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Abstract

We present an exact method, based on an arc-flow formulation with side constraints, for solving
bin packing and cutting stock problems — including multi-constraint variants — by simply represent-
ing all the patterns in a very compact graph. Our method includes a graph compression algorithm
that usually reduces the size of the underlying graph substantially without weakening the model.
As opposed to our method, which provides strong models, conventional models are usually highly
symmetric and provide very weak lower bounds.

Our formulation is equivalent to Gilmore and Gomory’s, thus providing a very strong linear re-
laxation. However, instead of using column-generation in an iterative process, the method constructs
a graph, where paths from the source to the target node represent every valid packing pattern.

The same method, without any problem-specific parameterization, was used to solve a large
variety of instances from several different cutting and packing problems. In this paper, we deal
with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing,
cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with
conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational
results obtained with many benchmark test data sets, all of them showing a large advantage of this
formulation with respect to the traditional ones.
Keywords: Bin Packing, Cutting Stock, Vector Packing, Arc-flow Formulation

1 Introduction

The bin packing problem (BPP) is a combinatorial NP-hard problem (see, e.g., Garey and Johnson 1979)
in which objects of different volumes must be packed into a finite number of bins, each with capacity
W , in a way that minimizes the number of bins used. In fact, the BPP is strongly NP-hard (see, e.g.,
Garey and Johnson 1978) since it remains so even when all of its numerical parameters are bounded by a
polynomial in the length of the input. Therefore, the BPP cannot even be solved in pseudo-polynomial
time unless P = NP. Besides being strongly NP-hard, the BPP is also hard to approximate within 3/2−ε.
If such approximation exists, one could partition n non-negative numbers into two sets with the same
sum in polynomial time. This problem — called the number partition problem — could be reduced to a
bin packing problem with bins of capacity equal to half of the sum of all the numbers. Any approximation
better than 3/2 − ε of the optimal value could be used to find a perfect partition, corresponding to a
packing in b2(3/2 − ε)c = 2 bins. However, the number partition problem is known to be NP-hard.
Concerning the heuristic solution of the BPP, Simchi-Levi (1994) showed that the first-fit decreasing and
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the best-fit decreasing heuristics have an absolute performance ratio of 3/2, which is the best possible
absolute performance ratio for the bin packing problem unless P=NP.

The BPP can be seen as a special case of the cutting stock problem (CSP). In this problem there is a
number of rolls of paper of fixed width waiting to be cut for satisfying demand of different customers
who want pieces of various widths. Rolls must be cut in such a way that waste is minimized. Note
that, in the paper industry, solving this problem to optimality can be economically significant; a small
improvement in reducing waste can have a huge impact in yearly savings.

There are many similarities between BPP and CSP. However, in the CSP, the items of equal size (which
are usually ordered in large quantities) are grouped into orders with a required level of demand, while in
the BPP the demand for a given size is usually close to one. According to Wäscher et al. (2007), cutting
stock problems are characterized by a weakly heterogeneous assortment of small items, in contrast
with bin packing problems, which are characterized by a strongly heterogeneous assortment of small
items.

The p-dimensional vector bin packing problem (pD-VBP), also called general assignment problem by
some authors, is a generalization of bin packing with multiple constraints. In this problem, we are
required to pack n items of m different types, represented by p-dimensional vectors, into as few bins
as possible. In practice, this problem models, for example, static resource allocation problems where
the minimum number of servers with known capacities is used to satisfy a set of services with known
demands.

The method presented in this paper allows solving several cutting and packing problems through reduc-
tions to vector packing. The reductions are made by defining a matrix of weights, a vector of capacities
and a vector of demand. Our method builds very strong integer programming models that can usually
be easily solved using any state-of-the-art mixed integer programming solver. Computational results
obtained with many benchmark test data sets show a large advantage of our method with respect to
traditional ones.

The remainder of this paper is organized as follows. Section 2 gives account of previous approaches
with exact methods to bin packing and related problems. Our method is presented in Section 3.
Computational results are presented in Section 4, and Section 5 presents the conclusions.

2 Previous work on exact methods

In this section, we will give account of previous approaches with exact methods to bin packing and
related problems. We will introduce the assignment-based Kantorovich’s formulation and the pattern-
based Gilmore and Gomory’s formulation. Both formulations were initially proposed for the standard
CSP, but they can be easily generalized for multi-constraint variants. Valério de Carvalho (2002) provides
an excellent survey on integer programming models for bin packing and cutting stock problems. Here
we will just look at the most common and straightforward approaches.

We will also introduce Valério de Carvalho’s arc-flow formulation, which is equivalent to Gilmore and
Gomory’s formulation. Gilmore and Gomory’s model provides a very strong linear relaxation, but it is
potentially exponential in the number of variables with respect to the input size; even though Valério
de Carvalho’s model is also potentially exponential, it is usually much smaller, being pseudo-polynomial
in terms of decision variables and constraints. In both models, we consider every valid packing pattern.
However, in Valério de Carvalho’s model, patterns are derived from paths in a graph, whereby the model
is usually much smaller.
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2.1 Kantorovich’s formulation

Kantorovich (1960) introduced the following mathematical programming formulation for the CSP:

minimize

K∑
k=1

yk (1)

subject to

K∑
k=1

xik ≥ bi, i = 1, . . . ,m, (2)

m∑
i=1

wixik ≤Wyk, k = 1, . . . ,K, (3)

yk ∈ {0, 1}, k = 1, . . . ,K, (4)

xik ≥ 0, integer, i = 1, . . . ,m, k = 1, . . . ,K, (5)

where K is a known upper bound to the number of rolls needed, m is the number of different item sizes,
wi and bi are the weight and demand of item i, and W is the roll length. The variables are yk, which is
1 if roll k is used and 0 otherwise, and xik, the number of times item i is cut in the roll k.

This model can be generalized for multi-constraint variants using multiple knapsack constraints instead
of just one. In the p-dimensional case, the lower bound provided by the linear relaxation of this kind
of assignment-based models is 1/(p + 1) (see, e.g., Caprara 1998). Even for the one-dimensional case,
the lower bound provided by this model approaches 1/2 of the optimal solution in the worst case. This
is a drawback of this model, as good quality lower bounds are vital in branch-and-bound procedures.
Another drawback is due to the symmetry of the problem, which makes this model very inefficient in
practice.

Dantzig-Wolfe decomposition is an algorithm for solving linear programming problems with a special
structure (see, e.g., Dantzig and Wolfe 1960). It is a powerful tool that can be used to obtain models for
integer and combinatorial optimization problems with stronger linear relaxations. Vance (1998) applied
a Dantzig-Wolfe decomposition to model (1)-(5), keeping constraints (1), (2) in the master problem, and
the subproblem being defined by the integer solutions to the knapsack constraints (3). Vance showed that
when all the rolls have the same width, the reformulated model is equivalent to the classical Gilmore-
Gomory’s model.

2.2 Gilmore-Gomory’s formulation

Gilmore and Gomory (1961) proposed the following model for the CSP. A combination of orders in
the width of the roll is called a cutting pattern. Let column vectors aj = (aj1, . . . , a

j
m)> represent all

possible cutting patterns j. The element aji represents the number of items of width wi obtained in
cutting pattern j. Let xj be a decision variable that designates the number of rolls to be cut according
to cutting pattern j. The CSP can be modeled in terms of these variables as follows:

minimize
∑
j∈J

xj (6)

subject to
∑
j∈J

ajixj ≥ bi, i = 1, . . . ,m, (7)

xj ≥ 0, integer, ∀j ∈ J, (8)

where J is the set of valid cutting patterns that satisfy:

m∑
i=1

ajiwi ≤W and aji ≥ 0, integer. (9)

Since constraints (9) just accept integer linear combinations of items, the search space of the continuous
relaxation is reduced and the lower bound provided by its linear relaxation is stronger when compared
with Kantorovich’s formulation.
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Since it may be impractical to enumerate all the columns in the previous formulation, Gilmore and
Gomory (1963) proposed column generation. Let Model (6)-(8) be the restricted master problem. At each
iteration of the column-generation process, a subproblem is solved and a column (pattern) is introduced
in the restricted master problem if its reduced cost is strictly less than zero. The subproblem, which is
a knapsack problem, is the following:

minimize 1−
m∑
i=1

ciai (10)

subject to

m∑
i=1

wiai ≤W (11)

ai ≥ 0, integer, i = 1, . . . ,m, (12)

where ci is the shadow price of the demand constraint of item i obtained from the solution of the linear
relaxation of the restricted master problem, and a = (a1, . . . , am) is a cutting pattern whose reduced cost
is given by the objective function. This model can be easily generalized for multi-constraint variants by
using multiple knapsack constraints in the subproblem instead of (11).

2.3 Valério de Carvalho’s arc-flow formulation

Among other methods for solving BPP and CSP exactly, one of the most important is the arc-flow
formulation with side constraints of Valério de Carvalho (1999). This model has a set of flow conservation
constraints and a set of demand constraints to ensure that the demand of every item is satisfied. The
corresponding path-flow formulation is equivalent to the classical Gilmore-Gomory’s formulation.

Consider a bin packing instance with bins of capacity W and items of sizes w1, w2, . . . , wm with demands
b1, b2, . . . , bm, respectively. The problem of determining a valid solution to a single bin can be modeled
as the problem of finding a path in a directed acyclic graph G = (V,A) with V = {0, 1, 2, . . . ,W} and
A = {(i, j) | j − i = wd, for 1 ≤ d ≤ m and 0 ≤ i < j ≤ W}, meaning that there exists an arc between
two vertices i and j > i if there are items of size wd = j− i. The number of vertices and arcs are bounded
by O(W ) and O(mW ), respectively. Additional arcs (k, k + 1), for k = 0, . . . ,W − 1, are included for
representing unoccupied portions of the bin.

In order to reduce the symmetry of the solution space and the size of the model, Valério de Carvalho
introduced some rules. The idea is to consider only a subset of arcs from A. If we search for a solution in
which the items are ordered by decreasing values of width, only paths in which items appear according to
this order must be considered. Note that different paths that include the same set of items are equivalent
and we just need to consider one of them.

Example 1 Figure 1 shows the graph associated with an instance with bins of capacity W = 7 and items
of sizes 5, 3, 2 with demands 3, 1, 2, respectively.

Figure 1: Graph corresponding to Example 1.

0 1 2 3 4 5 6 7
loss loss loss loss loss

w3 w3 w3 w3

w2

w1

The BPP and the CSP are thus equivalently formulated as that of determining the minimum flow between
vertex 0 and vertex W , with additional constraints enforcing the sum of the flows in the arcs of each order
to be greater than or equal to the corresponding demand. Consider decision variables xij (associated
with arcs (i, j) defined above) corresponding to the number of items of size j − i placed in any bin at a
distance of i units from the beginning of the bin. A variable z, representing the number of bins required,
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aggregates the flow in the graph, and can be seen as a feedback arc from vertex W to vertex 0. The
model is as follows:

minimize z (13)

subject to
∑

(i,j)∈A

xij −
∑

(j,k)∈A

xjk =

 −z if j = 0,
z if j = W,
0 for j = 1, . . . ,W − 1,

(14)

∑
(k,k+wi)∈A

xk,k+wi
≥ bi, i = 1, . . . ,m, (15)

xij ≥ 0, integer, ∀(i, j) ∈ A. (16)

Valério de Carvalho (1999) developed a branch-and-price procedure that combines column-generation
and branch-and-bound. At each iteration, the subproblem generates a set of variables, which altogether
correspond to an attractive valid packing for a single bin.

3 General arc-flow formulation

In this section, we propose a generalization of Valério de Carvalho’s arc-flow formulation. Valério de
Carvalho’s graph can be seen as the dynamic programming search space of the underlying one-dimensional
knapsack problem. The vertices of the graph can be seen as states and, in order to model multi-constraint
knapsack problems, we just need to add more information to them.

Figure 2 shows an alternative graph to model the bin packing instance of Example 1 (Section 2.3). Item
weights are sorted in decreasing order. In this graph, an arc (u, v, i) corresponds to an arc between
nodes u and v associated with items of weight wi. Note that, for each pair of nodes (u, v), multiple arcs
associated with different items are allowed. The dashed arcs are the loss arcs that connect every node
(except the source (s)) to the target (t). Since the loss arcs connect the nodes directly to the target
(instead of connecting consecutive nodes) it may not be necessary to have a node for every integer value
less than or equal to the capacity. Note that each path between s and t in this graph corresponds to a
valid packing pattern for the Example 1 and all the valid patterns are represented. In this graph, a node
label w′ means that every sub-pattern from the source to this node has at most weight w′.

Figure 2: Another possible graph for a bin packing instance.

s 2 3 4 5 7 ti = 3

i = 3 i = 3
i = 3

i = 2

i = 1 i wi bi

1 5 3

2 3 1
3 2 2

W = 7

In this graph, V = {s, 2, 3, 4, 5, 7,t} is the set of vertices, A = {(s, 5, 1), (s, 3, 2), (s, 2, 3), (2, 4, 3), (3, 5,
3), (5, 7, 3), (2, t, 0), (3, t, 0), (4, t, 0), (5, t, 0), (7, t, 0)} is the set of arcs.

We propose a generalization of Valério de Carvalho’s model, still based on representing the packing
patterns by means of flow in a graph, though we assign a more general meaning to vertices and arcs.
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The formulation is the following:

minimize z (17)

subject to
∑

(u,v,i)∈A:v=k

fuvi −
∑

(v,r,i)∈A:v=k

fvri =

 −z if k = s,
z if k = t,
0 for k ∈ V \ {s,t},

(18)

∑
(u,v,j)∈A:j=i

fuvj ≥ bi, i ∈ {1, . . . ,m} \ J, (19)

∑
(u,v,j)∈A:j=i

fuvj = bi, i ∈ J, (20)

fuvi ≤ bi, ∀(u, v, i) ∈ A, if i 6= 0, (21)

fuvi ≥ 0, integer, ∀(u, v, i) ∈ A, (22)

where m is the number of different items, bi is the demand of items of weight wi, V is the set of vertices,
s is the source vertex and t is the target; A is the set of arcs, where each arc has three components (u, v, i)
corresponding to an arc between nodes u and v that contributes to the demand of items of weight wi;
arcs (u, v, i = 0) are the loss arcs; fuvi is the amount of flow along the arc (u, v, i); and J ⊆ {1, . . . ,m} is
a subset of items whose demands are required to be satisfied exactly for efficiency purposes. For having
tighter constraints, one may set J = {i = 1, . . . ,m | bi = 1} (we have done this in our experiments).

In Valério de Carvalho’s model, a variable xij contributes to an item with weight j − i. In our model, a
variable fuvi contributes to items of weight wi; the label of u and v may have no direct relation to the
item’s weight. This new model is more general; Valério de Carvalho’s model is a sub-case, where an arc
between nodes u and v can only contribute to the demand of an item of weight v − u. As in Valério de
Carvalho’s model, each arc can only contribute to an item, but the new model has several differences
with respect to the original formulation:

• nodes are more general (e.g., they can encompass multiple dimensions);

• there may be more than one arc between two vertices (multigraph);

• demands in general may be satisfied with excess but for some items they are required to be satisfied
exactly (this allows, for example, to take advantage of special ordered sets of type 1 when requiring
the demands of items with demand one to be satisfied exactly);

• arcs have upper bounds equal to the total demand of the associated item (which allows excluding
many feasible solutions that would exceed the demand);

• arc lengths are not tied to the corresponding item weight (i.e., (u, v, i) ∈ A even if v − u 6= wi).

More details on algorithms for graph construction are given in the following sections. Using this model
it is possible to use more general graphs, but we always need to ensure that it is a directed acyclic graph
whose paths from s to t correspond to every valid packing pattern of the original problem. One of the
properties of this model is the following.

Property 1 (equivalence to the classical Gilmore-Gomory model) For a graph with all valid pack-
ing patterns represented as paths from s to t, model (17)-(22) is equivalent to the classical Gilmore-
Gomory model (6)-(9) with the same patterns as the ones obtained from paths in the graph.

Proof: Extending Valério de Carvalho’s proof, we apply Dantzig-Wolfe decomposition to model (17)-
(22) keeping (17), (19) and (20) in the master problem and (18), (21) and (22) in the subproblem. As
the subproblem is a flow model that will only generate patterns resulting from paths in the graph, we
can substitute (18), (21) and (22) by the patterns and obtain the classical model. From this equivalence
follows that lower bounds provided by both models are the same when the same set of patterns is
considered. The equality constraints (20) and the upper bound on variable values (21) have no effect on
the lower bounds, since for every optimal solution with some excess there is a solution with the same
objective value that satisfies the demand exactly; this solution can be obtained by replacing the use of
some patterns by other patterns that do not include the items whose demands are being satisfied with
excess (recall that every valid packing pattern is represented in the graph). �
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After having the solution of the arc-flow integer optimization model, we use a flow decomposition
algorithm to obtain the corresponding packing solution. Flow decomposition properties (see, e.g., Ahuja
et al. 1993) ensure that non-negative flows can be represented by paths and cycles. Since we require an
acyclic graph, any valid flow can be decomposed into directed paths connecting the only excess node
(node s) to the only deficit node (node t).

Note that by requiring the demands of some items to be satisfied exactly and by introducing upper bounds
on variable values, the model may sometimes become harder to solve. For instance, if the demand of
a very small item is required to be satisfied exactly, many optimal solutions will probably be excluded
(unless the optimal solution has waste smaller than the item size). In some instances, the solution can
be obtained more quickly by choosing carefully the variable upper bounds and the set of items whose
demand must be satisfied exactly. Overall, our choices regarding these two aspects proved to work very
well, as we show in Section 4.

3.1 p-dimensional vector packing graphs

In the p-dimensional vector packing problem, items are characterized by weights in several dimensions.
For each dimension d, let wd

i be the weight of item i and W d the bin capacity. In the one-dimensional
case, arcs associated with items of weight w1

i lie between vertices (a) and (a + w1
i ). In the multi-

dimensional case, arcs associated with items of weight (w1
i , w

2
i , . . . , w

p
i ) lie between vertices (a1, a2, . . . , ap)

and (a1 +w1
i , a

2 +w2
i , . . . , a

p +wp
i ). Figure 3 shows the graph associated with Example 1, but now with

a second dimension limiting cardinality to 3.

Figure 3: Graph associated with Example 1, but now with cardinality limit 3.

s

ewns2, 1

ewns3, 1

ewns5, 1

ewns4, 2

ewns5, 2

ewns7, 2

ewns7, 3 t

i = 3

i = 2

i = 1

i = 3

i = 3

i = 3

i = 3

i w1
i w2

i bi
1 5 1 3

2 3 1 1
3 2 1 2

W 1 = 7; W 2 = 3

In this graph, a node label (w′, c′) means that any path from the source will reach the node with at most
c′ items whose sum of weights is at most w′.

In the one-dimensional case, the number of vertices and arcs in the arc-flow formulation is bounded by
O(W ) and O(mW ), respectively, and thus graphs are usually reasonably small. However, in the multi-
dimensional case, the number of vertices and arcs are bounded by O(

∏p
d=1(W d+1)) and O(m

∏p
d=1(W d+

1)), respectively. Despite the possible intractability indicated by these bounds, the graph compression
method that we present in this paper usually leads to reasonably small graphs even for very hard instances
with hundreds of dimensions.

Definition 1 (Order) Items are sorted in decreasing order by the sum of normalized weights (αi =∑p
d=1 x

d
i /W

d), using decreasing lexicographical order in case of a tie.

The source vertex (s) is labeled with 0 in every dimension. Arcs associated with items of weight
(w1

i , w
2
i , . . . , w

p
i ) are created between vertices (a1, a2, . . . , ap) and (a1 + w1

i , a
2 + w2

i , . . . , a
p + wp

i ). Since
we just need to consider paths that respect a fixed order, we can have an arc with tail in a node only
if it is either the source node or the head of an arc associated with a previous item (according to the
order defined in Definition 1). Our algorithm to construct the graph relies on this rule. Initially, there is
only the source node. For each item, we insert in the graph arcs associated with the item starting from
all previously existing nodes . After processing an item, we add to the graph the set of new nodes that
appeared as heads of new arcs. This process is repeated for every item and in the end we just need to
connect every node, except the source, to the target. Using this algorihtm, the graph can be constructed
in pseudo-polynomial time O(|V |m), where |V | is the number of vertices in the graph. Figure 4 shows a
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small example of the construction of a graph using this method. More details on algorithms for graph
construction are given in Brandão (2012).

Figure 4: Graph construction example.

Consider a cardinality constrained bin packing instance with bins of capacity 7,
cardinality limit 3, and items of sizes 5, 3, 2 with demands 3, 1, 2, respectively.
This instance corresponds to adding cardinality limit 3 to Example 1.
a) We start with a graph with only the source node:

s

b) At the first iteration, we add arcs associated with the first item, which has
weight 5. There is space only for one item of this size.

s ewns5, 1
i = 1

c) At the second iteration, we add arcs for the second item, which has weight 3.
The demand does not allow us to form paths with more than 1 consecutive arc of
this size.

s ewns3, 1

ewns5, 1

i = 2

i = 1

d) At the third iteration, we add the arcs associated with the third item, which
has weight 2. Since the demand of this item is 2, we can add paths (starting from
previously existing nodes) with at most 2 items of size 2.

s

ewns2, 1

ewns3, 1

ewns5, 1

ewns4, 2

ewns5, 2

ewns7, 2

ewns7, 3

i = 3

i = 2

i = 1

i = 3

i = 3

i = 3

i = 3

e) Finally, we add the loss arcs connecting each node, except the source, to the
target. The resulting graph corresponds to the model to be solved by a general-
purpose mixed-integer optimization solver.

s

ewns2, 1

ewns3, 1

ewns5, 1

ewns4, 2

ewns5, 2

ewns7, 2

ewns7, 3 t

i = 3

i = 2

i = 1

i = 3

i = 3

i = 3

i = 3

3.2 Breaking symmetry

In Section 3.3, we will present a three-step graph compression method whose first step consists of
breaking the symmetry. Let us consider a cardinality constrained bin packing instance with bins of
capacity W = 9, cardinality limit 3 and items of sizes 4, 3, 2 with demands 1, 3, 1, respectively. Figure 5
shows the Step-1 graph produced by the graph construction algorithm without the final loss arcs. This
graph contains symmetry. For instance, the paths (s,(4,1),i=1) ((4,1),(7,2),i=2) ((7,2),(9,3),i=3) and
(s,(4,1),i=1) ((4,1),(6,2),i=3) ((6,2),(9,3),i=2) correspond to the same pattern with one item of each
size, but the second one does not respect the order defined in Definition 1.

An easy way to break symmetry is to divide the graph into levels, one level for each different item.
We introduce in each node a new dimension that indicates the level where it belongs. For example,
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Figure 5: Initial graph/Step-1 graph (with symmetry).

s 2, 1 3, 1 4, 1 5, 2 6, 2 7, 2 8, 3 9, 3

i = 2
i = 2 i = 2i = 2

i = 1

i = 3

i = 3 i = 3 i = 3 i = 3

Graph corresponding to a cardinality constrained bin packing instance with bins of capacity W = 9,
cardinality limit 3 and items of sizes 4, 3, 2 with demands 1, 3, 1, respectively.

for the two-dimensional case, nodes (a′, b′) are transformed into sets of nodes {(a′, b′, i′), (a′, b′, i′′),
. . .}. Each set has at most one node per level; nodes in consecutive levels are connected by loss arcs.
Arcs ((a′, b′), (a′′, b′′), i) are transformed into arcs ((a′, b′, i), (a′′, b′′, i), i). In level i, we have only arcs
associated with items of weight wi. If we connect a node (a′, b′, i′) to a node (a′, b′, i′′) only in case
i′ < i′′, we ensure that every path will respect the order (defined in Definition 1) and thus there is no
symmetry. Recall that the initial graph must contain every valid packing pattern (respecting the order)
represented as a path from s to t.

Figure 6 shows the graph with levels (Step-2 graph) that results from applying this symmetry breaking
method to the graph in Figure 5. Although there is no symmetry, there are still patterns that use some
items more than their demand. To avoid this, other alternatives to break symmetry could be used;
however this method is appropriate for the sake of simplicity and speed.

Figure 6: Graph with levels/Step-2 graph (without symmetry).

0, 0, 1

0, 0, 2

0, 0, 3 2, 1, 3

3, 1, 2

3, 1, 3

4, 1, 1

4, 1, 2

4, 1, 3 5, 2, 3

6, 2, 2

6, 2, 3

7, 2, 2

7, 2, 3 8, 3, 3

9, 3, 2

9, 3, 3

i = 1

i = 2

i = 2

i = 2 i = 2

i=3
i = 3 i = 3 i = 3 i = 3

All the patterns respect the order since there are no arcs from higher levels to lower levels. Moreover, it is
also easy to check that no valid pattern was removed. In this graph, we consider s = (0, 0, 1) since it is the
only node without arcs incident to it.

Property 2 No valid pattern (respecting the order) is removed by breaking symmetry with levels as long
as the original graph contains every valid packing pattern (respecting the order) represented as a path
from s to t.

Proof: For every valid packing pattern (respecting the order) in the initial graph, there is a path in
the Step-2 graph corresponding to the same pattern. Note that every path can be seen as a sequence of
consecutive arcs. Let (v1, v2, i1) and (v2, v3, i2) be a pair of consecutive arcs in any valid packing pattern in
the Step-1 graph. In the Step-2 graph, these arcs appear as ((v1, i1), (v2, i1), i1) and ((v2, i2), (v3, i2), i2).
If i1 = i2, the pair of consecutive arcs appear connected at the same level. If not, and given that (v2, i1)
and (v2, i2) were created from v2, a set of loss arcs that connect nodes in different levels exists between
them and hence there is again a sequence of arcs for that part of the pattern. �

3.3 Graph compression

Symmetry may be helpful as long as it leads to large reductions in the graph size. In this section we show
how to reduce the graph size by taking advantage of common sub-patterns that can be represented by a
single sub-graph. This method may increase symmetry, but it usually helps by reducing dramatically the
graph size. The graph compression method is composed of three steps, the first of which was presented
in Section 3.2.

In the graphs we have seen so far, a node label (a1, a2, . . . , ap) means that, for every dimension d, every
sub-pattern from the source to the node uses ad space in that dimension. This means that ad corresponds
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to the length of the longest path from the source to the node in dimension d. Similarly, the longest path
to the target can also be used as a label and nodes with the same label can be combined into one single
node. In the main compression step, a new graph is constructed using the longest path to the target in
each dimension. This usually allows large reductions in the graph size. This reduction can be improved
by breaking symmetry first (as described in the previous section), which allows us to consider only paths
to the target with a specific order.

The main compression step is applied to the Step-2 graph. In the Step-3 graph, the longest paths to the
target in each dimension is used to relabel the nodes, dropping the level dimension of each node. Let
(ϕ1(u), ϕ2(u), . . . , ϕp(u)) be the new label of node u in the Step-3 graph, where

ϕd(u) =


0 if u = s,
W d if u = t,
min(u′,v,i)∈A:u′=u{ϕd(v)− wd

i } otherwise.
(23)

For the sake of simplicity, we define wd
0 for loss arcs as zero in every dimension, w0

0 = w1
0 = . . . = wp

0 = 0.
In the paths from s to t in the Step-2 graph usually there is float in some dimension. In this process,
we are moving this float as much as possible to the beginning of the path. The label in each dimension
of every node u (except s) corresponds to the highest position where the sub-patterns from u to t can
start in each dimension so that capacity constraints are not violated. By using these labels we are
allowing arcs to be longer than the items to which they are associated. We use dynamic programming
to compute these labels in linear time. Figure 7 shows the Step-3 graph that results from applying the
main compression step to the graph of Figure 6. Even in this small instance, a few nodes and arcs were
removed comparing with the initial graph of Figure 5.

Figure 7: Step-3 graph (after the main compression step).

s 3, 1 4, 1 5, 2 6, 2 7, 2 9, 3
i = 2

i = 2 i = 2i = 2i = 1

i = 3

i = 3

The Step-3 graph has 8 nodes and 17 arcs (considering also the final loss arcs connecting internal nodes
to t).

Finally, in the last compression step, a new graph is constructed once more. In order to try to reduce
the graph size even more, we relabel the graph once more using the longest paths from the source in
each dimension. Let (ψ1(v), ψ2(v), . . . , ψp(v)) be the label of node v in the Step-4 graph, where

ψd(v) =

{
0 if v = s,
max(u,v′,i)∈A:v′=v{ψd(u) + wd

i } otherwise.
(24)

Figure 8 shows the Step-4 graph without the final loss arcs. This last compression step is not as important
as the main compression step, but it is easy to compute and usually removes many nodes and arcs.

Figure 8: Step-4 graph (after the last compression step).

s 3, 1 4, 1 6, 2 7, 2 9, 3
i = 2

i = 2 i = 2i = 2i = 1

i = 3

i = 3

The Step-4 graph has 7 nodes and 15 arcs (considering also the final loss arcs connecting internal nodes
to t). In this case, the only difference from the Step-3 graph is the node (5, 2) that collapsed with the
node (4, 1). The initial Step-1 graph had 9 nodes and 18 arcs.

Note that, in this case, the initial Step-1 graph had some symmetry and the final Step-4 graph does not
contain any symmetry. Graph compression may increase symmetry in some situations, but in practice
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this is not a problem as long as it leads to large reductions in the graph size. Since we are dealing with a
very small instance, the improvement obtained by compression is not as substantial as in large instances.
For instance, in the standard BPP instance HARD4 from Scholl et al. (1997) with 200 items of 198
different sizes and bins of capacity 100, 000, we obtained reductions of 97% in the number of vertices
and 95% in the number of the arcs. The resulting model was solved in a few seconds. Without graph
compression it would be much harder to solve this kind of instances using the arc-flow formulation.

Property 3 (Graph compression 1) Non-redundant patterns of the initial graph are not removed by
graph compression.

Proof: Any pattern in the initial graph is represented by a path from s to t. Consider a path π =
v1v2 . . . vn. Graph compression will reduce the graph size by relabeling nodes, collapsing nodes that
receive the same label and removing self-loops (loss arcs). Therefore, the path π′ = φ(v1)φ(v2) . . . φ(vn),
where φ is the map between the initial and final labels, will represent exactly the same pattern as the
one represented by the path π, possibly with some self-loops that do not affect the patterns. �

Property 4 (Graph compression 2) Graph compression will not introduce any invalid pattern.

Proof: An invalid pattern consists of a set of items whose sum of weights exceeds the bin capacity in
some dimension. A pattern is formed from a path in the graph and its total weight in each dimension
is the sum of weights of the items in the path. The main compression step just relabels every node u
(except s) in each dimension with the highest position where the sub-patterns from u to t can start so
that capacity constraints are not violated. The node t is labeled with (W 1,W 2, . . . ,W p) and no label will
be smaller than (0, 0, . . . , 0) since all the patterns in the input graph are required to be valid. However,
we could have invalid patterns, even with all the nodes labeled between zero and (W 1,W 2, . . . ,W p), if
an arc had length smaller than the item it represents, but this is not possible. The label of every internal
node u is given by (ϕ1(u), ϕ2(u), . . . , ϕp(u)), where ϕd(u) = min{ϕd(v)−wd

i | (u′, v, i) ∈ A, u′ = u}; for
every node v such that there is an arc between u and v, the difference between their labels is at least
the weight in each dimension of the item associated with the arc. Therefore, no invalid patterns are
introduced. An analogous proof can be derived for the last compression step. �

3.4 Building Step-3 graphs directly

As we said in Section 3.1, in the p-dimensional case, the number of vertices and arcs is limited by
O(
∏p

d=1(W d + 1)) and O(m
∏p

d=1(W d + 1)), respectively. Our graph compression method usually leads
to very high compression ratios and in some cases it may lead to final graphs hundreds of times smaller
than the initial ones. The size of the initial graph can be the limiting factor and hence its construction
should be avoided.

In practice, we build the Step-3 graph directly in order to avoid the construction of huge Step-1 and
Step-2 graphs that may have many millions of vertices and arcs. Algorithm 1 uses dynamic programming
to build the Step-3 graph recursively over the structure of the Step-2 graph (without building it). The
base idea for this algorithm comes from the fact that in the main compression step the label of any node
only depends on the labels of the two nodes to which it is connected (a node in its level and another in
the level above). After directly building the Step-3 graph from the instance’s data using this algorithm,
we just need to apply the last compression step to obtain the final graph. In practice, this method allows
obtaining arc-flow models even for large benchmark instances quickly.

The dynamic programming states are identified by the space used in each dimension (xd, for d = 1, . . . , p),
the current item (i) and the number of times it was already used (c). In order to reduce the number
of states, we lift each state by solving (using dynamic programming) knapsack/longest-path problems
in each dimension considering the remaining items; we try to increase the space used in each dimension
to its highest value considering the valid packing patterns for the remaining items. By solving multi-
constraint knapsack problems in each dimension, we would obtain directly the corresponding label in
the Step-3 graph; however, it is very expensive to solve this problem many times. By lifting states as a
result of solving one-dimensional knapsack problems, we obtain a good approximation in a reasonable
amount of time, and it usually leads to a substantial reduction in the number of states.
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Algorithm 1: Direct Step-3 Graph Construction Algorithm

input : m - number of different items; w - item sizes; b - demand; W - capacity
output: V - set of vertices; A - set of arcs; s - source; t - target

1 function buildGraph(m,w, b,W ):
2 dp[x′, i′, c′]← NIL, for all x′, i′, c′; // dynamic programming table

3 function lift(x, i, c): // auxiliary function: lift dp states solving knapsack/longest-path problems in each dimension

4 function highestPosition(d, x, i, c):
5 return

6

min W d −
∑m

j=i w
d
j yj

s.t.
∑m

j=i w
d
j yj ≤W d − xd,

yi ≤ bi − c,
yj ≤ bj , j = i+ 1, ...,m
yj ≥ 0, integer, j = i, ...,m;

7 return (highestPosition(1, x, i, c), . . . , highestPosition(p, x, i, c));

8 V ← { }; A← { };
9 function build(x, i, c):

10 x← lift(x, i, c); // lift x in order to reduce the number of dp states

11 if dp[x, i, c] 6= NIL then // avoid repeating work

12 return dp[x, i, c];

13 u← (W 1, ...,W p);
14 if i < m then // option 1: do not use the current item (go to the level above)

15 upx ← build(x, i+ 1, 0);
16 u← upx;

17 if c < bi and xd + wd
i ≤W d for all 1 ≤ d ≤ m then // option 2: use the current item

18 v ← build((x1 + w1
i , . . . , x

p + wp
i ), i+ 1, c+ 1);

19 u← (min(u1, v1 − w1
i ), . . . ,min(up, vp − wp

i ));
20 A← A ∪ {(u, v, i)};
21 V ← V ∪ {u, v};
22 if i < m and u 6= up then
23 A← A ∪ {(u, upx, 0)};
24 V ← V ∪ {upx};

25 dp[x, i, c]← u;
26 return u;

27 s← build(x = (0, . . . , 0), i = 0, c = 0); // build the graph

28 V ← V ∪ {t};
29 A← A ∪ {(u,t, 0) | u ∈ V \ {s,t}}; // connect internal nodes to the target

30 return (G = (V,A), s,t);

3.5 Integrality gap and heuristic solutions

There have been many studies (see, e.g., Scheithauer and Terno 1995, Scheithauer and Terno 1997) about
the integrality gap for the BPP, many of them about the integrality gap using Gilmore-Gomory’s model.
Our proposed arc-flow formulation is equivalent to Gilmore-Gomory’s model and hence the lower bounds
are the same when the same set of patterns is considered. Therefore, the results found in these studies,
which we summarize next, are also valid for the arc-flow formulation.

Definition 2 (Integer Property) A linear integer optimization problem P has the integer property
(IP) if

z∗ip(E) = z∗lp(E) for every instance E ∈ P

Definition 3 (Integer Round-Up Property) A linear integer optimization problem P has the integer
round-up property (IRUP) if

z∗ip(E) = dz∗lp(E)e for every instance E ∈ P
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Definition 4 (Modified Integer Round-Up Property) A linear integer optimization problem P has
the modified integer round-up property (MIRUP) if

z∗ip(E) = dz∗lp(E)e+ 1 for every instance E ∈ P

Rietz et al. (2002a) describe families of instances of the one-dimensional cutting stock problem without
the integer round-up property. One of the families is the so-called divisible case, which was firstly
proposed by Nica (1994), where every item size wi is a factor of the bin capacity W . Since the method
we propose usually solves bin packing problems quickly, it was used to solve millions of instances from
this family keeping track of the largest gap found, which was 1.0378 . . ., the same gap as the one found
by Scheithauer and Terno (1997).

Gau (1994) presents an instance with a gap of 1.0666. The largest gap known so far is 7/6 and it was
found by Rietz et al. (2002b). Scheithauer and Terno (1997) conjecture that the general one-dimensional
cutting stock problem has the modified integer round-up property (MIRUP). Moreover, instances for
BPP and CSP usually have the integer round-up property (IRUP). Concerning the results obtained
using the arc-flow formulation in several different cutting and packing problems (see Section 4), most
of the instances have the IRUP, and no instance violated the MIRUP. The largest gap we found in
all the instances from all the benchmark test data sets (except the case of the previous paragraph)
was 1.0027.

The lower bound provided by the linear relaxation of the proposed arc-flow formulation is usually very
tight for every problem we considered; hence, the branch-and-bound process usually finds the optimal
solution quickly (see Section 4). In fact, in our experiments, the large majority of models were solved at
the root node. Moreover, very good solutions are usually found when rounding the linear programming
(LP) solution. Rounding up the fractional variables of the LP solution of Gilmore and Gomory’s model
guarantees a heuristic solution of value at most z∗lp + m, where z∗lp is the optimum value of the linear
relaxation, since we need to round up at most one variable for each different item size in order to
obtain a valid integer solution. Rounding up fractional flow paths of the linear relaxation of the arc-
flow formulation gives the same guarantee. Wäscher and Gau (1996) present more elaborate rounding
heuristics for Gilmore and Gomory’s model that usually lead to the optimal solution in cutting stock
instances. Note that these rounding heuristics usually work well in cutting stock instances where the
demands are large, but they may have a poor performance in bin packing instances where the values of
variables are often a fraction of unity. In our model, we try to overcome the problems introduced by low
demands with upper bounds on the variable values (constraints (21) of the general arc-flow model), and
by requiring the demand of items with demand one to be satisfied exactly (constraints (20)).

4 Applications and results

In this section, we present the results obtained using the arc-flow formulation in several cutting and pack-
ing problems. CPU times were obtained using a computer with two Quad-Core Intel Xeon at 2.66GHz,
running Mac OS X 10.8.0, with 16 GBytes of memory (though only a few of the hardest instances
required more than 4 GBytes of memory). The graph construction algorithm was implemented in C++,
and the resulting MIP was solved using Gurobi 5.0.0, a state-of-the-art mixed integer programming
solver. The parameters used in Gurobi were Threads = 1 (single thread), Presolve = 1 (conservative),
Method = 2 (Interior point methods), MIPFocus = 1 (feasible solutions), Heuristics = 1, MIPGap = 0,
MIPGapAbs = 1− 10−5 and the remaining parameters were Gurobi’s default values. The branch-and-
cut solver used in Gurobi uses a series of cuts; in our models, the most frequently used were Gomory,
Zero half and MIR. The source code is available online1. For more detailed results please consult the
web-page Brandão (2013), which contains all the instances, results and log files.

1http://www.dcc.fc.up.pt/~fdabrandao/code
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4.1 p-dimensional vector packing

In the p-dimensional vector packing problem, bins and items have p independent dimensions. For each
dimension d, let wd

i be the weight of item i and W d the bin capacity. The set S of valid patterns for this
problem is defined as follows:

A =

w1
1 . . . w1

m...
...

wp
1 . . . wp

m

 L =

W 1

...
W p

 S = {x ∈ Nm
0 : Ax ≤ L} (25)

where A is the matrix of weights and L is the vector of capacities. The set S is the set of valid packing
patterns that satisfy all the following knapsack constraints:

w1
1x1+w1

2x2+. . .+w1
mxm ≤W 1 (26)

w2
1x1+w2

2x2+. . .+w2
mxm ≤W 2 (27)

...
...

...
... (28)

wp
1x1+wp

2x2+. . .+wp
mxm ≤W p (29)

xi ≥ 0, integer, i = 1, . . . ,m, (30)

By replacing the subproblem (9) of model (6)-(8) by the knapsack constraints (26)-(30), we obtain a
variant of Gilmore-Gomory’s model for p-dimensional vector packing. In our method, these patterns
are derived from paths in a graph. We start by building a graph G = (V,A) containing every valid
packing pattern represented as a path from the source to the target, and an optimal linear combination
of patterns is obtained through the solution of the general arc-flow formulation (17)-(22) over G.

Two-constraint bin packing (2CBP) is a bi-dimensional vector packing problem. We used the proposed
arc-flow formulation to solve 330 of the 400 instances from the DEIS-OR (2013) two-constraint bin
packing test data set, which was proposed by Caprara and Toth (2001). Table 1 summarizes the results.
This data set has several sizes for each class, each pair (class, size) having 10 instances.

Table 1: Results for 2-dimensional vector packing.

n ∈ {24, 25} n ∈ {50, 51} n ∈ {99, 100} n ∈ {200, 201}

class nbb ttot #op nbb ttot #op nbb ttot #op nbb ttot #op

1 0.0 0.12 0 0.0 1.62 0 0.0 66.96 5 0.0 7,601.35 7
2 0.0 0.01 10 0.0 0.04 10 0.0 0.21 10 0.0 6.93 10
3 0.0 0.01 10 0.0 0.02 10 0.0 0.05 10 0.0 0.20 10
4 0.0 21.97 10 - - - - - - - - -
5 0.0 10.62 10 - - - - - - - - -
6 0.0 0.02 0 0.0 0.06 1 0.0 0.31 5 0.0 4.75 8
7 0.0 0.03 0 0.0 0.14 1 0.3 1.69 7 31.4 14.01 3
8 0.0 0.01 10 0.0 0.02 10 0.0 0.07 10 0.0 0.24 10
9 0.0 0.10 0 0.0 0.66 1 0.0 28.11 10 - - -

10 0.0 0.02 0 0.0 0.10 0 0.0 0.66 0 226.9 155.43 0

n - total number of items; nbb - average number of nodes explored in the branch-and-bound procedure; ttot -
average run time in seconds; #op - number of previously open instances solved.

Note that among the instances presented in Table 1 there were 188 instances with no previously known
optimum. The arc-flow formulation allowed the solution of 330 instances out of the 400 instances; hence,
there remain 70 open instances. The graph compression algorithm is remarkably effective on all of this
subset of two-constraint bin packing instances. In many of the instances, graph compression allowed the
remotion of more than 90% of the vertices and arcs; without it, it would not be viable to solve many of
these instances within a reasonable amount of time.

One may ask why so many of these instances could not be solved before. A reasonable explanation may
be the fact that, for example, in instances from classes 2, 3 and 8, the lower bound provided by the
linear relaxation of assignment-based formulations is rather loose. Also, in some of these instances, the
average number of items per bin in the optimal solution is reasonably large, which leads to an extremely
large number of possible patterns. Results presented in Caprara and Toth (2001) show that solving the
linear relaxation of many of these instances using Gilmore-Gomory’s model and column-generation was
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not possible within 100,000 seconds (more than 27 hours). The computer they used is much slower than
the one we used here, but this shows how hard it can be to compute a linear relaxation of Gilmore-
Gomory’s model as the number of patterns increases and the subproblems become harder to solve. With
the arc-flow formulation, graph compression leads to very large reductions in the graph size and allows
us to represent all these patterns in reasonably small graphs. None of the instances from these classes
has been solved before.

The classes 4 and 5 are hard even for our arc-flow formulation, because of the large number of items
that fit in a single bin. For this type of instances, assignment-based formulations tend to perform better
due to the heuristics used by integer programming solvers, since it is usually easier to find very good
solutions when the number of items that fit in each bin is large. Most of the instances that remain open
belong to these two classes. The 7 subclasses that we did not solve contain at least one instance that
takes more than 12 hours to be solved exactly. The average run time in the 330 solved instances was 4
minutes and none of these instances took longer than 5 hours to be solved exactly.

In order to test the behavior of the arc-flow formulation in instances with the same characteristics and
more dimensions, we created 20-dimensional vector packing instances by combining the ten 2-dimensional
vector packing instances of each subclass (class, size) into one instance. Table 2 summarizes the results.
The arc-flow formulation allowed the solution of 33 out of the 40 instances. The same subclasses that
were solved in the 2-dimensional case were also solved in the 20-dimensional case. Moreover, some 20-
dimensional instances were easier to solve than the original 2-dimensional ones due to the reduction
in the number of valid packing patterns. The 7 instances that were not solved within a 12 hour time
limit are mostly instances in which the patterns are very long. The average run time in the other 33
solved instances was 48 seconds, and none of these instances took longer than 23 minutes to be solved
exactly.

Table 2: Results for 20-dimensional vector packing.

n ∈ {24, 25} n ∈ {50, 51} n ∈ {99, 100} n ∈ {200, 201}

class nbb ttot nbb ttot nbb ttot nbb ttot

1 0 0.09 0 0.81 0 36.28 0 1,374.18
2 0 0.01 0 0.01 0 0.01 0 0.01
3 0 0.01 0 0.01 0 0.01 0 0.01
4 0 50.27 - - - - - -
5 0 73.20 - - - - - -
6 0 0.01 0 0.02 0 0.05 0 0.19
7 0 0.01 0 0.03 0 0.06 0 0.19
8 0 0.01 0 0.01 0 0.03 0 0.10
9 0 0.05 0 0.37 0 12.80 - -

10 0 0.02 0 0.11 0 0.91 0 14.52

n - total number of items; nbb - number of nodes explored in the branch-and-bound
procedure; ttot - run time in seconds.

4.2 Graph coloring

The graph coloring problem is a combinatorial NP-hard problem (see, e.g., Garey and Johnson 1979)
in which one has to assign a color to each vertex of a graph in such way that no two adjacent vertices
share the same color using the minimum number of colors.

Graph coloring can be reduced to vector packing in several ways. Let variables xi of constraints (26)-(29)
represent whether or not vertex i appears in a given pattern (each pattern corresponds to a set of vertices
that can share the same color). Considering each color as a bin and each vertex as an item with demand
one, the following reductions are valid:

• Adjacenty constraints: For each pair of adjacent vertices i and j, there is an adjacency constraint
xi + xj ≤ 1. Each adjacency constraint can be represented by a dimension k of capacity W k = 1,
with wk

i = wk
j = 1.

• Degree constraints: Let deg(i) and adj(i) be the degree and the list of adjacent vertices of vertex
i, respectively. For each vertex i, there is a constraint deg(i)xi +

∑
j∈adj(i) xj ≤ deg(i). Each
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constraint can be represented by a dimension k of capacity W k = deg(i), with wk
i = deg(i) and

wk
j = 1 for every j ∈ adj(i).

• Clique constraints: For each clique C, there is a constraint
∑

i∈C xi ≤ 1. Each clique constraint

can be represented by a dimension k of capacity W k = 1, with wk
i = 1 for every i ∈ C. Bron and

Kerbosch (1973)’s algorithm can be used to decompose the graph into maximal cliques.

Using any of the three reductions above, a vector packing solution with z bins corresponds to a graph
coloring solution with z colors. Different reductions result in different vector packing instances that can
be harder or easier to solve. According to our experiments, it is usually a good idea to choose reductions
that lead to vector packing instances with fewer dimensions. Figure 9 illustrates the three reductions
defined above.

Figure 9: Graph coloring reductions to vector packing.

Graph coloring instance:

x1

x2

x3 x4

Adjacency constraints:

x1+x2 ≤1,

x1 +x3 ≤1,

x2+x3 ≤1,

x3+x4 ≤1,

xi ∈ {0, 1}, i = 1..4

Degree constraints:

2x1+x2+x3 ≤2,

2x2+x1+x3 ≤2,

3x3+x1+x2+x4 ≤3,

1x4+x3 ≤1,

xi ∈ {0, 1}, i = 1..4

Clique constraints:

x1+x2+x3 ≤1,

x3+x4 ≤1,

xi ∈ {0, 1}, i = 1..4

Note that, in graph coloring, the length of the patterns are usually very long, for instance, when the
graphs are sparse. However, there are problems that can be reduced to graph coloring problems with
reasonably short patterns, and thus it may be possible to solve them using the proposed arc-flow model.
One of these problems is timetabling (see Section 4.2.1).

Table 3 shows the results for a small subset of graph coloring instances from OR-Library (2013). These
instances correspond to queen graphs; given a q × q chessboard, there are q2 nodes (one for each square
of the board) which are connected by an edge if the corresponding squares are in the same row, column,
or diagonal. If there is a solution with at most q colors, then it is possible to place q sets of q queens
on the board so that no two queens of the same set are in the same row, column, or diagonal. In these
instances, q limits the length of the color patterns and hence the arc-flow formulation can be applied with
success for small values of q. We reduced these instances to vector packing through degree constraints;
while the arc-flow formulation solved these instances quickly, the assignmnet-based formulation allowed
us to solve only the smallest one under an one-minute time limit.

Table 3: Results for graph coloring.

name n e d zbb zlp #v #a tpp tlp tbb nbb ttot

queen5 5 25 320 25 5 5.00 95 378 0.01 0.00 0.01 0 0.02
queen6 6 36 580 36 7 7.00 367 1,502 0.04 0.02 0.03 0 0.09
queen7 7 49 952 49 7 7.00 1,559 6,571 0.23 0.11 0.12 0 0.46
queen8 8 64 1,456 64 9 8.44 7,799 34,280 1.69 1.78 5.41 0 8.88

n - number of vertices/items; e - number of edges; d - number of dimensions used to represent the
constraints; zbb - optimal integer solution; zlp - linear relaxation; #v,#a - number of vertices and
arcs in the final arc-flow graph; tpp - time spent building the graph; tlp - time spent in the linear
relaxation of the root node; tbb - time spent in the branch-and-bound procedure; nbb - number
of nodes explored in the branch-and-bound procedure; ttot - total run time in seconds.

4.2.1 Timetabling

The timetabling problem has several variants and applications in many areas (see, e.g., Abramson 1991
and Smith et al. 2003). In this section, we consider the class-teacher-venue problem in which one has to
find a conflict-free timetable. Suppose there are c classes, t teachers and v venues. Given the number
of times each pair class-teacher must meet at each venue, we want to find a timetable with zero clashes.
Classes, teachers and venues cannot be chosen twice for the same time period. These constraints are
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represented by dimensions α, γ and δ. For each class k, there is a dimension αk of capacity 1. For each
teacher k, there is a dimension γk of capacity 1. For each venue k, there is a dimension δk of capacity 1.
Each requirement is a triplet (class ci, teacher ti, venue vi) that we represent by an item i with weights
αci
i = γtii = δvii = 1; the demand of each item is the demand of the corresponding requirement. In

addiction, there is a limit on the number of available time slots (that are represented by bins). This
constraint is introduced in the objective function by searching for a solution that minimizes the number
of periods. This reduction can be seen as a graph coloring reduction to vector packing through clique
constraints. The set S of valid patterns for each time period is defined as follows:

A =



α1
1 . . . α1

m...
...

αc
1 . . . αc

m

γ11 . . . γ1m...
...

γt1 . . . γtm
δ11 . . . δ1m...

...
δv1 . . . δvm


L =



1
...
1
1
...
1
1
...
1


S = {x ∈ Nm

0 : Ax ≤ L} (31)

The arc-flow model was used to solve the “hard timetabling” instances from OR-Library (2013). The
hard classification comes from the fact that these instances have been designed so that each class, teacher
and venue is required for each time period. Each instance has a solution with zero clashes that uses no
more than 30 periods (6 periods per day, 5 days per week). All the instances were solved quickly except
hdtt8 that took a few hours to solve. Table 4 shows the results for this problem. The proposed method is
very flexible and the solution of this problem shows that it is possible to model problems beyond cutting
and packing with very little effort.

Table 4: Results for timetabling.

name t c v n m #v #a tpp tlp tbb nbb ttot

hdtt4 4 4 4 120 59 148 906 0.03 0.02 0.03 0 0.07
hdtt5 5 5 5 150 88 644 4,221 0.14 0.15 0.29 0 0.58
hdtt6 6 6 6 180 125 2,719 19,566 0.95 2.62 12.51 0 16.08
hdtt7 7 7 7 210 154 11,140 82,725 5.59 47.62 1,697.31 16 1,750.52
hdtt8 8 8 8 240 197 43,397 368,072 32.46 2,329.86 53,983.17 15 56,345.49

t, c, v - number of teachers, classes and venues. n - number of items/requirements; m - number of
different items/requirements; #v,#a - number of vertices and arcs in the final arc-flow graph; tpp - time
spent building the graph; tlp - time spent in the linear relaxation of the root node; tbb - time spent in
the branch-and-bound procedure; nbb - number of nodes explored in the branch-and-bound procedure;
ttot - total run time in seconds.

4.3 Bin packing and cutting stock

Standard bin packing and cutting stock are one-dimensional vector packing problems whose set S of
valid patterns is defined as follows:

A =
[
w1 . . . wm

]
L =

[
W
]

S = {x ∈ Nm
0 : Ax ≤ L} (32)

We used the arc-flow formulation to solve a large variety of bin packing and cutting stock test data
sets. The results are summarized in Table 5. OR-Library (2013) provides a bin packing test data set
(BPP FLK) that was proposed by Falkenauer (1996). This data set has two classes of instances: uniform
instances (uNNN), where items have randomly generated weights, and the harder triplets instances
(tNNN), where each bin in the optimal solution is completely filled with three items. Each of these is
further divided into subclasses of varying sizes. We generated a cutting stock data set (CSP FLK) from
this bin packing test data set by multiplying the demand of each item by one million; note that in the
class u1000 there are one thousand million items in each instance. Scholl (2013) provides three data
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sets that were generated for Scholl et al. (1997). The first is composed of randomly generated instances
whose expected number of items per bin is not larger than 3. The second test data set is composed of
instances whose expected average number of items per bin is 3, 5, 7 or 9. Finally, the third test data
set is composed of 10 difficult instances with a total number of items n = 200 and bins of capacity
W = 100, 000. Umetani (2013) provides two large test data sets for cutting stock problems. The first
data set (Cutgen) is composed by 1800 randomly generated instances of 18 classes. These instances
were generated using the problem generator proposed by Gau and Wäscher (1995). The second data
set (Fiber) was taken from a real application in a chemical fiber company in Japan. Schoenfield (2002)
provides the Hard28 test data set. This data set is composed of instances selected from a huge testing.
Among these 28 instances, 5 are non-IRUP, so the integer programming solver had to use branch-and-cut
to reduce the gap and prove optimality. The remaining instances are IRUP, yet very hard for heuristics.
ESICUP (2013) provides two test data sets collected from Schwerin and Wäscher (1997) and Wäscher
and Gau (1996) (SCH/WAE and WAE/GAU). Finally, a cutting stock test data set was obtained from
1D-bar relaxations of the two-dimensional bin packing test data set of Lodi et al. (1999).

Table 5: Results for the standard BPP/CSP.

data set type #inst. mmax nmax Wmax #v #a %v %a nbb ttot

BPP FLK BPP 160 203 1,000 1,000 116.26 3,803.94 49% 44% 1.46 0.63
CSP FLK CSP 160 203 109 1,000 115.38 3,844.81 49% 44% 0.00 0.60
Fiber CSP 39 20 1,121 9,080 253.38 1,631.80 73% 71% 0.00 0.29
Cutgen CSP 1,800 40 4,000 1,000 339.85 4,204.77 58% 51% 0.06 1.98
1D-bar CSP 500 100 7,478 300 87.25 2,111.17 10% 7% 0.00 0.42
Scholl BPP 1,210 350 500 100,000 294.81 13,669.59 34% 37% 0.04 17.42
Hard28 BPP 28 189 200 1,000 789.46 27,284.00 19% 26% 102.57 29.68
SCH/WAE BPP 200 49 120 1,000 210.11 3,553.57 70% 70% 0.00 0.62
WAE/GAU BPP 17 64 239 10,000 6,235.06 128,212.76 33% 37% 2.59 1,641.09

#inst. - number of instances; mmax - maximum number of different items; nmax - maximum number of items; Wmax -
maximum bin capacity; #v,#a - average number of vertices and arcs in the final arc-flow graph; %v,%a - average
percentage of vertices and arcs removed by the graph compression method. nbb - average number of nodes explored
in the branch-and-bound procedure; ttot - average run time in seconds.

4.4 Cardinality constrained bin packing and cutting stock

One of the BPP variants is the cardinality constrained bin packing in which, in addition to the capacity
constraint, the number of items per bin is also limited. One of the variants of the CSP is cutting stock
with cutting knife limitation in which there is a limit on the number of pieces that can be cut from each
roll due to a limit on the number of knives. BPP and CSP with cardinality constraints can be seen as
special cases of the 2-dimensional vector packing problem. In the 2-dimensional vector packing problem,
there is a difficult problem in each dimension, whereas, for the cardinality constrained BPP and CSP,
the problem is very easy in one of the dimensions: we just need to count the number of items. The set
S of valid packing patterns for these problems is defined as follows:

A =

[
w1 . . . wm

1 . . . 1

]
L =

[
W
C

]
S = {x ∈ Nm

0 : Ax ≤ L} (33)

Cardinality constrained bin packing is strongly NP-hard for any cardinality larger than 2 (see, e.g.,
Epstein and van Stee 2011); for cardinality 2, the cardinality constrained bin packing problem can be
solved in polynomial time as a maximum non-bipartite matching problem in a graph where each item is
represented by a node and every compatible pair of items is connect by an edge.

We solved using the arc-flow formulation every instance from the bin packing and cutting stock data
sets with cardinalities between 2 and the minimum cardinality limit that allowed the optimum objective
value to be the same as the optimum without cardinality constraints. Table 6 summarizes the results for
each data set. The average run time in the 14,568 instances was 13 seconds and 10,592 of these instances
where solved in less than one minute.

The arc-flow formulation proved to work very well in cardinality constrained instances, for all values
of cardinality. Graph compression reduces substantially the graph sizes and usually leads to graphs

19



Table 6: Results for the cardinality constrained BPP/CSP.

data set type #inst. Cmax #v #a %v %a nbb ttot

BPP FLK BPP 320 3 58.58 1,700.37 86% 82% 1.44 0.35
CSP FLK CSP 320 3 57.47 1,712.48 86% 83% 0.02 0.27
Fiber CSP 279 12 83.23 525.35 94% 90% 0.00 0.07
Cutgen CSP 7,299 18 253.15 2,459.78 93% 89% 0.06 1.26
1D-bar CSP 1,415 8 59.81 965.96 82% 79% 0.05 0.25
Scholl BPP 3,748 10 222.21 6,384.86 86% 87% 0.03 9.99
Hard28 BPP 56 3 100.73 1,991.96 94% 94% 25.12 0.82
SCH/WAE BPP 1,000 6 74.90 924.78 89% 90% 0.00 0.20
WAE/GAU BPP 131 18 6,833.89 103,768.11 91% 90% 0.73 999.58

#inst. - number of instances; Cmax - maximum cardinality limit; #v,#a - average number of
vertices and arcs in the final arc-flow graph; %v,%a - average percentage of vertices and arcs
removed by the graph compression method. nbb - average number of nodes explored in the
branch-and-bound procedure; ttot - average run time in seconds.

with size comparable to the size without cardinality constraints. In fact, there are instances in which
cardinality constraints help to reduce the final graph size, thus leading to easier models. For some of
the instances we knew, by construction, that there would be a solution with at most three items in each
bin, but we were not aware of any good method in the literature for solving the cardinality constrained
BPP/CSP in general. The arc-flow model allowed us to solve the cardinality constrained BPP/CSP as
easily as the standard BPP/CSP. Note that, when both capacity and cardinality constraints are active,
heuristic methods based on assignments tend to perform poorly due to the difficulty in finding good
solutions.

4.5 Cutting stock with binary patterns

Cutting stock with binary patterns (0-1 CSP) is a CSP variant in which items of each type may be cut at
most once in each roll. In this problem, pieces are identified by their types and some types may have the
same width. This problem usually appears as bar and slice relaxations of orthogonal packing problems
(see, e.g., Scheithauer 1999 and Belov et al. 2009). Cutting stock with binary patterns can be modeled
as a vector packing problem with m+ 1 dimensions. The binary constraints are introduced by m binary
dimensions and the set S of valid packing patterns for this problem can be defined as follows:

A =


w1 w2 . . . wm

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 L =


W
1
1
...
1

 S = {x ∈ Nm
0 : Ax ≤ L} (34)

The arc-flow formulation was used to solve all the CSP instances with binary patterns. Table 7
summarizes the results for each data set. The average run time in the 2,499 instances was 5 seconds and
98% of the instances were solved in less than one minute.

Table 7: Results for the 0-1 CSP.

data set #inst. mmax nmax Wmax #v #a tpp tlp tgg tbb nbb ttot

CSP FLK 160 203 109 1,000 451.47 4,313.02 0.46 0.14 0.20 0.65 0.07 1.25
Fiber 39 20 1,121 9,080 104.33 357.54 0.02 0.01 0.01 0.01 0.00 0.03
Cutgen 1,800 40 4,000 1,000 1,001.79 3,320.18 0.23 1.22 0.02 3.71 0.00 5.16
1D-bar 500 100 7,478 300 889.21 3,095.53 0.58 0.36 0.08 2.44 0.12 3.39

#inst. - number of instances; mmax - maximum number of different items; nmax - maximum number of items;
Wmax - maximum bin capacity; #v,#a - average number of vertices and arcs in the final arc-flow graph;
tpp - average time spent building the graph; tlp - average time spent in the linear relaxation of the root node;
tgg - average time required to compute the linear relaxation using column-generation; tbb - average time spent in
the branch-and-bound procedure; nbb - average number of nodes explored in the branch-and-bound procedure;
ttot - average run time in seconds.
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Since this problem usually arises as a relaxation of orthogonal packing problems, the linear relaxation is
usually enough as the gap between the linear relaxation and the optimal integer solution is usually very
small. Gilmore-Gomory’s model with column-generation is usually used to obtain the lower bounds for
this problem. During the column-generation procedure, it is usually necessary to solve many knapsack
problems and the arc-flow graphs can also be used to solve these problems. After building the arc-
flow graph for a given instance, the pattern with smallest reduced cost can be computed by evaluating
f(u) = max(u′,v,i)∈A:u′=u(f(v) + ci), f(t) = 0, where ci is the shadow price of the constraint associated
with the demand of items of weight wi (the loss arcs are treated as items with a shadow price c0 = 0).
The solution can be found in linear time using dynamic programming and this method is much faster
than solving each multi-constraint knapsack problem using Gurobi. The Gilmore-Gomory run times
(tgg) presented in Table 7 were obtained using the arc-flow graphs for solving the knapsack problems.
The time required to solve the linear relaxation of the arc-flow models using interior point methods
is also presented (tlp). The column-generation approach presents better average run times due to the
small number of columns that is usually required to find the optimal linear relaxation and the little time
required to solve each knapsack problem using the arc-flow graph. Nevertheless, the time required to
solve the linear relaxation of the arc-flow model is also very small.

4.6 Bin packing with conflicts

The bin packing packing with conflicts (BPPC) is one of the most import bin packing variants. This
problem consists of the combination of bin packing with graph coloring. In addiction to the capacity
constraints, there are compatibility constraints. This problem can be solved as a vector packing problem
with c+ 1 dimensions, where c is the number of dimensions used to model conflicts. The set S of valid
packing patterns for this problem can be defined as follows:

A =


w1 . . . wn

α1
1 . . . α1

n...
...

αc
1 . . . αc

n

 L =


W
β1

...
βc

 S = {x ∈ Nn
0 : Ax ≤ L} (35)

The conflicts can be modeled using any of the graph coloring reductions to vector packing presented
in Section 4.2. In our experiments, we used degree constraints for modeling constraints in this prob-
lem.

In order to test the arc-flow formulation in the BPPC, we used the data set proposed by Muritiba
et al. (2010). This data set was created from the bin packing data set of Falkenauer (1996), adding
conflict graphs with several densities. Tables 8 and 9 summarize the results for each class and density,
respectively. Muritiba et al. (2010) solved some of theses instances using a branch-and-price algorithm
under a time limit of 10 hours. Sadykov and Vanderbeck (2012) solved all the instances, including the
open instances, within an one-hour time limit using a branch-and-price algorithm. As opposed to our
method, both branch-and-price algorithms of Muritiba et al. (2010) and Sadykov and Vanderbeck (2012)
were specifically designed to solve bin packing with conflicts. The average run time of our method in the
800 instances was 2 minutes and 80% of these instances were solved in less than 1 minute. The instances
of class u1000 were the most difficult to solve. Note that instances of this class have 1000 items and, in
the literature, instances with 200 items are already considered difficult even in the one-dimensional case.
Nevertheless, no instance took longer than 50 minutes to be solved exactly. In this problem, due to the
high number of dimensions, a large part of the run time is spent building the arc-flow graph.
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Table 8: Results for the BPP with conflicts.

class #inst. n d dmax #v #a tpp tlp tgg tbb nbb ttot

u120 100 120 84.96 121 359.99 3,012.12 0.18 0.06 0.12 0.18 0.07 0.43
u250 100 250 175.21 251 1,167.75 9,393.41 2.21 0.37 0.63 1.29 0.00 3.86
u500 100 500 350.48 501 3,486.90 27,440.63 32.40 1.87 3.82 10.88 0.00 45.16
u1000 100 1,000 702.21 1001 11,316.90 88,323.32 643.68 13.24 28.35 104.79 0.00 761.72
t60 100 60 42.22 61 99.69 693.14 0.03 0.01 0.03 0.02 0.00 0.06
t120 100 120 84.01 121 298.36 2,627.20 0.20 0.05 0.11 0.27 3.70 0.52
t249 100 249 174.42 250 1,045.20 10,300.08 2.82 0.32 0.50 1.65 3.12 4.78
t501 100 501 352.26 502 3,796.35 36,809.01 53.90 2.56 2.64 17.50 0.00 73.95

Table 9: Results for the BPP with conflicts (grouped by density).

density #inst. d dmax #v #a tpp tlp tgg tbb nbb ttot

0% 80 1.00 1 113.47 12,288.20 0.28 0.24 4.79 1.24 0.00 1.76
10% 80 69.76 222 814.02 20,034.35 18.35 0.62 4.77 4.01 0.00 22.98
20% 80 140.60 420 2,077.11 24,327.59 75.96 1.38 7.66 11.45 0.00 88.79
30% 80 211.31 632 3,540.24 29,554.71 161.19 2.77 11.05 50.21 8.61 214.18
40% 80 280.51 818 4,951.05 35,266.04 233.93 4.73 9.67 70.75 0.00 309.40
50% 80 350.02 1,001 5,862.62 39,442.55 227.11 6.55 3.89 17.02 0.00 250.68
60% 80 351.00 1,001 4,456.75 29,639.79 126.87 4.03 2.04 10.46 0.00 141.36
70% 80 351.00 1,001 3,020.04 19,390.99 56.31 1.95 0.93 4.06 0.00 62.32
80% 80 351.00 1,001 1,643.91 10,220.38 16.17 0.73 0.35 1.37 0.00 18.28
90% 80 351.00 1,001 484.70 3,084.05 3.10 0.09 0.09 0.16 0.00 3.35

#inst. - number of instances; n - number of items; d - average number of dimensions; #v,#a - average number of
vertices and arcs in the final arc-flow graph; tpp - average time spent building the graph; tlp - average time spent
in the linear relaxation of the root node; tgg - average time required to compute the linear relaxation using column-
generation; tbb - average time spent in the branch-and-bound procedure; nbb - average number of nodes explored in
the branch-and-bound procedure; ttot - average run time in seconds.

4.7 Cutting stock with binary patterns and forbidden pairs

Cutting stock with binary patterns and forbidden pairs (0-1 CSPC) is a variant of cutting stock with
binary patterns that also includes compatibility constraints. This problem usually appears as a relaxation
of orthogonal packing problems (see, e.g., Belov et al. 2009). It can be modeled as a vector packing
problem with c + m + 1 dimensions, where c is the number of dimensions used to model the conflicts.
The set S of valid packing patterns for this problem can be defined as follows:

A =



w1 w2 . . . wm

α1
1 α1

2 . . . α1
m...

...
...

αc
1 αc

2 . . . αc
m

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


L =



W
β1

...
βc

1
1
...
1


S = {x ∈ Nm

0 : Ax ≤ L} (36)

In this problem, we also used degree constraints (see Section 4.2) to model the conflicts. Since these
constraints already guarantee that the corresponding item cannot occur more than once in the same
pattern, the binary constraints for items with conflicts are discarded. In order to test the behavior of
the arc-flow model in this problem, we created a 0-1 CSPC data set from the BPPC data set of Muritiba
et al. (2010). We assigned random values of demand between 1 and 100 to each item. Tables 10 and 11
summarize the results for each class and density, respectively. The average run time in the 800 instances
was 6 minutes and 72% of these instances were solved in less than 1 minute. Some instances took almost
3 hours to be solved and 1 instance took almost 20 hours. Note that the graphs sizes for this type of
problems can be really large due to the high number of different items and dimensions; in the class u1000,
every instance has thousands of items of 1000 different types and 1001 dimensions.
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Table 10: Results for the CSP with binary patterns and conflicts.

class #inst. m nmax d dmax #v #a tpp tlp tgg tbb nbb ttot

u120 100 120 6,989 121 121 724.72 3,763.07 0.37 0.12 0.14 0.33 0.00 0.82
u250 100 250 13,672 251 251 2,266.74 12,211.75 4.64 0.70 0.87 2.43 0.00 7.76
u500 100 500 26,568 501 501 6,409.75 37,970.82 72.01 4.04 6.26 21.92 0.00 97.98
u1000 100 1,000 52,492 1,001 1,001 19,171.67 126,689.21 1,518.38 28.63 50.38 1,198.08 48.58 2,745.09
t60 100 60 3,567 61 61 110.98 709.32 0.04 0.01 0.03 0.03 0.00 0.08
t120 100 120 6,856 121 121 322.66 2,637.34 0.32 0.05 0.10 0.20 0.44 0.57
t249 100 249 13,578 250 250 1,102.75 10,311.04 5.17 0.35 0.63 2.29 0.00 7.81
t501 100 501 27,933 502 502 3,873.08 36,974.09 113.25 2.66 4.25 60.12 14.84 176.03

Table 11: Results for the CSP with binary patterns and conflicts (grouped by density).

density #inst. d dmax #v #a tpp tlp tgg tbb nbb ttot

0% 80 351 1,001 3,006.74 18,074.72 152.58 1.29 14.44 12.93 0.11 166.80
10% 80 351 1,001 4,855.32 33,330.04 413.73 5.15 15.39 42.34 0.55 461.22
20% 80 351 1,001 5,910.48 42,229.65 438.98 8.10 16.03 99.10 2.50 546.18
30% 80 351 1,001 6,627.90 47,384.56 389.95 10.85 16.12 281.94 18.26 682.74
40% 80 351 1,001 6,613.45 46,262.95 317.95 9.24 10.11 1,071.72 58.40 1,398.90
50% 80 351 1,001 5,858.65 39,466.18 226.37 5.31 3.32 53.56 0.00 285.24
60% 80 351 1,001 4,456.75 29,639.79 127.10 3.39 1.66 34.20 0.00 164.68
70% 80 351 1,001 3,020.04 19,390.99 56.67 1.65 0.83 9.60 0.00 67.92
80% 80 351 1,001 1,643.91 10,220.38 16.26 0.64 0.34 1.20 0.00 18.10
90% 80 351 1,001 484.70 3,084.05 3.12 0.09 0.09 0.17 0.00 3.38

#inst. - number of instances; m - number of different items; nmax - maximum number of items; d - average number
of dimensions; #v,#a - average number of vertices and arcs in the final arc-flow graph; tlp - average time spent in
the linear relaxation of the root node; tgg - average time required to compute the linear relaxation using column-
generation; tbb - average time spent in the branch-and-bound procedure; nbb - average number of nodes explored in
the branch-and-bound procedure; ttot - average run time in seconds.

We are not aware of any effective exact method from the literature for solving this problem. In practice,
Gilmore-Gomory’s model with column-generation is usually used to obtain good lower bounds for this
problem when it appears as a relaxation of other problems. In Tables 10 and 11, we compare the run
time of computing the linear relaxation using column-generation (solving the knapsack problems using
the arc-flow graph) and the run time of computing the linear relaxation of the arc-flow model using
interior point methods. Without considering the time required for building the arc-flow graphs, both
methods are very fast for computing the lower bounds. The time required to construct the graphs may
be improved by taking advantage of problem-specific characteristics; for instance, Brandão and Pedroso
(2013) use a single dimension to represent binary constraints instead of m binary dimensions.

4.8 Comparison with assignment-based formulations

Assignment-based models are usually ineffective in practice due to their symmetry and weak lower
bounds. The integer programming solvers usually include very powerful heuristics which usually allow
finding good solutions for assignment-based models. However, the optimal solution may be very difficult
to find. Instances for which heuristics work well can be solved really quickly using assignment-based
models; on the other hand, when the heuristics dot not work well, it is common to have small instances
that take days to be solved using an assignment-based formulation. For instance, using Gurobi to solve
the datased BPP FLK with an assignment-based formulation, we were only able to solve 8 out of 160
instances of this data set under an one-minute time limit; increasing the time limit to 10 minutes, we
were only able to solve more 5 instances. Using the arc-flow model, we were able to solve all the instances
quickly with an average run time less than 1 second.

Table 12 presents a comparison between the percentages of instances solved using the assignment-based
model and the arc-flow model within an one-minute time limit. The arc-flow model allows solving
entirely many of the data sets under an one-minute time limit and the number of solved instances
increases substantially with slightly higher time limits. There are few instances that take more than one
hour to be solved exactly using the arc-flow graph (see Section 4.10).
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Table 12: Comparison with assignment-based formulations.

standard card. constrained

data set type #inst. %K %AFG #inst. %K %AFG

BPP FLK BPP 160 5% 100% 320 53% 100%
CSP FLK CSP 160 0% 100% 320 0% 100%

Fiber CSP 39 36% 100% 279 90% 100%
Cutgen CSP 1,800 27% 100% 7,299 76% 100%
1D-bar CSP 500 23% 100% 1,415 49% 100%
Scholl BPP 1,210 41% 93% 3,748 77% 97%

Hard28 BPP 28 0% 86% 56 50% 100%
SCH/WAE BPP 200 57% 100% 1,000 92% 100%
WAE/GAU BPP 17 6% 18% 131 88% 61%

type data set #inst. %K %AFG

2CBP 2CBP 400 39% 76%
20d-VBP 20CBP 40 15% 78%
Coloring Color 4 25% 100%

Timetabling Hard 5 20% 60%
0-1 CSP Cutgen 1800 52% 98%
0-1 CSP CSP FLK 160 0% 100%
0-1 CSP Fiber 39 100% 100%
0-1 CSP 1D-bar 500 24% 98%
BPPC BPPC 800 3% 80%

0-1 CSPC BPPC CS 800 0% 72%

#inst. - number of instances; %K - percentage of instances solved using the
assignment-based formulation in under an one-minute time limit; %AFG -
percentage of instances solved using the arc-flow formulation in under an one-
minute time limit.

4.9 The importance of graph compression

Figures 10 and 11 show the relation between the number of vertices and arcs before and after graph
compression. We only consider instances with up to two dimensions (bin packing and cutting stock with
and without cardinality constraints, and two-constraint bin packing) since the initial graph is usually
huge for the remaining problems. In these problems with up to two dimensions it is already possible to
see a remarkable graph size reduction. Without graph compression it would be very difficult to solve
many of these instances within a reasonable amount of time. For instance, arc-flow graphs for some two-
constraint BPP instances with 7 million arcs in the initial graph resulted in graphs with approximately
1.5 million arcs. In the remaining problems, the compression ratios are much higher. Problems whose
initial graph would be too large to fit in memory resulted in reasonably small graphs due to graph
compression; it is common to obtain compression rates of hundreds of times. Since we build the Step-3
graphs directly, we can usually build the final arc-flow graph even when the initial graph is too big to fit
in memory.
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Figure 10: Graph size reduction (vertices).
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Figure 11: Graph size reduction (arcs).
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4.10 Run time analysis

Using the proposed method, we solved sequentially 23,153 benchmark instances in 9 days, spending 33
seconds per instance, on average. These benchmark instances belong to several different problems. The
same method was used to solve all the instances without any problem-specific adjustment.

Figure 12 shows the relation between the number of arcs in the final arc-flow graph and the total run
time. The two curves n2/108 and n2.5/108 show an approximation of the run time (in seconds) of
algorithms with complexities Θ(n2) and Θ(n2.5), with very low constant factors. The large majority of
the observed run times appear between these two curves. Many of them are very close to the quadratic
run time, which is favorable since solving the arc-flow model is NP-hard. The few instances that lead
to run times far from quadratic are mainly instances where the number of items that fit in each bin is
large (e.g., more than 10) and hence the total number of patterns is huge. Using heuristics, very good
solutions are usually found for these instances easily, since the waste tends to be small. Nevertheless,
it may be very hard to find the optimal solution. The arc-flow graphs for the 77 instances that were
not solved in a reasonable amount of time had millions of arcs and the corresponding models are still
too large to be solved optimally using current state-of-the-art mixed integer programming solvers on a
reasonable amount of time.

Figure 12: Run time analysis (Gurobi).
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The bin packing data set BPP FLK of Falkenauer (1996) is one of the most used in the literature. In
order to test the effectiveness of our arc-flow model on non-commercial solvers, this data set was solved
using GLPK 4.43, an open-source mixed integer programming solver. Every instance was solved easily
within a five-minute time limit. Figure 13 shows the relation between the number of arcs in the final
arc-flow graph and the total run time. Using Gurobi with an assignment-based formulation, only 13
instances were solved within a ten-minute time limit, showing that the formulation quality is extremely
important even in the one-dimensional case.

Very good results were also obtained using other non-commercial MIP solvers such as COIN-OR. Note
that the non-commercial solvers are usually inferior to commercial solvers and hence they may not be
able to solve the large models as easily as Gurobi. Nevertheless, in practice, a non-commercial MIP
solver may be enough to solve instances that result in reasonably small models. In the literature, most of
the algorithms for solving many of the problems solved here are based on branch-and-price and usually
rely on very powerful MIP solvers such as IBM ILOG CPLEX. Our method is simple, effective and
does not explicitly require any particular MIP solver, though they may be necessary for solving large
models.
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Figure 13: Run time analysis (GLPK).
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5 Conclusions

The method presented in this paper proved to be a very powerful tool for solving several cutting and
packing problems. The model is equivalent to Gilmore and Gomory’s, thus providing a very strong linear
relaxation. Nevertheless, it replaces column-generation by the generation of a graph able to represent all
the valid packing patterns (one permutation of each pattern). These are implicitly enumerated through
the construction of a compressed graph, which is proven to hold all the paths from the source to the
target that are required for determining the optimum solution of the original problem.

This method can be used for solving several problems. In this paper, we have dealt with vector packing,
graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting
knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with
binary patterns and forbidden pairs. The proposed general arc-flow formulation is equivalent to Gilmore-
Gomory’s formulation and is very flexible. The models produced by our method are very strong and can
be solved exactly by general-purpose mixed-integer programming solvers; the model is very tight, and
most of the solutions are found in the root of the branch-and-bound tree.

The presented graph compression method is simple and proved to be very effective. In instances with
many dimensions, it is common to obtain graphs hundreds of times smaller than the initial graphs. The
combination of strong models with a reasonably small number of variables and constraints makes this
method very effective in practice. Despite its simplicity and generality, the proposed method usually
outperforms more complex approaches such as branch-and-price algorithms.

Using the proposed method, we solved most of the known benchmark instances on a desktop computer,
spending less than one minute per instance, on average. These benchmark instances belong to several
different problems. The same method was used to solve all the instances without any problem-specific
adjustment. The linear relaxations are extremely strong in every problem we considered. The largest
absolute gap we found in all the instances from benchmark test data sets was 1.0027.

Several multi-constraint cutting and packing problems can be solved using the proposed method by
means of reductions to vector-packing by defining a matrix of weights, a vector of capacities and a
vector of demands. Depending on the instance, it may or may not be possible to obtain models of an
acceptable size that can can be currently solved using any state-of-the-art mixed integer programming
solver; however, our experiments show that it is very common to obtain reasonably small models on a
large variety of problems, thanks to the proposed graph compression technique. We solved instances
with up to 1,000 different items and 1,000 constraints. In the literature, even in the one-dimensional
case, instances with 200 different items are already considered very difficult.
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