
The Operational Incomplete

Transition Complexity on Finite

Languages

Eva Maia Nelma Moreira Rogério Reis
e-mail:{emaia,nam,rvr}@dcc.fc.up.pt

DCC-FC & CMUP, Universidade do Porto

Rua do Campo Alegre 1021, 4169-007 Porto, Portugal

Technical Report Series: DCC-2013-02

Version 1.3 April 2013
Old Versions:1.2 March 2013

1.1 February 2013

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

The Operational Incomplete Transition Complexity on Finite

Languages

Eva Maia, Nelma Moreira, Rogério Reis

{emaia,nam,rvr}@dcc.fc.up.pt

DCC-FC & CMUP, Universidade do Porto

May 16, 2013

Abstract

The state complexity of basic operations on finite languages (considering complete
DFAs) has been extensively studied in the literature. In this paper we study the
incomplete (deterministic) state and transition complexity on finite languages of boolean
operations, concatenation, star, and reversal. For all operations we give tight upper
bounds for both descriptional measures. We correct the published state complexity of
concatenation for complete DFAs and provide a tight upper bound for the case when the
right automaton is larger than the left one. For all binary operations the tightness is
proved using family languages with a variable alphabet size. In general the operational
complexities depend not only on the complexities of the operands but also on other
refined measures.

1 Introduction

Descriptional complexity studies the measures of complexity of languages and operations.
These studies are motivated by the need to have good estimates of the amount of resources
required to manipulate the smallest representation for a given language. In general, having
succinct objects will improve our control on software, which may become smaller and more
efficient. Finite languages are an important subset of regular languages with many applica-
tions in compilers, computational linguistics, control and verification, etc. [9, 1, 8, 3]. In those
areas it is also usual to consider deterministic finite automata (DFA) with partial transition
functions. As an example we can mention the manipulation of compact natural language
dictionaries using Unicode alphabets. This motivates the study of the transition complexity
of DFAs (not necessarily complete), besides the usual state complexity. The operational
transition complexity of basic operations on regular languages was studied by Gao et al. [4]
and Maia et al. [7]. In this paper we continue that line of research by considering the class of
finite languages. For finite languages, Salomaa and Yu [10] showed that the state complexity
of the determinization of a nondeterministic automaton (NFA) with m states and k symbols

is Θ(k
m

1+log k) (lower than 2m as it is the case for general regular languages). Câmpeanu et

al. [2] studied the operational state complexity of concatenation, Kleene star, and reversal.
Finally, Han and Salomaa [5] gave tight upper bounds for the state complexity of union and
intersection on finite languages. In this paper we give tight upper bounds for the state and
transition complexity of all the above operations, for non necessarily complete DFAs with

2

Operation Regular |Σ| Finite |Σ|

L1 ∪ L2 2n(m+ 1) 2 3(mn-n-m) +2 f1(m,n)

L1 ∩ L2 nm 1 (m− 2)(n− 2)(2 +
∑min(m,n)−3

i=1 (m−
2− i)(n− 2− i)) + 2

f2(m,n)

LC m+ 2 1 m+ 1 1

L1L2

2n−1(6m+ 3)− 5,
3

2n(m− n+ 3)− 8, if m+ 1 ≥ n 2

if m,n ≥ 2 See Theorem 8 (4) n− 1

L⋆ 3.2m−1 − 2, if m ≥ 2 2
9 · 2m−3 − 2m/2 − 2, if m is
odd 3

9 · 2m−3 − 2(m−2)/2 − 2, if m is even

LR 2(2m − 1) 2
2p+2 − 7, if m = 2p

2
3 · 2p − 8, if m = 2p − 1

Table 1: Incomplete transition complexity for regular and finite languages, where m and n
are the (incomplete) state complexities of the operands, f1(m,n) = (m− 1)(n − 1) + 1 and
f2(m,n) = (m− 2)(n− 2) + 1. The column |Σ| indicates the minimal alphabet size for each
the upper bound is reached.

an alphabet size greater than 1 (see Table 2). For the concatenation, we correct the upper
bound for the state complexity of complete DFAs [2], and show that if the right automaton
is larger than the left one, the upper bound is only reached using an alphabet of variable
size. The transition complexity results are all new, although the proofs are based on the ones
for the state complexity and use techniques developed by Maia et al. [7]. Table 1 presents
a comparison of the transition complexity on regular and finite languages, where the new
results are highlighted. Note that the values in the table are obtained using languages for
which the upper bounds are reached.

2 Preliminaries

We recall some basic notions about finite automata and regular languages. For more details,
we refer the reader to the standard literature [6, 12, 11]. Given two integers m,n ∈ N let
[m,n] = {i ∈ N | m ≤ i ≤ n}. A deterministic finite automaton (DFA) is a five-tuple
A = (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and δ is the transition function Q×Σ → Q.
Let |Σ| = k, |Q| = n, and without lost of generality, we consider Q = [0, n − 1] with q0 = 0.
The transition function can be naturally extended to sets in 2Q and to words w ∈ Σ⋆. A
DFA is complete if the transition function is total. In this paper we consider DFAs to be
not necessarily complete, i.e. with partial transition functions. The language accepted by
A is L(A) = {w ∈ Σ⋆ | δ(0, w) ∈ F}. Two DFAs are equivalent if they accept the same
language. For each regular language there exists a unique minimal complete DFA with a
least number of states. The left-quotient of L ⊆ Σ⋆ by x ∈ Σ⋆ is DxL = {z | xz ∈ L}. The

3

equivalence relation ≡L⊆ Σ⋆×Σ⋆ is defined by x ≡L y if and only ifDxL = DyL. TheMyhill-

Nerode Theorem states that a language L is regular if and only if ≡L has a finite number
of equivalence classes, i.e., L has a finite number of left quotients. This number is equal
to the number of states of the minimal complete DFA, which is also the state complexity

of L, denoted by sc(L). If the minimal DFA is not complete its number of states is the
number of left quotients minus one (the dead state, that we denote by Ω, is removed). The
incomplete state complexity of a regular language L (isc(L)) is the number of states of the
minimal DFA, not necessarily complete, that accepts L. Note that isc(L) is either equal to
sc(L) − 1 or to sc(L). The incomplete transition complexity, itc(L), of a regular language
L is the minimal number of transitions over all DFAs that accepts L. We omit the term
incomplete whenever the model is explicitly given. A τ -transition is a transition labeled by
τ ∈ Σ. The τ -transition complexity of L, itcτ (L) is the minimal number of τ -transitions of
any DFA recognizing L. It is known that itc(L) =

∑

τ∈Σ itcτ (L) [4, 7]. The complexity of an

operation on regular languages is the (worst-case) complexity of a language resulting from
the operation, considered as a function of the complexities of the operands. Usually an upper

bound is obtained by providing an algorithm, which given representations of the operands
(e.g. DFAs), constructs a model (e.g. DFA) that accepts the language resulting from the
referred operation. The number of states or transitions of the resulting DFA are upper
bounds for the state or the transition complexity of the operation, respectively. To prove that
an upper bound is tight, for each operand we can give a family of languages (parametrized by
the complexity measures and called witnesses), such that the resulting language achieves that
upper bound. For determining the transition complexity of an operation, we also consider
the following measures and refined numbers of transitions. Let A = ([0, n− 1],Σ, δ, 0, F) be
a DFA, τ ∈ Σ, and i ∈ [0, n− 1]. We define f(A) = |F |, f(A, i) = |F ∩ [0, i− 1]|, tτ (A, i) as 1
if exist a τ -transition leaving i and 0 otherwise, and tτ (a, i) as its complement. Let sτ (A) =
tτ (A, 0), eτ (A) =

∑

i∈F tτ (A, i), tτ (A) =
∑

i∈Q tτ (A, i), tτ (A, [k, l]) =
∑

i∈[k,l] tτ (A, i), and

the respective complements sτ (A) = tτ (A, 0), eτ (A) =
∑

i∈F tτ (A, i), etc. We denote by
inτ (A, i) the number of transitions reaching i, aτ (A) =

∑

i∈F inτ (A, i) and cτ (A, i) = 0 if
inτ (A, i) > 0 and 1 otherwise. Whenever there is no ambiguity we omit A from the above
definitions. All the above measures, can be defined for a regular language L, considering
the measure values for its minimal DFA. For instance, we have, f(L), f(L, i), aτ (L), eτ (L),
etc. We define s(L) =

∑

τ∈Σ sτ (L) and a(L) =
∑

τ∈Σ aτ (L). Let A be a minimal DFA
accepting a finite language, where the states are assumed to be topologically ordered. Then,
s(L(A)) = 0 and there is exactly one final state, denoted π and called pre-dead, such that
∑

τ∈Σ tτ (π) = 0. The level of a state i is the size of the shortest path from the initial state
to i, and never exceeds n− 1. The level of A is the level of π. A DFA is linear if its level is
n− 1.

3 Union

Given two incomplete DFAs A = ([0,m − 1],Σ, δA, 0, FA) and B = ([0, n − 1],Σ, δB , 0, FB),
let C = (([0,m− 1]∪ {ΩA})× ([0,m− 1]∪ {ΩB})),Σ, δC , (0, 0), (FA × ([0,m− 1]∪ {ΩB}))∪
(([0, n − 1] ∪ {ΩA}) × FB)) be a new DFA where for τ ∈ Σ, i ∈ [0,m − 1] ∪ {ΩA}, and
j ∈ [0, n − 1] ∪ {ΩB},

4

δC((i, j), τ) =







(δA(i, τ), δB(j, τ)) if δA(i, τ) ↓ ∧ δB(j, τ) ↓,

(δA(i, τ),ΩB) if δA(i, τ) ↓ ∧ δB(j, τ) ↑,

(ΩA, δB(j, τ)) if δA(i, τ) ↑ ∧ δB(j, τ) ↓,

↑ otherwise.

It is not difficult to see that DFA C accepts the language L(A) ∪ L(B).

The two following theorems present upper bounds for the number of states and transitions
for any DFA accepting L(A) ∪ L(B).

Theorem 1. For any two finite languages L1 and L2 with isc(L1) = m and isc(L2) = n,
one has isc(L1 ∪ L2) ≤ mn− 2 and

itc(L1 ∪ L2) ≤
∑

τ∈Σ

(sτ (L1)⊞ sτ (L2)− (itcτ (L1)− sτ (L1))(itcτ (L2)− sτ (L2)))

+ n(itc(L1)− s(L1)) +m(itc(L2)− s(L2)),

where for x, y boolean values, x⊞ y = min(x+ y, 1).

Proof. Let us consider the number of states. Considering the upper bound given by Han and
Salomaa [5], mn−m−n (see Table 3), we only need to remove the dead state of the resulting
DFA. In the product automaton, the set of states is included in ([0,m− 1]∪{ΩA})× ([0, n−
1] ∪ {ΩB}), where ΩA and ΩB are the dead states of the DFA A and DFA B, respectively.
The states of the form (0, i), where i ∈ [1, n − 1] ∪ {ΩB}, and of the form (j, 0), where
j ∈ [1,m − 1] ∪ {ΩA}, are not reachable from (0, 0) because the operands represent finite
languages; the states (m − 1, n − 1), (m − 1,ΩB) and (ΩA, n − 1) are equivalent because
they are final and they do not have out-transitions; the state (ΩA,ΩB) is the dead state and
because we are dealing with incomplete DFAs we can ignore it. Therefore the number of
states of the union of two incomplete DFAs accepting finite languages is

(m+ 1)(n + 1)− (m+ n)− 2− 1

= mn− 2

Consider the number of transitios. In the product automaton, the τ -transitions can be
represented as pairs (αi, βj) where αi (βj) is 0 if there exists a τ -transition leaving the state
i (j) of DFA A (B), respectively, or −1 otherwise. The resulting DFA can have neither
transitions of the form (−1,−1), nor of the form (α0, βj), where j ∈ [1, n− 1] ∪ {ΩB} nor of
the form (αi, β0), where i ∈ [1,m− 1] ∪ {ΩA}, as happened in the case of states. Thus, the
number of τ -transitions for τ ∈ Σ are:

sτ (A)⊞ sτ (B)+tτ (A, [1,m− 1])tτ (B, [1, n− 1]) + tτ (A, [1,m− 1])(tτ (B, [1, n− 1]) + 1)

+(tτ (A, [1,m− 1]) + 1)tτ (B, [1, n− 1]) =

sτ (A)⊞ sτ (B)+ntτ (A, [1,m− 1]) +mtτ (B, [1, n− 1])− tτ (A, [1,m− 1])tτ (B, [1, n− 1]).

As the DFAs are minimal,
∑

τ∈Σ tτ (A, [1,m − 1]) corresponds to itc(L1)− s(L1), and anal-
ogously for B. Therefore the theorem holds.

5

3.1 Worst-case Witnesses

In the following we show that the upper bounds described above are tight. Han and Salomaa
proved [5, Lemma 3] that the upper bound for the number of states can not be reached for
any alphabet with a fixed size. The witness families for the incomplete complexities coincide
with the ones that these authors presented for the state complexity.

As we do not consider the dead state, our representation is slightly different. Let m,n ≥ 1
and Σ = {b, c} ∪ {aij | i ∈ [1,m − 1], j ∈ [1, n − 1], (i, j) 6= (m − 1, n − 1)}. Let A =
([0,m − 1],Σ, δA, 0, {m − 1}) where δA(i, b) = i + 1 for i ∈ [0,m − 2] and δA(0, aij) = i for
j ∈ [1, n−1], (i, j) 6= (m−1, n−1). Let B = ([0, n−1],Σ, δB , 0, {n−1}), where δB(i, c) = i+1
for i ∈ [0, n− 1] and δB(0, ai,j) = j for j ∈ [1, n − 1], i ∈ [1,m− 1], (i, j) 6= (m− 1, n − 1).

See Figure 1 for the case m = 5 and n = 4.

(A)

0 1 2 3 4
a11, a12, a13, b

a21, a22, a23

a31, a32, a33

a41, a42, a43

b b b

(B)

0 1 2 3
a11, a21, a31, a41, c

a12, a22, a32, a42

a13, a23, a33

c c

Figure 1: DFA A with m = 5 and DFA B with n = 4.

Theorem 2. For any two integers m ≥ 2 and n ≥ 2 there exist an m-state DFA A and an

n-state DFA B, both accepting finite languages, such that any DFA accepting L(A) ∪ L(B)
needs at least mn − 2 states and 3(mn − n − m) + 2 transitions, with an alphabet of size

depending on m and n.

Proof. The proof for the number of states is the same to the proof of [5, Lemma 2],
considering the family languages above. Let us consider the number of transitions. The DFA
A (Figure 1) has m− 1 b-transitions and one aij-transition, for each aij . It has mn− n−m
different aij . The DFA B has n− 1 c-transitions and the same number of aij-transitions as
DFA A. Thus, the DFA resulting for the union operation has:

• mn− 2n+ 1 b-transitions;

• mn− 2n+ 1 c-transitions;

• 1 aij-transitions for each aij ; there are mn− n−m different aij .

Thus the total number of transitions is 3(mn − n − m) + 2. It is easy to prove that the
resulting DFA is minimal.

4 Intersection

Given two incomplete DFAs A = ([0,m− 1],Σ, δA, 0, FA) and B = ([0, n− 1],Σ, δB , 0, FB), a
DFA accepting L(A) ∩ L(B) can be also obtained by the product construction, which leads
to the following upper bounds for the number of states and transitions.

6

Theorem 3. For any two finite languages L1 and L2 with isc(L1) = m and isc(L2) = n,
one has isc(L1 ∩ L2) ≤ mn− 2m− 2n+ 6 and

itc(L1 ∩ L2) ≤
∑

τ∈Σ

(sτ (L1)sτ (L2) + (itcτ (L1)− sτ (L1) −

aτ (L1))(itcτ (L2)− sτ (L2)− aτ (L2)) + aτ (L1)aτ (L2)) .

.

Proof. Consider the DFA accepting L(A)∩L(B) obtained by the product construction. For
the same reasons as in Theorem 1, we can eliminate the states of the form (0, j), where
j ∈ [1, n − 1] ∪ {ΩB}, and of the form (i, 0), where i ∈ [1,m − 1] ∪ {ΩA}; the states of the
form (m − 1, j), where j ∈ [1, n − 2], and of the form (i, n − 1), where i ∈ [1,m − 2] are
equivalent to the state (m−1, n−1) or to the state (ΩA,ΩB); the states of the form (ΩA, j),
where j ∈ [1, n−1]∪{ΩB}, and of the form (i,ΩB), where i ∈ [1,m−1]∪{ΩA} are equivalent
to the state (ΩA,ΩB) which is the dead state of the DFA resulting from the intersection,
and thus can be removed. Therefore, the number of states is

(m+ 1)(n + 1)− 3((m+ 1)(n + 1)) + 12− 1

= mn− 2m− 2n + 6

= mn− 2(m+ n) + 6

Using the same technique as in Theorem 1 and considering that in the intersection we
only have pairs of transitions where both elements are different from −1, the number of
τ -transitions is as follows, which proves the theorem,

sτ (A)sτ (B) + (tτ (A, [1,m − 1]) \ inτ (A,FA))(tτ (B, [1, n − 1]) \ inτ (B,FB)) + aτ (A)aτ (B).

4.1 Worst-case Witnesses

The next result shows that the complexity upper bounds found above are reachable. The
witness languages for the tightness of the bounds for this operation are different from the
families given by Han and Salomaa because those families are not tight for the transition
complexity. Form ≥ 2 and n ≥ 2, let Σ = {aij | i ∈ [1,m−2], j ∈ [1, n−2]}∪{am−1,n−1}. Let
A = ([0,m − 1],Σ, δA, 0, {m − 1}) where δA(x, aij) = x+ i for x ∈ [0,m− 1], i ∈ [1,m − 2],
and j ∈ [1, n − 2], and let B = ([0, n − 1],Σ, δB , 0, {n − 1}) where δB(x, aij) = x + j for
x ∈ [0, n − 1], i ∈ [1,m− 2], and j ∈ [1, n − 2]. It is easy to see that A and B are minimal.
The new families are presented in Figure 2 for m = 5 and n = 4.

Theorem 4. For any two integers m ≥ 2 and n ≥ 2 there exist an m-state DFA A and an n-
state DFA B, both accepting finite languages, such that any DFA accepting L(A)∩L(B) needs

at least mn−2(m+n)+6 states and (m−2)(n−2)(2+
∑min(m,n)−3

i=1 (m−2− i)(n−2− i))+2
transitions, with an alphabet of size depending on m and n.

Proof. To prove that the minimal DFA accepting L(A)∩L(B) needs mn−2m−2n+6 states
we can use the same technique which is used in the proof of [5, Lemma 6]. For that we will

7

(A)
0 1 2 3 4

a11, a12

a21, a22

a31, a32

a43

a11, a12
a21, a22

a31, a32

a11, a12

a21, a22

a11, a12

(B)

0 1 2 3
a11, a21, a31

a12, a22, a32

a43

a11, a21, a31

a12, a22, a32

a11, a21, a31

Figure 2: DFA A with m = 5 and DFA B with n = 4.

define a set R of words which are not equivalent under ≡L(A)∩L(B). Let ε be the null string.
We choose R = R1 ∪R2 ∪R3, where:

R1 = {ε}

R2 = {am−1,n−1}

R3 = {aij | i ∈ [1,m − 2] and j ∈ [1, n − 2]}

It is easy to see that all words of each set are not equivalent to each other. The same is
true with the words in R3. As |R1| = |R2| = 1 and |R3| = (m − 2)(n − 2), we have that
|R| = mn− 2m− 2n+ 6 The DFA A has (n− 2)

∑m−3
i=0 (m− 1− i) + 1 aij- transitions. The

DFA B has (m − 2)
∑n−3

i=0 (n − 1 − i) + 1 aij- transitions. Let k = (m − 2)(n − 2) + 1. As
in proof of Theorem 3, the DFA resulting from the intersection operation has the following
number of transitions:

• k, corresponding to the pairs of transitions leaving the initial states of the operands;

•
∑min(m,n)−3

i=1 (n−2)(m−2−i)(m−2)(n−2−i), corresponding to the pairs of transitions
formed by transitions leaving non-final and non-initial states of the operands;

• k, corresponding to the pairs of transitions leaving the final states of the operands.

Thus the total number of transitions is 2k+(m−2)(n−2)
∑min(m,n)−3

i=1 (m−2−i)(n−2−i).
As before the resulting DFA is minimal and the previous value corresponds exactly to the
upper bound.

5 Complement

The state and transition complexity for this operation on finite languages are similar to the
ones on regular languages [4, 7]. This happens because the DFA must be completed. Let
A = ([0,m− 1],Σ, δA, 0, FA) be a DFA accepting the language L. The complement of L, Lc,
is recognized by the DFA C = ([0,m− 1]∪{ΩA},Σ, δC , 0, ([0,m− 1] \F)∪{ΩA}), where for
τ ∈ Σ and i ∈ [0,m− 1], δC(i, τ) = δA(i, τ) if δA(i, τ) ↑; δB(i, τ) = ΩA otherwise. Therefore
one has,

Theorem 5. For any finite language L with isc(L) = m one has isc(LC) ≤ m + 1 and

itc(LC) ≤ |Σ|(m+ 1).

8

Proof. It is easy to see that we only need to add the dead state. The maximal number of
τ -transitions is m + 1 because it is the number of states. Thus, the maximal number of
transitions is |Σ|(m+ 1).

Gao et al. [4] gave the value |Σ|(itc(L) + 2) for the transition complexity of the comple-
ment. In some situations, this bound is higher than the bound here presented, but contrasting
to that one, it gives the transition complexity of the operation as a function of the transition
complexity of the operands.

5.1 Worst-case Witnesses

The witness family for this operation is exactly the same presented in the referenced paper,
i.e. {bm}, for m ≥ 1.

It is easy to see that the bounds are tight for this family (see Figure 3).

0 1 m− 1· · ·b b b

Figure 3: DFA A (accepting {bm}) with m transitions and m+ 1 states.

6 Concatenation

Câmpeanu et al. [2] studied the state complexity of the concatenation of a m-state complete
DFA A with a n-state complete DFA B over an alphabet of size k and proposed the upper
bound

m−2∑

i=0

min






ki,

f(A,i)
∑

j=0

(
n− 2

j

)





+min






km−1,

f(A)
∑

j=0

(
n− 2

j

)





, (1)

which was proved to be tight for m > n − 1. It is easy to see that the second term of (1)

is

f(A)
∑

j=0

(
n− 2

j

)

if m > n− 1, and km−1, otherwise. The value km−1 indicates that the DFA

resulting from the concatenation has states with level at most m− 1. But that is not always
the case, as we can see by the example1 in Figure 5. This implies that (1) is not an upper
bound if m < n. With these changes, we have

Theorem 6. For any two finite languages L1 and L2 with sc(L1) = m and sc(L2) = n over

an alphabet of size k ≥ 2, one has

sc(L1L2) ≤
m−2∑

i=0

min






ki,

f(L1,i)∑

j=0

(
n− 2

j

)





+

f(L1)∑

j=0

(
n− 2

j

)

. (2)

Proof. The proof follows the one in [2] with the changes described above.

Given two incomplete DFAs A = ([0,m−1],Σ, δA, 0, FA) and B = ([0, n−1],Σ, δB , 0, FB),
that represent finite languages, the algorithm by Maia et al. for the concatenation of regular
languages can be applied to obtain a DFA C = (R,Σ, δC , r0, FC) accepting L(A)L(B). The
set of states of C is contained in the set ([0,m − 1] ∪ {ΩA})× 2[0,n−1], the initial state r0 is

1Note that we are omitting the dead state in the figures.

9

(0, ∅) if 0 /∈ FA, and is (0, {0}) otherwise; FC = {(i, P) ∈ R | P ∩ FB 6= ∅}, and for τ ∈ Σ,
i ∈ [0,m − 1], and P ⊆ [0, n − 1], δC((i, P), τ) = (i′, P ′) with i′ = δA(i, τ), if δA(i, τ) ↓ or
i′ = ΩA otherwise, and P ′ = δB(P, τ)∪{0} if i′ ∈ FA and P ′ = δB(P, τ) otherwise. The next
result is similar to the theorem above, omitting the dead state.

Theorem 7. For any two finite languages L1 and L2 with isc(L1) = m and isc(L2) = n
over an alphabet of size k ≥ 2, one has

isc(L1L2) ≤
m−1∑

i=0

min






ki,

f(L1,i)∑

j=0

(
n− 1

j

)





+

f(L1)∑

j=0

(
n− 1

j

)

− 1. (3)

Proof. Each state of the DFA C accepting L(A)L(B) has the form (x, P) where x ∈ [0,m−
1] ∪ {ΩA} and P ⊆ [0, n − 1]. The first term of (3) corresponds to the maximal number
of states of the form (i, P) with i ∈ [0,m − 1]. Such a state (i, P) is at a level ≤ i, which
has at most ki−1 predecessors. Thus, the level i has at most ki states. The maximal size of
the set P is f(A, i). For a fixed i, the initial state of the DFA B either belongs to all sets
P (if i ∈ FA) or it is not in any of them. Thus, the number of distinct sets P is at most
f(A,i)∑

j=0

(n−1
j

)
. The number of states of the form (i, P) is the minimal of these two values. The

second term of (3) corresponds to the maximal number of states with x = ΩA. In this case,
the size of P is at most f(A). Lastly, we remove the dead state.

For the transition complexity we have

Theorem 8. For any two finite languages L1 and L2 with isc(L1) = m and isc(L2) =

n over an alphabet of size k, and making Λj =
(n−1

j

)
−
(tτ (L2)−sτ (L2)

j

)
, ∆j =

(n−1
j

)
−

((tτ (L2)−sτ (L2)
j

)
∗ sτ (L2)

)

one has

itc(L1L2) ≤ k
m−2∑

i=0

min






ki,

f(L1,i)∑

j=0

(
n− 1

j

)





+

+
∑

τ∈Σ



min






km−1 − sτ (L2),

f(L1)−1
∑

j=0

∆j






+

f(L1)∑

j=0

Λj



 . (4)

Proof. The τ -transitions of the DFA C accepting L(A)L(B) have three forms: (i, β) where
i represents the transition leaving the state i ∈ [0,m − 1]; (−1, β) where −1 represents the
absence of the transition from state πA to ΩA; and (−2, β) where−2 represents any transition
leaving ΩA. In all forms, β is a set of transitions of DFA B. The number of τ -transitions of

the form (i, β) is at most
∑m−2

i=0 min{ki,
∑f(L1,i)

j=0

(n−1
j

)
} which corresponds to the number of

states of the form (i, P), for i ∈ [0,m− 1] and P ⊆ [0, n− 1]. The number of τ -transitions of

the form (−1, β) is min{km−1 − sτ (L2),
∑f(L1)−1

j=0 ∆j}. We have at most km−1 states in this
level. However, if sτ (B, 0) = 0 we need to remove the transition (−1, ∅) which leaves the
state (m− 1, {0}). On the other hand, the size of β is at most f(L1)− 1 and we know that
β has always the transition leaving the initial state by τ , if it exists. If this transition does
not exist, i.e. sτ (B, 0) = 1, we need to remove the sets with only non-defined transitions,
because they originate transitions of the form (−1, ∅). The number of τ -transitions of the

form (−2, β) is
∑f(L1)

j=0 Λj and this case is similar to the previous one.

10

6.1 Worst-case Witnesses

The next theorem characterizes the worst-case of the concatenation for finite languages.

Theorem 9. The worst case for state and transition complexity of the concatenation of two

incomplete DFAs is reached when the operands are linear.

Proof. If the DFA is linear it has states in all levels. Thus, if the DFA is not linear it has
for example a direct transition from the level i to the level i + 2, so this DFA has less one
state and less one transition than the linear one.

To prove that the bounds are reachable, we consider two cases depending whetherm+1 ≥
n or not.

6.1.1 Case 1: m+ 1 ≥ n

The witness languages are the ones presented by Câmpeanu et al. (see Figure 6).

(A)
0 1 m− 1· · ·

a, b a, b a, b

(B)
0 1 n− 1· · ·b a, b a, b

Figure 4: DFA A with m states and DFA B with n states.

0

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

a

b

a

b

a

b

b

a

b

a

b

a

b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

Figure 5: DFA resulting of the concatenation of DFA A with m = 3 and DFA B with n = 5,
of Fig. 6. The states with dashed lines have level > 3 and are not accounted for by formula
(1).

Theorem 10. For any two integers m ≥ 2 and n ≥ 2 such that m + 1 ≥ n, there exist

an m-state DFA A and an n-state DFA B, both accepting finite languages, such that any

DFA accepting L(A)L(B) needs at least (m − n + 3)2n−1 − 2 states and 2n(m− n + 3) − 8
transitions.

Proof. Fot the states the proof is similar to the proof of [2, Theorem 4]. Let L = L(C) =
L(A)L(B). Consider all words w1, w2 ∈ Σ⋆, with |w1|, |w2| ≤ m − 1. If |w1| < |w2| then
w1 6≡L w2 since bn+m−2−|w1| ∈ Dw1

L but bn+m−2−|w1| /∈ Dw2
L. Let |w1| = |w2| but w1 6= w2.

So w1 and w2 are different at the ith position from the right, for i ≤ n − 1. Assume that
the ith position of w1 is an a and the ith position of w2 is a b. Then w1 6≡L w2 since
an−1−i /∈ Dw1

L but an−1−i ∈ Dw2
L. For each l ∈ [0, n − 1], the words of size l belong to 2l

distinct equivalence classes of 6≡L. For each l ∈ [n − 2,m − 1], the words of size l belong to

11

at least 2n−1 distinct equivalence classes of 6≡L. Thus the number of equivalence classes of
≡L are at least:

1 + 2 + . . .+ 2i + . . .+ 2n−1 + 2n−2 + . . . + 2n−2
︸ ︷︷ ︸

m−1−(n−1)+1 terms

= (m− n+ 3)2n−1 − 1

We need to remove the class that corresponds to the dead state, thus we have (m − n +
3)2n−1 − 2.

The DFA A has m−1 τ -transitions for each τ ∈ {a, b}. The number of final states in the
DFA A is m. The DFA B has n−2 a-transitions and n−1 b-transitions. Consider m ≥ n. If
we analyse the transitions as we did in the proof of the Theorem 8 we have 2n−1(m−n+1)−1
a-transitions and 2n−1(m− n+1)− 1 b-transitions that correspond to the transitions of the
form (i, β); 2n−1 − 2 a-transitions and 2n−1 b-transitions that correspond to the transitions
of the form (−1, β); and 2n−1 − 2 a-transitions and 2n−1 − 2 b-transitions that correspond
to the transitions of the form (d, β). Thus,

2(2n−1(m− n+ 1)− 1) + 2n−1 − 2 + 2n−1 − 2 + 2n−1 + 2n−1 − 2

= 2n(m− n+ 1)− 2 + 42n−1 − 6

= 2n(m− n+ 3)− 8

Therefore the theorem holds.

6.1.2 Case 2: m+ 1 < n

Let Σ = {b}∪{ai | i ∈ [1, n−2]}. Let A = ([0,m−1],Σ, δA, 0, [0,m−1]) where δA(i, τ) = i+1,
for any τ ∈ Σ. Let B = ([0, n− 1],Σ, δB , 0, {n− 1}) where δB(i, b) = i+ 1, for i ∈ [0, n− 2],
δB(i, aj) = i + j, for i, j ∈ [1, n − 2], i + j ∈ [2, n − 1], and δB(0, aj) = j, for j ∈ [2, n − 2].
Note that A and B are minimal DFAs.

(A)

0 1 2
b, a1, a2, a3 b, a1, a2, a3

(B)

0 1 2 3 4b

a2
a3

a1, b

a2
a3

a1, b

a2

a1, b

Figure 6: DFA A with m = 3 states and DFA B with n = 5 states.

Theorem 11. For any two integers m ≥ 2 and n ≥ 2, with m + 1 < n, there exist an m-

state DFA A and an n-state DFA B, both accepting finite languages over an alphabet of size

depending on m and n, such that the number of states and transitions of any DFA accepting

L(A)L(B) reaches the upper bounds.

12

Proof. We need to show that the DFA C accepting L(A)L(B) is minimal, i.e., (i) every state
of C is reachable from the initial state; (ii) each state of C defines a distinct equivalence
class. To prove (i), we first show that all states (i, P) ⊆ R with i ∈ [1,m− 1] are reachable.
The following facts hold for the automaton C:

1. every state of the form (i+1, P ′) is reached by a transition from a state (i, P) (by the
construction of A) and |P ′| ≤ |P |+ 1, for i ∈ [1,m− 2];

2. every state of the form (ΩA, P
′) is reached by a transition from a state (m− 1, P) (by

the construction of A) and |P ′| ≤ |P |+ 1;

3. for each state (i, P), P ⊆ [0, n − 1], |P | ≤ i+ 1 and 0 ∈ P , i ∈ [1,m− 1].

4. for each state (ΩA, P), ∅ 6= P ⊆ [0, n − 1], |P | ≤ m and 0 /∈ P .

Suppose that for a 1 ≤ i ≤ m− 2, all states (i, P) are reachable. The number of states
of the form (1, P) is m− 1 and of the form (i, P) with i ∈ [2,m − 2] is

∑i
j=0

(n−1
j

)
. Let us

consider the states (i+ 1, P ′). If P ′ = {0}, then δC((i, {0}), a1) = (i+ 1, P ′). Otherwise, let
l = min(P ′ \ {0}) and Sl = {s− l | s ∈ P ′ \ {0}}. Then,

δC((i, Sl), al) = (i+ 1, P ′) if 2 ≤ l ≤ n− 2

δC((i, {0} ∪ S1), a1) = (i+ 1, P ′) if l = n− 1

δC((i, S1), b) = (i+ 1, P ′) if l = 1

Thus, all
∑i+1

j=0

(n−1
j

)
states of the form (i+ 1, P ′) are reachable. Let us consider the states

(ΩA, P
′). P ′ is always an non empty set by construction of C. Let l = min(P ′) and

Sl = {s− l | s ∈ P ′}. Thus,

δC((m− 1, Sl), al) = (ΩA, P
′) if 2 ≤ l ≤ n− 2

δC((m− 1, {0} ∪ S1), a1) = (ΩA, P
′) if l = n− 1

δC((m− 1, S1), b) = (ΩA, P
′) if l = 1

Thus, all
∑m

j=0

(n−1
j

)
− 1 states of the form (ΩA, P

′) are reachable. To prove (ii), consider

two distinct states (i, P1), (j, P2) ∈ R. If i 6= j, then δC((i, P1), bn+m−2−i) ∈ FC but
δC((j, P2), b

n+m−2−i) /∈ FC . If i = j, suppose that P1 6= P2 and both are final or non-final.
Let P ′

1 = P1 \P2 and P ′
2 = P2 \P1. Without loss of generality, let P ′

1 be the set which has the
minimal value, let us say l. Thus δC((i, P1), a

n−1−l
1) ∈ FC but δC((i, P2), a

n−1−l
1) /∈ FC . The

number of τ -transitions of DFA A is m− 1, for τ ∈ Σ. The DFA B has n− 1 b-transitions,
n− 2 a1-transitions, and n− i ai-transitions, with i ∈ [2, n− 2]. Thus DFA A has |Σ|(m− 1)
transitions, DFA B has 2n − 3 +

∑n−2
i=2 (n − i) transitions and |Σ| = n − 1. The proof is

similar to the proof of Theorem 8.

Theorem 12. The upper bounds for state and transition complexity of concatenation cannot

be reached for any alphabet with a fixed size for m ≥ 0, n > m+ 1.

Proof. Let S = {(ΩA, P) | 1 ∈ P} ⊆ R. A state (ΩA, P) ∈ S has to satisfy the following
condition:

∃i ∈ FA∃P
′ ⊆ 2[0,n−1]∃τ ∈ Σ : δC((i, P

′ ∪ {0}), τ) = (ΩA, P).

The maximal size of S is
∑f(A)−1

j=0

(n−2
j

)
, because by construction 1 ∈ P and 0 /∈ P . Assume

that Σ has a fixed size k = |Σ|. Then, the maximal number of words that reach states of S

13

from r0 is
∑f(A)

i=0 ki+1 since the words that reach a state s ∈ S are of the form wAσ, where
wA ∈ L(A) and σ ∈ Σ. As n > m, for some l ≥ 0 we have n = m + l. Thus for an l

sufficiently large
∑f(A)

i=0 ki+1 ≪
∑f(A)−1

j=0

(m+l−2
j

)
, which is an absurd. The absurd resulted

from supposing that k is fixed.

7 Star

Given an incomplete DFA A = ([0,m−1],Σ, δA, 0, FA) accepting a finite language, a DFA B
accepting L(A)⋆ can be constructed by an algorithm similar to the one for regular languages
[7]. Let B = (QB ,Σ, δB , {0}, FB) where QB ⊆ 2[0,m−1], FB = {P ∈ QB | P ∩ FA 6= ∅} ∪ {0},
and for τ ∈ Σ, P ⊆ QB, and R = δA(P, τ), δB(P, τ) is R if R∩FA = ∅, and R∪{0} otherwise.

If f(A) = 1 then the minimal DFA accepting L(A)⋆ has also m states. Thus, we will
consider DFAs with at least two final states. The following results give the number of states
and transitions which are sufficient for any DFA B resulting from the previous algorithm.

Theorem 13. For any finite language L with isc(L) = m and f(L) ≥ 2, one has isc(L⋆) ≤
2m−f(L)−1 + 2m−2 − 1 and

itc(L⋆) ≤ 2m−f(L)−1

(

k +
∑

τ∈Σ

2eτ (L)

)

−
∑

τ∈Σ

2nτ −
∑

τ∈X

2nτ ,

where nτ = tτ (L)− sτ (L)− eτ (L) and X = {τ ∈ Σ | sτ (L) = 0}.

Proof. The proof for the states is similar to the proof presented by Câmpeanu et al.. Note
that in the star operation the states of the result DFA are sets of states of the DFA A. The
minimal DFA accepting L(A)⋆ has at most the following states:

(i) the initial state 0B which corresponds to the initial state of A; i.e., 1 state

(ii) all P ⊆ [1,m− 1] \ FA and P 6= ∅; i.e., 2m−f(A)−1 − 1 states

(iii) all P ⊆ [0,m− 2] such that P ∩ FA 6= ∅ and 0 ∈ P , i.e., 2m−f(A)−1(2f(A)−1 − 1) states

(iv) all P = P ′∪{m−1, 0} where P ′ ⊆ [1,m−1]\FA and P ′ 6= ∅; i.e., 2m−f(A)−1−1 states

Therefore, the number of states of the DFA accepting L(A)⋆ is at most 2m−f(A)−1+2m−2−1.
As in [2, Theorem 1] in the above description we are considering that 0 /∈ F . If 0 ∈ F the
values suffer a few changes but the formula which is obtained, when reaches its maximum,
is the same as in the case 0 ∈ F .

The proof for the transitions is similar to the one for the states. Enumerating the τ -
transitions as done for the states, we have that:

(i) the presence or the absence of the transition leaving the initial state, sτ (L);

(ii) the set of transitions leaving non-initial and non-final states: 2m−f(L)−1−2tτ (L)−sτ (L)−eτ (L);

(iii) the set of transitions leaving the final states (excluding the pre-dead): 2m−f(L)−1(2eτ (L)−
1).

(iv) the set of transitions leaving the pre-dead state: 2m−f(L)−1 − 1 if there exists a τ -
transition leaving the initial state, 2m−f(L)−1 − 2tτ (L)−sτ (L)−eτ (L) otherwise.

Thus the theorem holds.

14

7.1 Worst-case Witnesses

The theorem below shows that the previous upper bounds are reachable. The witness family
for this operation is the same as the one presented by Câmpeanu et al., but we have to
exclude dead state.

Let A = ([0,m−1], {a, b, c}, δA , 0, {m−2,m−1}), m ≥ 4, be a incomplete DFA accepting
a finite language (see Figure 7) where:

δ(i, a) = i+ 1, for i ∈ [0,m− 1]

δ(i, b) = i+ 1, for i ∈ [1,m− 1] and δ(0, b) = m− 1

δ(i, c) = i+ 1, for i ∈ [0,m− 1] and m− i is even.

(1)

0 1 2 3 m− 2 m− 1· · ·
a, c

b

a, b a, b, c a, b a, b a, b, c

(2)

0 1 2 3 m− 2 m− 1· · ·a

b

a, b, c a, b a, b, c a, b a, b, c

Figure 7: DFA A with m states, with m even (1) and odd (2).

Theorem 14. For any integer m ≥ 4 there exists an m-state DFA A accepting a finite

language, such that any DFA accepting L(A)⋆ needs at least 2m−2 + 2m−3 − 1 states and

9 · 2m−3 − 2m/2 − 2 transitions if m is odd, or 9 · 2m−3 − 2(m−2)/2 − 2 transitions otherwise.

Proof. The proof for the states is the same as presented by Câmpeanu et al.. Note that we
do not count the dead states, and because of this we have one state less in A and in the
resulting DFA. Considering the transitions as in the proof for transitions of Theorem 13 the
DFA resulting for the star operation has:

• 3 · 2m−3 − 1 a-transitions.

• 3 · 2m−3 − 1 b-transitions.

• 3 · 2m−3 − 2m/2 c-transitions if m is odd, or 3 · 2m−3 − 2(m−2)/2 transitions otherwise.

Therefore the resulting DFA has 9 · 2m−3 − 2m/2 − 2 transitions if m is odd, or 9 · 2m−3 −
2(m−2)/2 − 2 transitions otherwise.

8 Reversal

Given an incomplete DFA A = ([0,m − 1],Σ, δA, 0, FA), to obtain a DFA B that accepts
L(A)R, we first reverse all transitions of A and then determinize the resulting NFA. Next we
present upper bounds for the number of states and transitions of B.

15

Theorem 15. For any finite languages L with isc(L) = m, m ≥ 3, and over an alphabet

of size k ≥ 2, , where l is the smallest integer such that 2m−l ≤ kl, one has isc(LR) ≤
∑l−1

i=0 k
i + 2m−l − 1 and if m is odd,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑

τ∈Σ

2
∑

l−1
i=0 tτ (L,i)+1,

or, if m is even,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑

τ∈Σ

(

2
∑

l−2
i=0 tτ (L,i)+1 − cτ (L, l)

)

.

Proof. The proof is similar to the proof of [2, Theorem 5]. We only need to remove the dead
state. The smallest l that satisfies 2m−l ≤ kl is the same for m and m+1, and because of that
we have to consider whether m is even or odd. Suppose m odd. Let T1 be set of transitions
corresponding to the first

∑l−1
i=0 k

i states and T2 the set corresponding to the other 2m−l − 1

states. We have that |T1| =
∑l−1

i=0 k
i − 1, because the initial state has no transition reaching

it. As the states of DFA B for the reversal are sets of states of DFA A we also consider each
τ -transition as a set. If all τ -transitions were defined its number in T2 would be 2m−l. Note
that the transitions of the m − l states correspond to the transitions of the states between
0 and l − 1 in the initial DFA A, thus we remove the sets that has no τ -transitions. As the
initial state of A has no transitions reaching it, we need to add one to the number of missing

τ -transitions. Thus, |T2| =
∑

τ∈Σ 2m−l − 2(
∑

l−1
i=0(tτ (i)))+1.

Let us consider m even. In this case we need also to consider the set of transitions that
connect the states with the highest level in the first set with the states with the lowest level
in the second set. As the highest level is l − 1, we have to remove the possible transitions
that reach the state l in DFA A.

(1)
0 1 · · · p− 2 p− 1 2p − 2· · ·

a, b a, b a, b b a, b a, b

(2)
0 1 · · · p− 2 p− 1 2p − 3· · ·

a, b a, b a, b b a, b a, b

Figure 8: DFA A with m = 2p − 1 states (1) and with m = 2p (2).

8.1 Worst-case Witnesses

The following result proves that the upper bounds presented above are tight. The witness
family for this operation is the one presented by Câmpeanu et al. but we omit the dead
state (see Figure 8).

Theorem 16. For any integer m ≥ 4 there exists an m-state DFA A accepting a finite

language, such that any DFA accepting L(A)R needs at least 3 · 2p−1 +2 states and 3 · 2p − 8
transitions if m = 2p − 1 or 2p+1 − 2 states and 2p+2 − 7 transitions if m = 2p.

Proof. The proof for the states is the same as the one presented by Câmpeanu et al..
Considering the transitions as in the proof of Theorem ?? the DFA resulting for the reversal
operation in case m = 2p − 1 has:

16

• (
∑p−1

i=0 2i)− 1 transitions in the first set;

• 2p − 22 a-transitions in the second set;

• 2p − 2 b-transitions in the second set.

Thus, the resulting DFA in this case has 3 · 2p − 8 transitions. In the other case the
resulting DFA has:

• (
∑p−1

i=0 2i)− 1 transitions in the first set;

• 2p − 2 a-transitions in the second set;

• 2p−1 − 1 a-transitions in the intermediate set;

• 2p − 2 b-transitions in the second set;

• 2p−1 b-transitions in the intermediate set;

Therefore the resulting DFA in this case has 2p+2 − 7 transitions.

9 Final Remarks

In this paper we studied the incomplete state and transition complexity of basic regularity
preserving operations on finite languages. Table 1 summarizes some of those results, using the
witnesses parameters. Table 2 and Table 3 have the formulas for the upper bounds of state
and transition complexity for these operations. For unary finite languages the incomplete
transition complexity is equal to the incomplete state complexity of that language, which is
always equal to the state complexity of the language minus one. As future work we plan to
study the average transition complexity of these operations.

References

[1] Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stanford
University (2003)

[2] Câmpeanu, C., II, K.C., Salomaa, K., Yu, S.: State complexity of basic operations on
finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp.
60–70. Springer (2001)

[3] Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer (2006)

[4] Gao, Y., Salomaa, K., Yu, S.: Transition complexity of incomplete DFAs. Fundam.
Inform. 110(1-4), 143–158 (2011)

[5] Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite languages.
Int. J. Found. Comput. Sci. 19(3), 581–595 (2008)

[6] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

[7] Maia, E., Moreira, N., Reis, R.: Incomplete transition complexity of some basic
operations. In: van Emde et al., P. (ed.) SOFSEM 2013. LNCS, vol. 7741, pp. 319–
331. Springer (2013)

17

Operation itc

L1 ∪ L2

∑

τ∈Σ (sτ (L1)⊞ sτ (L2)− (itcτ (L1)− sτ (L1))(itcτ (L2)− sτ (L2))) +

n(itc(L1)− s(L1)) +m(itc(L2)− s(L2))

L1 ∩ L2

∑

τ∈Σ (sτ (L1)sτ (L2) + (itcτ (L1)− sτ (L1)

− aτ (L1))(itcτ (L2)− sτ (L2)− aτ (L2)) + aτ (L1)aτ (L2))

LC |Σ|(m+ 1)

L1L2

k
∑m−2

i=0 min
{

ki,
∑f(L1,i)

j=0

(n−1
j

)}

+

+
∑

τ∈Σ

(

min
{

km−1 − sτ (L2),
∑f(L1)−1

j=0 ∆j

}

+
∑f(L1)

j=0 Λj

)

L⋆
2m−f(L)−1

(
k +

∑

τ∈Σ 2eτ (L)
)
−
∑

τ∈Σ 2tτ (L)−sτ (L)−eτ (L)

−
∑

τ∈X 2tτ (L)−sτ (L)−eτ (L)

LR

∑l
i=0 k

i − 1 + k2m−l −
∑

τ∈Σ 2
∑

l−1
i=0 tτ (L,i)+1, m even

∑l
i=0 k

i − 1 + k2m−l −
∑

τ∈Σ

(

2
∑

l−2
i=0 tτ (L,i)+1 − cτ (l)

)

, m odd

Table 2: Transition complexity of basic regularity preserving operations on finite languages

Operation isc

L1 ∪ L2 mn− 2

L1 ∩ L2 mn− 2m− 2n+ 6

LC m+ 1

L1L2

m−1∑

i=0
min

{

ki,
f(A,i)∑

j=0

(n−1
j

)

}

+
f(A)∑

j=0

(n−1
j

)
− 1.

L⋆ 2m−f(A)−1 + 2m−2 − 1

LR
∑l−1

i=0 k
i + 2m−l − 1

Table 3: State complexity of basic regularity preserving operations on finite languages

18

[8] Maurel, D., Guenthner, F.: Automata and Dictionaries. College Publications (2005)

[9] Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

[10] Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary
alphabets. J. of Aut., Lang. and Comb. 2(3), 177–186 (1997)

[11] Shallit, J.: A Second Course in Formal Languages and Automata Theory. CUP (2008)

[12] Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 1, pp. 41–110. Springer (1997)

19

