
Manipulation of Extended Regular
Expressions with Derivatives

Rafaela Bastos Nelma Moreira Rogério Reis
CMUP & DCC, Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 4169-007 Porto, Portugal

Technical Report Series: DCC-2013-11
Version 1.0 September 2013

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Manipulation of Extended Regular Expressions with
Derivatives∗

Rafaela Bastos, Nelma Moreira, Rogério Reis
up200801458@alunos.dcc.fc.up.pt ,{nam,rvr}@dcc.fc.up.pt

CMUP & DCC-FC, Universidade do Porto
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

DCC-FC, Universidade do Porto
Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract

The use of derivatives for efficiently deciding equivalence and membership in regular
languages has been a major topic of recent research. To ensure termination, regular
expressions must be considered modulo some algebraic properties such as associativity,
commutativity, and idempotence of union (ACI). In this paper we describe an implemen-
tation of regular expressions modulo ACI and several derivative based methods within
the FAdo system. Although regular languages are trivially closed for boolean operations,
the manipulation of intersection and complementation with regular expressions or non-
deterministic finite automata is non trivial and leads to an exponential blow up. However,
due to several applications where extended regular expressions (XRE) are used to rep-
resent information, it is important the extension of derivative based methods to those
operations. Continuing work of Caron et al., we present new algorithms for computing
the (extended) equation automaton and deciding membership and equivalence of XRE
using (partial) derivatives.

1 Extended Regular Expressions and Kleene Algebra

In this section we briefly review some basic definitions about extended regular expression and
Kleene Algebra.

Let Σ = {σ1, . . . , σk} be an alphabet of size k. A word over an alphabet Σ is a finite
sequence of symbols of Σ. The empty word is denoted by ε. The set Σ∗ is the set of all
words over Σ. A language over Σ is a subset of Σ∗. The set R of extended regular expressions
(ERE) over an alphabet Σ is defined by:

α := ∅ | ε | Σ+ | Σ+ | σ1 | . . . | σn | (α+ β) | (α.β) | α∗ | (α ∩ β) | ¬α

where Σ+ and Σ∗ are equivalent to ¬ε and ¬∅, respectively, and the operator . (concate-
nation) is often omitted.

∗This work was partially funded by the European Regional Development Fund through the programme
COMPETE and by the Portuguese Government through the FCT under projects PEst-C/MAT/UI0144/2011
and CANTE-PTDC/EIA-CCO/101904/2008.

2

The language L(α) associated to α, is inductively defined as follows:
L(∅) = ∅
L(ε) = {ε}
L(Σ∗) = Σ∗\L(∅)
L(Σ+) = Σ∗\L(ε)
L(σ) = L(σ)

L(α+ β) = L(α) ∪ L(β)
L(α ∩ β) = L(α) ∩ L(β)
L(αβ) = L(α).L(β)
L(α∗) = L(α)∗

L(¬α) = Σ∗\L(α)
where σ ∈ Σ.
An extended regular expression represents the empty word ε if and only if:

ε(∅) = ∅
ε(ε) = ε
ε(Σ∗) = ε
ε(Σ+) = ∅
ε(σ) = ∅
ε(α+ β) = ε(α) + ε(β)

ε(α ∩ β) = ε(α) ∩ ε(β)
ε(αβ) = ε(α)ε(β)
ε(α∗) = ε

ε(¬α) =

{
ε, if ε(α) 6= ε

∅, otherwise

We say that two regular expressions α and β are equivalent, α ≡ β, if they represent the
same language, i.e, L(α) = L(β).

Let σ, σ1, . . . , σn be symbols of the alphabet Σ and α, β and γ be extended regular
expressions. From the axiom sytem AX in [AM94] and the axiom system F in [Sal66], we
have the equivalences:

α+ (β + γ) ≡ (α+ β) + γ (A1)

(α.β).γ ≡ α.(β.γ) (A2)

α+ β ≡ β + α (A3)

α.(β + γ) ≡ α.β + α.γ (A4)

(α+ β).γ ≡ α.γ + β.γ (A5)

α+ α ≡ α (A6)

α.ε ≡ α (A7)

α.∅ ≡ ∅ (A8)

α+ ∅ ≡ α (A9)

ε+ α.α∗ ≡ α∗ (A10)

(ε+ α)∗ ≡ α∗ (A11)

ε ∩ (α.β) ≡ (ε ∩ α) ∩ β (A12)

ε ∩ α∗ ≡ ε (A13)

ε ∩ σ ≡ ∅ (A14)

∅ ∩ α ≡ ∅ (A15)

α ∩ α ≡ α (A16)

α ∩ β ≡ β ∩ α (A17)

α ∩ (β ∩ γ) ≡ (α ∩ β) ∩ γ (A18)

α ∩ (β + γ) ≡ (α ∩ β) + (α ∩ γ) (A19)

α+ (α ∩ β) ≡ α (A20)

(σ1.α) ∩ (σ2.β) ≡ (σ1 ∩ σ2).(α ∩ β) (A21)

(α.σ1) ∩ (β.σ2) ≡ (α ∩ β).(σ1 ∩ σ2) (A22)

σi ∩ σj ≡ ∅ ∀σi 6= σj (A23)

3

(¬α ∩ ¬β) ≡ ¬α+ ¬β (A24)

(¬α+ ¬β) ≡ ¬α ∩ ¬β (A25)

The derivative of an extended regular expression α with respect to a symbol σ ∈ Σ,
written dσ(α), is a regular expression such that:

L(dσ(α)) = {w | σw ∈ L(α)}

And the inductively definition is the following:

dσ(∅) = ∅
dσ(ε) = ∅
dσ(σ) = ε

dσ(σ′) = ∅
dσ(α+ β) = dσ(α) + dσ(β)

dσ(α ∩ β) = dσ(α) ∩ dσ(β)

dσ(αβ) = dσ(α)β + ε(α)dσ(β)

dσ(α∗) = dσ(α)α∗

dσ(¬α) = ¬dσ(α)

Two extended regular expressions are modulo-aci if one can be transformed to the other
by using the aci-rules, ie, applying the associatitivity, commutativity and idempotence of the
intersection (∩) (Axioms A18, A17 and A16) and disjuction (+) (Axioms A1, A3 and A6)
operators, and applying the associativity of the concatenation (.) (Axiom A2). Brzozowski
proved in [Brz64] that the set of derivatives of a regular expression being a finite set is enough
that is modulo-aci.

The set o partial derivative of a non-extended regular expression w.r.t. a symbol σ ∈ Σ,
denoted by ∂σ(α), is the set of regular expressions defined as follows:

∂σ(∅) = ∅
∂σ(ε) = ∅
∂σ(σ) = {ε}
∂σ(σ′) = ∅
∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)

∂σ(α∗) = ∂σ(α)α∗

2 Derivatives

In [PCM11] Caron et al. describe a definition for the partial derivative of an extended regular
expression, though this definition requires that the regular expression must be in disjunction
normal form. In this section, a new definition for partial derivative is described that not
requires such assumption.

Let Σ = {σ1, . . . , σk} be an alphabet of size k. Consider the following for represent an
extended regular expressions (ERE) over the alphabet Σ:

4

α := ∅ | ε | Σ+ | Σ+ | σ1 | . . . | σn | [α, . . . , α] | α.α | α∗ | 〈α, . . . , α〉〉 | ¬α

Where [α1, . . . , αn] and 〈α1, . . . , αn〉 represent the regular expressions (α1 + . . .+αn) and
(α1 ∩ . . . ∩ αn), respectively.

Definition 1. Let α be an extended regular expression and σ a symbol in Σ, the partial
derivative of α w.r.t. σ, ∂σ(α)is defined inductively as follows:

∂σ(Σ∗) = {Σ∗}
∂σ(Σ+) = {Σ∗}
∂σ(∅) = ∅
∂σ(ε) = ∅
∂σ(σ) = {ε}
∂σ(σ′) = ∅

∂σ([e1, . . . , en]) = {f | f ∈
⋃
∂σ(ei)}

∂σ(〈e1, . . . , en〉) = {〈f1, . . . , fn〉 | fi ∈ ∂σ(ei)}

∂σ(e1e2) =

{
{f1e2 | f1 ∈ ∂σ(e1)} ∪ ∂σ(e2), if ε(e1) = ε

{f1.e2 | f1 ∈ ∂σ(e1)}, otherwise
∂σ(e∗) = {fe∗ | f ∈ ∂σ(e)}
∂σ(¬e) = ∂σ(e)

∂σ(Σ∗) = ∅
∂σ(Σ+) = ∅
∂σ(∅) = {Σ∗}
∂σ(ε) = {Σ∗}
∂σ(σ) = {Σ+}
∂σ(σ′) = {Σ∗}

∂σ([e1, . . . , en]) = {〈¬f | f ∈
⋃
∂σ(ei)〉}

∂σ(〈e1, . . . , en〉) = {〈¬f | f ∈
⋃
∂σ(ei)〉 | ∀i}

∂σ(e1e2)) = {〈¬f | f ∈ ∂σ(e1e2)〉}
∂σ(e∗) = {〈¬f | f ∈ ∂σ(e∗)〉}
∂σ(¬e) = ∂σ(e)

Lemma 1. Let α be an extended regular expression and σ ∈ Σ, thus

L(dσ(¬α)) = Σ∗\dσ(α) (2.1)

Proof. According to the definition of derivatives, we have:

L(dσ(¬α)) = {w | σw ∈ L(¬α)}
= {w | σw /∈ L(α)}
= Σ∗\{w | σw ∈ L(α)}
= Σ∗\dσ(α)

Proposition 1. Let α be an extended regular expression over an alphabet Σ and σ a symbol
in Σ, then

L(∂σ(¬α)) = Σ∗\∂σ(α) (2.2)

Proof. By induction on the structure of the extended regular expression α:

For α ≡ Σ∗:

L(∂σ(Σ∗)) = L(∂σ(¬∅)) = L(∂σ(∅)) = L(∅) = ∅.

If α is Σ+:

L(∂σ(Σ+)) = L(∂σ(¬ε)) = L(∂σ(ε)) = L(∅) = ∅.

5

If α is ∅, ε or σ′:

L(∂σ(α)) = L({Σ∗}) = Σ∗

= Σ∗\∅ = Σ∗\∂σ(α).

If α is σ

L(∂σ(σ) = L({Σ+}) = Σ+ = Σ∗\{ε} = Σ∗\∂σ(σ).

Consider that α is [α1, . . . , αn], where αi is an extended regular expression, for i =
1, . . . , n:

L(∂σ([α1, . . . , αn])) = L({〈¬α′ | ∃α′ ∈ ∂σ(αi)〉})
= L({¬[α′ | ∃α′ ∈ ∂σ(αi)]})
= Σ∗\{α′ | ∃α′ ∈ ∂σ(αi)}
= Σ∗\∂σ([α1, . . . , αn]).

If α is 〈α1, . . . , αn〉:

L(∂σ(〈α1, . . . , αn〉) = L({〈¬α′ | α′ ∈
⋃
∂σ(ei)〉 | ∀i})

= L(〈¬α′ | α′ ∈ ∂σ(α1)〉) ∪ . . . ∪ L(〈¬α′ | α′ ∈ ∂σ(αn)〉)
= L(¬[α′ | α′ ∈ ∂σ(α1)]) ∪ . . . ∪ L(¬[α′ | α′ ∈ ∂σ(αn)])

= Σ∗\L({α′ | α′ ∈ ∂σ(α1)}) ∪ . . . ∪ Σ∗\L({[α′ | α′ ∈ ∂σ(αn)})
= Σ∗\(L({α′ | α′ ∈ ∂σ(α1)}) ∩ . . . ∩ L({[α′ | α′ ∈ ∂σ(αn)}))
= Σ∗\{〈α′1, . . . , α′n〉 | α′i ∈ ∂(αi)}
= Σ∗\∂σ(〈α1, . . . , αn〉).

If α is α1α2:

L(∂σ(α1α2)) = L({〈¬α′ | α′ ∈ ∂σ(α1α2)〉})
= L({¬[α′ | α′ ∈ ∂σ(α1α2)]}
= Σ∗\L({α′ | α′ ∈ ∂σ(α1α2)})
= Σ∗\L(∂σ(α1α2)).

If α is β∗, where β is an extended regular expression

L(∂σ(β∗)) = L({〈¬α′ | α′ ∈ ∂σ(β∗)〉})
= L({¬[α′ | α′ ∈ ∂σ(β∗)]}
= Σ∗\L({α′ | α′ ∈ ∂σ(β∗)})
= Σ∗\L(∂σ(β∗)).

If α is ¬β
L(∂σ(¬β)) = L(∂σ(¬¬β)) = L(∂σ(β)).

6

Example 1. Let α = ¬(a∗ ∩ ¬ba) be an extended regular expression with Σ = {a, b}, where
α is represented in the implementation by ¬〈a∗,¬ba〉. The correspondent partial derivative
∂a(α) is calculate as follows:

∂a(¬〈a∗,¬ba〉) = ∂a(¬〈a∗,¬ba〉)
= {〈¬f | f ∈ ∂a(a∗)〉} ∪ {〈¬f | f ∈ ∂a(¬ba)〉}

Since,

∂a(a
∗) = {a∗}

and

∂a(¬ba) = {f1a | f1 ∈ ∂a(¬b)} ∪ ∂a(a)

= {f1a | f1 ∈ ∂a(b)} ∪ ∂a(a)

= {Σ∗a} ∪ {ε}
= {Σ∗a, ε},

because ε(¬b) = ε. We have:

∂a(¬〈a∗,¬ba〉) = {〈¬f | f ∈ {a∗}〉} ∪ {〈¬f | f ∈ {Σ∗a, ε}〉}
= {a∗, 〈Σ∗a, ε〉}

Champarnaud and Ziadi [CZ01] showed that partial derivatives and Mirkin’s prebases
[Mir66] lead to identical constructions of non-deterministic automata. Here, we give an
extended version for intersection of the algorithm.

Let α0 be a regular expression. A set π(α0) = {α1, . . . , αn}, where α1, . . . , αn are non-
empty regular expressions, is called a support of α0 if, for i = 0, . . . , n, there are αil ∈ R
(l = 1, . . . , k), linear combinations of the elements in π(α0), such that αi = σ1.αi1 + . . . +
σk.αik + ε(αi), where, as above, Σ = {σ1, . . . , σk} is the considered alphabet. If π(α) is a
support pf α, then the set π(α) ∪ {α} is called a prebase of α.

Proposition 2. Let α be an extended regular expression and σ a symbol of the alphabet, then
the set π(α), inductively defined by

π(Σ∗) = {Σ∗}
π(Σ+) = {Σ∗}
π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α+ β) = π(α) ∪ π(β)

π(α ∩ β) = {α′ ∩ β′ | α′ ∈ π(α), β′ ∈ π(β)}
π(αβ) = {α′β | β′ ∈ π(α)} ∪ π(β)

π(α∗) = {α′α∗ | α′ ∈ π(α)}

is a support of α.

7

Proof. In [CZ01] is the proof for all definitions except for π(β ∩ γ), which is proved below.
Let π(β0) = {β1, . . . , βn} and π(γ0) = {γ1, . . . , γm} be a support of β0 and γ0, respectively.

Thus, for i = 0, . . . , n one has:


β ≡ β0

βi =
k∑
r=1

σiβri + ε(βi),

where βil, for i = 0, . . . , n and l = 1, . . . , k, is a linear combination of elements in π(β0).
For j = 0, . . . ,m: 

γ ≡ γ0

γj =
k∑
r=1

σiγrj + ε(γj),

where γjl, for j = 0, . . . , n and l = 1, . . . , k, is a linear combination of elements in π(γ0).

Consider α = β0 ∩ γ0, so

π(β0 ∩ γ0) = {β0i ∩ γ0j | β0i ∈ π(β0), γ0j ∈ π(γ0)}.

Since, 
β0 =

k∑
i=1

σiβ0i + ε(β0)

γ0 =

k∑
j=1

σiγ0j + ε(γ0).

Therefore:

β0 ∩ γ0 =
k∑
i=1

σiβ0i + ε(β0) ∩
k∑
j=1

σiβ0j + ε(β0)

= (σiβ01 ∩ σiγ01) + . . .+ (σiβ01 ∩ σiγ0k) + (σiβ01 ∩ ε(γ0)) + . . .+

(σiβ0k ∩ σiγ01) + . . .+ (σiβ0k ∩ σiγ0k) + (σiβ0k ∩ ε(γ0)) + ε(β0 ∩ γ0)
= (σ1 ∩ σ1)(β01 ∩ γ01) + . . .+ (σk ∩ σk)(β0k ∩ γ0k) + ε(β0 ∩ γ0)
= (σ1)(β01 ∩ γ01) + . . .+ (σk)(β0k ∩ γ0k) + ε(β0 ∩ γ0)

=

k∑
j=1

σi(β0i ∩ γ0i) + ε(β0 ∩ γ0).

Let π(β0) = {β1, . . . , βn} be a suport of β0. Thus, for i = 0, . . . , n one has
β ≡ β0

βi =

k∑
r=1

σiβri + ε(βi),

where βil, for i = 0, . . . , n e l = 1, . . . , k, is a linear combination of elements in π(β0).

8

Example 2. Consider the regular expression α = aa∗ ∩ a with Σ = {a}. The support for α
is

π(aa∗ ∩ aa) = {β ∩ γ | β ∈ π(aa∗), γ ∈ π(a)}

Since,

π(aa∗) = {βa∗ | β ∈ π(a)} ∪ π(a∗)

= {βa∗ | β ∈ {ε}} ∪ {a∗}
= {ε}} ∪ {a∗}
= {ε a∗}

and

π(aa) = {a, ε}.

Thus,

π(a∗ ∩ aa) = {β ∩ γ | β ∈ {ε a∗}, γ ∈ {a, ε}}
= {ε ∩ a, ε ∩ ε, a∗ ∩ a, a ∗ ∩ε}
= {ε, a∗ ∩ a}

For the regular expression β = a∗ ∩ a, we have

π(a∗ ∩ a) = {β ∩ γ | β ∈ π(a∗), γ ∈ π(a)}
= {β ∩ γ | β ∈ {a∗}, γ ∈ {ε}}
= {a∗ ∩ ε}.

Note that in the second example of Example 2 the closure of partial derivatives of the
regular expression a∗ ∩ a is equal to support π(a∗ ∩ a) of it.

3 XRE in FAdo

The XRE is a class for the extended regular expressions in FAdo system that preserves the
modulo-aci properties in a way to assure the finitude of some algorithms, such as dfaDeriva-
tives (construction of Derivative DFA [Brz64]), nfaPD (Partial Derivative nfa [Ant96])) and
equivP (verifies if two regular expressions are equivalent [Brz64]).
The intersections and disjunctions were implemented in XRE as sets of regular expressions,
because it guarantees the modulo-aci prooperties. Consider as an example the following
correspondences:

a+ b∗c+ ∅+ a+ ε→ {a, b∗c, ε}
a ∩ a∗a ∩ ∅ ∩ a ∩ ε→ {a, a∗a, ε}

The concatenations were represented as ordered lists, which allows to take advantage of the
associative concatenation, for example:

a(a+ c)∗a→ [a, (a+ c)∗, a]

9

It was used the object-oriented paradigma of programming for the implementation of regular
expressions, it had been used a different class for each of the operators (+, . , ∩, ¬, ∗). Figure
1 presents the classes for XRE and the principal methods coded. The xre class is the base
class for all extended regular expression and the subclasses xsigmaP and xsigmaS represent
the regular expressions Σ+ and Σ∗, respectively. The methods derivative, partialDerivative
and linearForm are implemented for each subclass. The method support, that is defined and
proved below, is not implemented for xnot. The same occurs for the method nfaGlushkov
[Glu61] that is only for non-extended regular expressions. The algorithm equivP defined in
[Alm11] verifies if two regulares expressions are equal by creating both derivative automaton.
Since we extended the derivatives in FAdo for intersection and negation, the equivP algorithm
was extended too. Likewise, the algorithm PD that creates the closure of the partial
derivatives of an extended regular expression in relation to all symbols occuring in it.

Figure 1: Classes for XRE.

References

[Alm11] Marco Almeida. Equivalence of regular languages: an algorithmic approach and
complexity analysis. PhD thesis, University of Porto, April 2011.

[AM94] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions. In
G. Rozenberg and A. Salomaa, editors, Developments in Language Theory, pages
195 – 209. World Scientific, 1994.

10

[Ant96] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci., 155(2):291–319, 1996.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[CZ01] J. M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[Glu61] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–53,
1961.

[Mir66] B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

[PCM11] J.-M. Champarnaud P. Caron and L. Mignot. Partial derivatives of an extended
regular expression. 6638:179–19, 2011.

[Sal66] A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal
of the Association for Computing Machinery, 13(1):158–169, 1966.

11

