.0 25.03 6.82 0.0 0.00 0.06
X=3 5 50 31.6 26.3 179.8 20.14 4.83 0.0 0.00 0.08
X=3 5 100 43.3 36.5 251.1 15.62 3.23 0.0 0.01 0.08
X=3 5 200 49.5 44.4 297.9 13.62 2.65 0.0 0.01 0.09
X=3 5 500 50.0 45.0 301.0 13.46 2.59 0.0 0.01 0.12

References

Alves, C. and Valério de Carvalho, J. (2007). Accelerating column generation for variable sized bin-
packing problems. European Journal of Operational Research, 183(3):1333 – 1352.

Brandão, F. (2012). Bin Packing and Related Problems: Pattern-Based Approaches. Master’s thesis,
Faculdade de Ciências da Universidade do Porto, Portugal.

Brandão, F. and Pedroso, J. P. (2013). Bin Packing and Related Problems: General Arc-flow Formulation
with Graph Compression. Technical Report DCC-2013-08, Faculdade de Ciências da Universidade do
Porto, Portugal.

Gilmore, P. and Gomory, R. (1963). A linear programming approach to the cutting stock problem–part
II. Operations Research, 11:863–888.

Gu, Z., Rothberg, E., and Bixby, R. (2013). Gurobi Optimizer, Version 5.5.0. (Software program).

Monaci, M. (2001). Algorithms for Packing and Scheduling Problems. PhD thesis, Università di Bologna.

Patt-Shamir, B. and Rawitz, D. (2012). Vector bin packing with multiple-choice. Discrete Appl. Math.,
160(10-11):1591–1600.

6


	Introduction
	Arc-flow formulation with graph compression for MVBP
	Computational results
	Conclusions

