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Abstract

Wireless sensor networks are notoriously difficult to program and debug. This fact
not only stems from the nature of the hardware, but also from the current approaches for
developing programming languages that targets these platforms. In particular, current
systems do not place enough stress on providing formal descriptions of the language
and its run-time system, and on proving important static properties. As a contrasting
approach, we design, implement, and deploy a programming language along with a run-
time system that enable us to prove two fundamental static properties: the type-safety
of the language and the soundness of its run-time system. These properties ensure the
absense of an important class of run-time errors in sensor network applications, which
shortens development time and simplifies debugging.

1 INTRODUCTION

Wireless sensor networks (WSN) are one of the most challenging hardware platforms to
program. They are gatherings of large numbers of small physical devices (commonly referred
to as sensors or motes) capable of sensing the environment. The communication infra-
structure is based on low-power wireless technologies and uses ad-hoc networking protocols [1].
The difficulty in programming WSN results from the unique characteristics of these platforms,
especially when compared with other ad-hoc networks (e.g. MANETs). The sensor devices
are extremely limited in terms of hardware (CPU, memory) and power resources (typically
batteries). Their deployment at remote locations makes physical access to the devices, e.g.,
for maintenance and debugging, difficult if not impossible.
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There are many proposals for programming languages for WSN providing the program-
mers with distinct levels of hardware and network awareness and distinct programming
abstractions [8]. For example, at the very lowest level, running on the bare hardware,
we have Pushpin [7]. Abstracting away from the hardware there are languages like the
(ubiquitous) component-based language nesC [4]. Higher up in the abstraction level we find
macroprogramming languages that allow programmers to abstract away, not only from sensor
devices, but also from the network infra-structure, by resorting to sophisticated compilers.
They provide abstractions such as streams, in Regiment [13], databases, in TinyDB [10], and
agents, in SensorWare [3].

Despite this diversity of proposals, current programming languages for WSN are quite
vulnerable to errors and this has negative impact on the usability of the platforms. The
problem stems from the fact that most languages are built in a fairly ad-hoc way, typically by
first identifying a set of adequate programming abstractions and implementing a compiler that
maps the high-level syntax directly into native code or, more commonly, into an intermediate
language representation (nesC code for example, or some form of byte-code). Macroprogram-
ming languages are illustrative of this state of affairs. Regiment [13], for example, a strongly
typed functional macroprogramming language, is compiled into a low-level token machine
language, which is then itself compiled into a nesC implementation of the run-time based on
the distributed token machine model. Building a programming language in this way makes
it rather difficult to establish a link between the semantics of the language and that of the
corresponding run-time. Moreover, there is often no formal definition of the language upon
which one could prove static and run-time properties of programs.

Run-time errors in sensor network applications can have multiple origins: (a) they can
be due to device malfunction or interference from the environment; (b) the application may
not work correctly due to semantic errors introduced by the programmer; (c) the system
executing the program does not behave as expected, and; (d) the compiler is generating an
incorrect program.

Errors of the first type are difficult or impossible to eliminate in most deployments. In
general, this would involve physical access to the devices, which is not practical or even
possible. The second type of error can be controlled by imposing an adequate programming
discipline, e.g., types, and by carefully testing the application before deployment. The third
and fourth types are far more subtle but very important, as they may undermine a deployment
with seemingly unexplainable errors and result in significant extra costs.

In this paper we argue that the errors of types (b), (c), and (d) can be minimised or
even eliminated from sensor network applications by carefully designing the programming
languages and the corresponding run-time systems. In particular, a programming language
and its run-time system should feature two fundamental properties, respectively: type-safety
and soundness. Language type-safety ensures that well-typed programs do not give rise to
run-time protocol errors. A compiler for a type-safe programming language can statically
type-check code and identify would-be run-time protocol errors, before the application is
deployed over the network. This addresses errors of type (b). On the other hand, the
soundness property ensures that the underlying run-time system preserves the semantics of the
programming language. This is achieved by implementing the run-time system based on an
abstract specification (e.g. a virtual machine) that can be proved to preserve the semantics
of the programming language. This still leaves some margin for errors introduced by the
programmer of the run-time, but these can be mitigated through an extensive evaluation and
testing of the software. This addresses errors of type (c). As for errors of type (d), these can
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also be partially eliminated by proving that the language compiler preserves the semantics of
the programming language when translating from source to executable code. This, however,
will not be addressed in this paper and is the subject of current research.

To illustrate the design and implementation principles that we propose, we present the
step by step development of Callas [9], a programming language for WSN. The language
derives from a core-calculus with precise static and operational semantics, based on the
formalism of process calculi [6, 12]. For this language we have proved type-safety [11]. Here,
we present a virtual machine specification for the Callas run-time and prove that it preserves
the operational semantics of the language. With this semantically robust framework in the
background we developed a prototype for the language compiler and another for the run-time
system, whose architecture and implementation we describe.

Thus, in summary, the main contributions of this paper are:

• a methodology for the development of programming languages for WSN that are free
of a large class of run-time errors by design;

• a specification for the Callas run-time system and the proof that it preserves the
language semantics;

• a complete description of a proof-of-concept programming language, compiler, and run-
time system that runs on the Sun SPOT platform [15] and on the VisualSense simulation
tool [2].

The remainder of the paper is structured as follows. Section 2 presents the Callas language,
the core-calculus, the operational semantics and, the type-safety result. Section 3 presents the
syntax of the byte-code for the Callas virtual machine, the compilation scheme from Callas
source programs into Callas byte-code, the virtual machine specification, and the run-time
soundness result. Section 4 describes the architecture, and the implementation of the Callas
compiler and run-time system. Finally, Section 5 ends the paper with some conclusions and
perspectives for future work.

2 THE PROGRAMMING MODEL

This section aims at describing Callas, a programing language for sensor networks that offers
constructs to describe sensor computations, communications, code mobility, and code updates.
The language is based on a calculus [9, 11] with the goal of establishing a foundation for
developing programming languages and run-time systems for sensor networks.

We start by presenting the language along with some examples to illustrate the pro-
gramming style of Callas (Section 2.1). Thereafter, we introduce an abstract core language
(Section 2.2) suitable for defining its formal semantics (Section 2.3). In Section 2.4 we state
informally a type safety result — the interested reader may refer to [11] for the details.

2.1 The Callas Programming Language

We introduce the Callas language by example, programming a sensor node that periodically
reads the ambient temperature and sends it to the network, as listed in Figure 1. A Callas
program is a sequence of terms, whose components are type and module declarations, as-
signments, expressions, and conditionals. We adopt Python’s line-oriented syntax, where
indentation (the number of spaces in the beginning of a line) demarcates syntactic terms.
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1 defmodule N i l :
2 pass
3
4 defmodule Sampler :
5 N i l sample ( ) # sample the temperature
6 # declare module sampler, install it, and call sample() periodically
7 module s of Sampler :
8 def sample ( s e l f ) :
9 curTemp = extern getTemp ( ) # sense the temperature

10 send l o g ( curTemp )
11
12 mem = load # load the sensor memory
13 newMem = mem | | s # update function sample
14 store newMem # replace the sensor memory
15 # invoke sample() every ten minutes, for one week
16 sample ( ) every 60∗10 exp i re 60∗60∗24∗7

Figure 1: A program for periodically transmitting the sensed temperature to the network.

The program starts with two type declarations (lines 1–2 and 4–5). The first type
declaration begins with the reserved word defmodule, followed by a type identifier Nil (must
be capitalised) that binds and introduces the declared module type. The body of a module
type is a sequence of function signatures, which declare the type of the result, the function
name, and the types of the parameters. In line 2, we define an empty module type (with zero
functions). Keyword pass defines an empty sequence of syntactic terms, used to declare an
empty syntactic block. In lines 4–5, we find the declaration of a type Sampler, a module with a
function named sample that expects no arguments and returns empty modules. In lines 7–10,
we declare a module, the first line holds the module header and then the module body. The
module header begins with the reserved word module, succeeded by a variable s that binds
the module—variables must begin with a lower-case letter—, followed by the reserved word of,
then a type identifier Sampler that specifies the type of the declared module, and terminates
with a colon ( :). Similarly to a module declaration, a function declaration comprises a
function header and a function body. The header (in line 8) starts with the reserved word
def, succeeded by the name of the function sample, and by one or more (comma-separated)
parameters in parenthesis. The first parameter in any function is the module itself, e.g., to
allow for recursive calls. The function body is a sequence of terms. Functions are second-class
values, meaning that they cannot be handled directly, e.g., passed to a module. Notice that,
as in Python, when a line ends with a colon the remaining lines are a syntactic group with
an increased indentation.

The body of function sample consists of two terms. The first assigns to variable curTemp
the result from an external call that gets the ambient temperature from the device. The
second term is a network call to function log, passing the value of variable curTemp as an
argument. Expression send is an asynchronous function call to neighbouring nodes. This
expression yields as a result an empty module (that is used as the outcome of function sample).
There are no guaranties whether any sensor in the network picks up these remote function
calls. The programmer must develop protocols for making sure messages are delivered.
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The syntax of values comprises three categories: built-in values, operations (binary and
unary), and variables. We adopt the Python’s syntax for binary and unary operations as well
as for built-in values.

The memory of a sensor may be replaced dynamically throughout the lifetime of the device.
For accessing the memory of a device we use expressions load and store . In lines 12–14, we
load the code of the device and save it in variable mem (line 12), assign to variable newMem a
new module, by composing the modules in variables mem and s (line 13), and store the new
module in memory (line 14). Expression x || y merges the functions of both x and y into a
new module, giving preference to the functions of module y in case of name clashes (i.e., the
same function name appearing on both modules). The syntax for operator || is based on the
asymmetric merge operator of the record calculus [5].

Having an efficient power usage is essential when programming for WSN. The Callas
programming language offers timed calls to allow the device to conserve energy between
periodic computations, whenever possible. We program a timed-event in line 16 that invokes
function sample, thus sending the sensed temperature to the network every ten minutes, for
one week.

To conclude our first example, a network of devices executing the code in Figure 1
needs one or more devices that are programmed to receive the data and process it. Devices
responsible for aggregating the results from the sensor network are usually called sinks. We
list the Callas code in Figure 2 that records the maximum received temperature in the memory
of the sink. Line 5 defines the type of function log with a typed parameter named temp of
type float . Each typed parameter consists of a type and a name (used for documentation
proposes only). Types are any of the built-in types—the integer type int, the float type float ,
and the boolean type bool —and the module types, given by (capitalised) type identifiers. The
sink actually executes the code starting from line 11. First, we declare a module and assign
it to variable sink . The declared module is an implementation of type Sink. Function log
expects two parameters: the module itself and the temperature temp; the function loads the
previous known maximum temperature by invoking function maxTemp, then, in case it is
greater than the previous known maximum, the function updates the received temperature
by storing module newMax, which updates function maxTemp to hold the new maximum
sensed value. Notice that when the else branch is omitted, its value is the empty module.
Function listen accepts a function call (for later execution) that arrives from the network if
there is one. Expression receive evaluates to the empty module. We program a timed-event
in line 30 that invokes function listen every 10 minutes, for one week. The programmer is
responsible for handling if and when remote function calls get handled via expression receive .

Notice that, although we use the terms function and asynchronous function call, the
Callas programming model is conceptually similar to event-based programming models. In
fact, asynchronous function calls and timed calls l(~v) can be seen as asynchronous events where
function name l is the event identifier and also the name of the call-back. Thus, sending a
message l(~v) is like generating an event in some network neighbourhood. A receiving device
captures the event and calls the corresponding call-back l that must reside in its memory.

The next example also illustrates an application where nodes periodically read and broad-
cast the ambient temperature, but now the code for the nodes is sent over a wireless channel
by the sink and is installed dynamically. Callas supports code mobility by allowing sensors to
communicate modules; the code “moves” physically in the network. We list the code for the
sink in Figure 3, adapted from Figure 2. In lines 23–26, we declare a module named node. A
device invoking function run of this module becomes configured as a node, since it executes the
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1 defmodule N i l :
2 pass
3
4 defmodule S ink :
5 N i l l o g ( f l o a t temp )
6 N i l l i s t e n ( )
7
8 defmodule MaxTemp :
9 f l o a t maxTemp( )

10
11 module s i n k of S ink :
12 def l o g ( s e l f , temp ) :
13 mem = load
14 maxTemp = mem.maxTemp( )
15 needsUpdate = temp > maxTemp
16 i f needsUpdate :
17 module newMax of MaxTemp :
18 def maxTemp( s e l f ) :
19 temp
20 mem = mem | | newMax
21 store mem
22
23 def l i s t e n ( s e l f ) :
24 r e c e i v e
25 # update sensor memory
26 mem = load
27 mem = mem | | s i n k
28 store mem
29 # invoke listen() every ten minutes, for one week
30 l i s t e n ( ) every 60∗10 exp i re 60∗60∗24∗7

Figure 2: A program for storing the maximum temperature received.
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1 defmodule N i l :
2 #... (as in Figure 2)
3
4 defmodule S ink :
5 #... (as in Figure 2)
6
7 defmodule MaxTemp :
8 #... (as in Figure 2)
9

10 defmodule Sampler :
11 #... (as in Figure 1)
12
13 defmodule Runner :
14 N i l run ( )
15
16 module s i n k of S ink :
17 # ... (as in Figure 2)
18
19 # update sensor memory
20 # ... (as in Figure 2, lines 26–28)
21
22 # Function run() of this module executes the code in Figure 1
23 module node of Runner :
24 def run ( s e l f ) :
25 # declare module sampler, install it, and call sample() periodically
26 # ... (as in Figure 1, lines 7–16)
27
28 send dep l oy ( node )
29 l i s t e n ( ) every 60∗10 exp i re 60∗60∗24∗7

Figure 3: A program for storing the maximum temperature received.

code listed in Figure 1. Next, in line 28, we send module node to neighbouring peers, by using
node as an argument in the remote function call of deploy. The nodes bootstrap with a short
listener code, depicted in Figure 4. Function deploy receives and invokes function run, allowing
remote code to perform any operation in the device. The sink can use deploy messages to
deliver code to the devices in the network whenever needed.

The complete grammar for Callas is depicted in Figure 5.

2.2 Abstract Syntax

In order to define the semantics of our language we introduce an abstraction of the syntax
described in Figure 5, by inserting a new let expression that handles the binding constructs
uniformly (variable assignment and module definition), that makes explicit the scope of the
bindings, and that enforces an evaluation order on expressions. Recall that in the concrete
syntax of Callas, assignments and module definitions introduce new variables that are visible
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1 defmodule N i l :
2 pass
3
4 defmodule Runner :
5 N i l run ( )
6
7 defmodule Node :
8 N i l dep l oy ( Runner code )
9 N i l l i s t e n ( )

10
11 module node of Node :
12 def dep l oy ( s e l f , code ) :
13 #we execute the code received from the network
14 code . run ( )
15 def l i s t e n ( s e l f ) :
16 r e c e i v e
17
18 mem = load
19 newMem = mem | | node
20 store newMem
21 # invoke sample() every ten minutes, for one week
22 l i s t e n ( ) every 60∗10 exp i re 60∗60∗24∗7

Figure 4: A program for sending the sensed temperature over to the network periodically.
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p ::= ~d ~t Programs

d ::= defmodule T : ¶ ~s Type Defs.

s ::= τ l(~a)¶ Func. Sigs.

a ::= τ x Typed Params.

τ ::= Types

int integer

| float float

| bool boolean

| T type identifier

t ::= Terms

x = e ¶ assign

| M module

| e ¶ expression

| if v : ¶ ~t else : ¶ ~t conditional

M ::= module x of T : ¶ ~f Modules

f ::= def l(~x) : ¶ ~t Functions

e ::= Expressions

v value

| unop v unary op.

| v binop v binary op.

| load load

| store v store

| v || v merge modules

| v.l(~v) function call

| extern l(~v) external call

| l(~v) every e expire e timed call

| send l(~v) communication

| receive communication

v ::= Values

x variable

| . . . | 0 | . . . integer

| True | False boolean

| . . . | 0.0 | . . . floating point

The symbol ¶ represents the end-of-line character.

Figure 5: The syntax of Callas.
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e ::= Expressions

... same as in Figure 5

| let x = e in e sequence

| if e then e else e conditional

M ::= {li(~xi) = ei}i∈I Modules

v ::= Values

... same as in Figure 5

| M modules

Figure 6: The abstract syntax of Callas.

[[~d ~t]] = [[~t]]

[[if e : ¶ ~t1 else : ¶ ~t2 ~t3]] = let x = if e then [[~t1]] else [[~t2]] in [[~t3]], x /∈ fn([[~t3]])

[[module x of T : ¶ ~f ~t]] = let x = {[[~f ]]} in [[~t]]

[[x = e ¶ ~t]] = let x = e in [[~t]]

[[e ¶ ~t]] = let x = e in [[~t]], x 6∈ fn([[~t]])

[[if e : ¶ ~t1 else : ¶ ~t2]] = if e then [[~t1]] else [[~t2]]

[[module x of T : ¶ ~f ]] = {[[~f ]]}
[[x = e ¶]] = e

[[e]] = e

[[def f(~x) : ¶ ~t]] = f(~x) = [[~t]]

[[ε]] = {}

Figure 7: Abstraction rules.

until the end of the current block, and that a block is defined by the indentation level of lines.
The let construct, let x = e1 in e2, first evaluates expression e1, binds its result to the new
variable x, whose scope is e2, and then uses this value when evaluating expression e2.

Figure 6 describes the abstract syntax for Callas. We retain just three syntactic categories:
expressions e, modules M , and values v. On what concerns expressions, we add the let
construct with the informal meaning explained above. Modules M are a collection of functions
as before, but the new syntax allows for explicitly treating modules as values, and the module
construct module x of T : ¶ ~f is expressed as a let for binding the module (the collection
of functions) with variable x in a given scope, and as the name of the module itself. We
also add a conditional if e1 then e2 else e3 to expressions that evaluates condition e2 when
expression e1 is true, and evaluates expression e3 otherwise.

In Figure 7 we formalise the translations rules from concrete to abstract Callas syntax. We
skip module type declarations when translating programs. The translation of a conditional at
the head of a sequence of terms ~t3 is directly mapped into a conditional expression; we compose
the new conditional with the translation of each branch, and use a let to enforce sequential
execution of the conditional and then of the continuation (the translation of ~t3). Notice that
variable x plays no role in the continuation expression. A module module x of T : ¶ ~f at the
head of a sequence of terms ~t becomes a binding of module {[[~f ]]} to variable x in the scope of
the translation of [[~t]]; the new module results from the translations of functions ~f ; assignment
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l e t s = { sample ( s e l f ) = l e t curTemp = extern getTemp ( ) i n
send l o g ( curTemp )} i n

l e t mem = load i n
l e t newMem = mem | | s i n
l e t s k i p = store newMem i n
sample ( ) every 60∗10 exp i re 60∗60∗24∗7

Figure 8: The abstract syntax of the sampling node.

S ::= Sensors

0 empty network

| S |S composition

| [e,R .M, T ]I,Ot sensor

R ::= e1 :: · · · :: en run-queue

T ::= {(li(~vi), vi, vi, vi)}i∈I timed calls

m ::= 〈l(~v)〉 messages

I,O ::= m1 :: · · · :: mn message queues

Figure 9: The syntax of Callas run-time environment.

x = e ¶ at the head of a sequence of terms ~t is represented as a binding of expression e to x
in the continuation [[~t]]. Notice that expressions are not translated at all. If a term is the last
in the program, then there is no need to introduce a new binding, and therefore the term is
represented just as its value. For instance, assignment x = e ¶ is translated as e (the result
of the assignment term). Applying function [[·]] to the program listed in Figure 1 we obtain
the abstract syntax in Figure 8.

The run-time environment for Callas is presented in Figure 9 and focuses on the sensor
components and on the network. Sensor networks S are concurrent compositions of sensors
devices, represented as [e,R.M, T ]I,Ot , and of the empty network, denoted by 0. Each device
is composed by an expression e being evaluated, a queue of pending programs R, a module M
with the installed functions, a set of timers T for periodically calling functions in the installed
code, queues for incoming/outgoing messages from/to the network (I/O), and the current
time t. Messages are passivated function calls denoted as 〈l(~v)〉 and are the moving entities
in the network.

2.3 Semantics

The meaning of programs in Callas is defined using an operational semantics, in particular
a reduction system (Figure 11) defined with the help of a structural congruence relation
(Figure 10).

Structural congruence identifies programs that are considered syntactically equivalent
even when its textual representation is different. For instance, the equivalence S1 |S2 ≡
S2 |S1 means that sensor network programs obtained by permuting sensor representations are
identical (in the sense that these programs possess the same computational meaning). The
congruence rules are given in Figure 10 and the only non-standard rule is [e,R . M, T ]I,Ot ≡
[e,R .M, T ]I,Ot {0}, which provides a conceptual membrane for the sensor. This membrane is
present while the sensor is in communication and prevents sensors from receiving duplicate
copies of a message during transmission.
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S1 |S2 ≡ S2 |S1, S | 0 ≡ S, S1 | (S2 |S3) ≡ (S1 |S2) |S3 (S-monoid-Sensor)

[e,R .M, T ]I,Ot ≡ [e,R .M, T ]I,Ot {0} (S-init-Send)

Figure 10: Structural congruence for sensors.

The reduction relation is inductively defined by the rules in Figures 11 and 12. Since
expressions evaluate to values, we allow for reduction within the let construct. To control
the evaluation order we restrict reduction to always occur inside some let expression. Alter-
natively, we could present the semantics using evaluation contexts, as we did in [11], but the
current approach is more closely related to our byte code representation. The reduction steps
are controlled by an internal clock t. The time for the next activation of every programmed
timed call is checked against the current clock time using the predicate noEvent. Reduction
is driven by running expression e, which executes the associated action and advances the
clock. We assume that each instruction consumes an unspecified number of processor cycles
and in most of the rules the clock moves forward from some t to some t′. Rules R-interrupt

and R-expire need to trigger all the calls and discard all the timers within the same time unit
and hence do not advance the clock.

Rule R-extern makes a synchronous call to an external function l and immediately receives
a value v. The rules R-load and R-store are used to access and to rewrite, respectively, the
installed module in the sensor device. Rule R-send (R-receiveM) handles the interaction with
the network by putting (getting) messages in (from) the outgoing (incoming) queue. The
receive operation is non-blocking (Rule R-receiveE) and the program progresses even when
there are no incoming messages. The condition expression if e1 then e2 else e3 is standard.
With Rule R-ifE (omitted) we let reduction occur in the condition, eventually resulting into
a boolean value. Rule R-ifT (omitted) governs the case when the condition is True, in which
case the conditional reduces into expression e1 of the then -branch. Rule R-ifF (omitted)
asserts the case when the condition is False, where the expression evolves into the else -
branch expression e2. Eventually expression e1 evaluates to a value v (Rule R-letV) that
replaces the free occurrences of variable x in e. When a programs evaluates to a value, it
is discarded if there is another pending program in the run-queue, which in turn becomes
active (Rule R-next). Otherwise, the sensor stalls until a program appears in the run-queue
(Rule R-idle). Rule R-update handles module updates. It copies the functions of both M
and M ′ into a new module, giving preference to the functions of module M ′ in case of name
clashes (i.e., the same function name appearing on both modules). Rule R-call handles calls
to functions in modules. It selects the code for the function, replaces the parameters by the
arguments, passing the current module M ′ as the first argument in variable self , and runs
the resulting program.

Rule R-timer programs a timer for a call to a function installed in the sensor device
(whose code is in M). When predicate noEvent evaluates to false, rule R-interrupt comes
into action, placing a timed function call l(~v) in the run-queue. The execution of the call is
delegated to rule R-call. Finally, when the expiration time is reached, the timer is discarded
(Rule R-expire). The rules for the if instruction (omitted) are standard.

The reduction semantics for networks (Figure 12) is orthogonal to that for in-sensor
processing. Rules R-network and R-congr are straightforward. The former allows reduction
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noEvent(T, t)

[〈extern l(~v)〉, R . M, T ]I,Ot → [〈v〉, R . M, T ]I,Ot′
(R-extern)

noEvent(T, t)

[〈load 〉, R . M, T ]I,Ot → [〈M〉, R . M, T ]I,Ot′

noEvent(T, t)

[〈store v〉, R . M, T ]I,Ot → [〈{}〉, R . v, T ]I,Ot′
(R-load,R-store)

noEvent(T, t)

[〈send l(~v)〉, R . M, T ]I,Ot → [〈{}〉, R . M, T ]
I,O::〈l(~v)〉
t′

(R-send)

noEvent(T, t)

[〈receive 〉, R . M, T ]
〈l(~v)〉::I,O
t → [〈{}〉, R :: let x = load in x.l(~v) . M, T ]I,Ot′

(R-receiveM)

noEvent(T, t)

[〈receive 〉, R . M, T ]ε,Ot → [〈{}〉, R . M, T ]ε,Ot′
(R-receiveE)

[e1, R . M, T ]I,Ot → [e′1, R
′ . M ′, T ′]I

′,O′

t′ noEvent(T, t)

[〈e1〉, R . M, T ]I,Ot → [〈e′1〉, R′ . M ′, T ′]
I′,O′

t′

(R-letE)

noEvent(T, t) x 6= y

[let x = v in e,R .M, T ]I,Ot → [let y = e[v/x] in y,R .M, T ]I,Ot′
(R-letV)

noEvent(T, t)

[let x = v in x, e :: R .M,T ]I,Ot → [e,R .M, T ]I,Ot′
(R-next)

noEvent(T, t)

[let x = v in x, ε . M, T ]I,Ot → [let x = v in x, ε . M, T ]I,Ot′
(R-idle)

noEvent(T, t) M ′′′ = M ′ +M ′′

[〈M ′ ||M ′′〉, R . M, T ]I,Ot → [〈M ′′′〉, R . M, T ]I,Ot′
(R-update)

M ′(l) = l(self ~x)e′ noEvent(T, t)

[〈M ′.l(~v)〉, R . M, T ]I,Ot → [〈e′[M ′ ~v/self ~x]〉, R . M, T ]I,Ot′
(R-call)

T ′ = T ] (l(~v), v, t+ v, t+ v′) noEvent(T, t)

[〈l(~v) every v expire v′〉, R . M, T ]I,Ot → [〈{}〉, R . M, T ′]I,Ot′
(R-timer)

t1 ≤ t2 T ′ = T ] (l(~v), v, t1 + v, t0)

[e,R .M, T ] (l(~v), v, t1, t0)]
I,O
t2
→ [e, let x = load in x.l(~v) :: R .M,T ′]I,Ot2

(R-interrupt)

t1 > t2 > t0

[e,R .M, T ] (l(~v), v, t1, t0)]
I,O
t2
→ [e,R .M, T ]I,Ot2

(R-expire)

with 〈e′〉 an abbreviation for let x = e′ in e.

Figure 11: Reduction semantics for sensors.
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S → S′

S |S′′ → S′ |S′′
S1 ≡ S2 S2 → S3 S3 ≡ S4

S1 → S4
(R-network, R-congr)

(I ′′, O′′) = networkRoute(m, I ′, O′)

[e,R .M, T ]I,m::O
t {S} | [e′, R′ . M ′, T ′]I

′,O′

t′ → [e,R .M, T ]I,m::O
t {S | [e′, R′ . M ′, T ′]I

′′,O′′

t′ }
(R-broadcast)

[e,R .M, T ]I,m::O
t {S} → [e,R .M, T ]I,Ot |S (R-release)

Figure 12: Reduction semantics for sensor networks.

to happen concurrently in sensor networks, while the latter brings the congruence relation into
reduction. Communication occurs by broadcasting messages over a wireless channel to sensors
in the neighbourhood of the broadcasting sensor. Rule R-broadcast handles the distribution
of outgoing messages by delivering such messages in the incoming queues of receiving devices.
The semantics is parametric on predicate networkRoute that we leave unspecified. We omit
modelling whether a given device is within communication range of the current broadcasting
device. Predicate networkRoute implements the routing protocol used to propagate messages
in the network, e.g., the mesh mode in the Sun SPOT framework [14]. A transmission starts
with the application of the structural congruence rule S-init-Send (Figure 10), continues with
multiple applications of R-broadcast, and terminates with an application of R-release.

2.4 Type Safety

The static semantics for the Callas programming language is given in the form of a type-
system [11] that we omit in the current paper. With this type-system and the reduction
semantics from Figures 10, 11, and 12 we proved subject-reduction, i.e., that types are invariant
under reduction. We also proved the type-safety of the language, meaning that well-typed
programs do not produce a class of run-time errors, namely that (a) any given function
call is always made in a module that contains that function and that such a call matches
the function’s signature; (b) updating a module preserves the signatures of the functions it
contains.

Language type-safety is of utmost importance for WSN, since it allows the premature
(static) detection of would-be run-time protocol errors, thus minimising the amount of de-
bugging required for an application once it is deployed.

3 THE VIRTUAL MACHINE AND THE TRANSLATION

The Callas virtual machine (CVM) is a stack-based machine that serves as the run-time
system for Callas. Instructions either push or pop values onto a stack to perform actions
on the machine. CVM uses an incoming queue and an outgoing queue of passivated calls to
interact with the lower layers of the network protocol stack. The machine state (see Figure 13)
is divided into:

• an internal clock Q that uses arbitrary time units t;
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machine state Q×M× T × C ×R× I ×O
time t ∈ Q
timers T ∈ SetOf(S ×Q×Q×Q)
call-stack C ∈ StackOf(Int× E × S × B × U)
passivated calls R, I,O ∈ QueueOf(l(~v))

operands stack S ∈ StackOf(v)

Figure 13: The syntactic categories of the virtual machine.

value v ∈ Bool ∪ Int ∪ Float ∪ String ∪M
instruction c ∈ {update, extern, call, timer, return, jmp n, ift n,

receive, send, loadb, storeb, loadm k, loadc k,

load k, store k, binop, unop}
program P ∈ ArrayOf(D)
module declaration D ∈MapOf(String 7→ F × Int)

function declaration F ∈ Int× Int× B × U
module M∈MapOf(String 7→ F × ~v)
values E ,U ∈ ArrayOf(v)

byte-code B ∈ ArrayOf(c)

Figure 14: The byte-code format.

• a moduleM that represents the shared memory of the device. The code of its functions
can be altered during the execution of the device, but functions cannot be added or
removed;

• a set of programmed timed function calls T , each of which is divided into an operands
stack, the period of the call, the time of the next call, and the expiration time;

• a call-stack C whose components, called call-frames, are divided into a program counter,
an environment frame E , an operands stack S, a byte-code B, and a constants array U ;

• a queue of pending calls R.

• an incoming/outgoing queue I/O of passivated calls.

The items in arrays, in stacks, and in queues of a syntactic category α are written 〈α0, . . . , αn〉,
α0 : · · · : αn, and α0 :: · · · :: αn, respectively. Empty arrays, stacks, and queues are denoted
by ε.

CVM executes a low-level language (byte-code) that defines an instruction set (Figure 14).
Instructions optionally accept one integer argument that is either one-byte long, denoted b,
or four-bytes long, denoted n. A program P consists of an array of modules 〈 ~M〉. Each
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[[e]]
def
= 〈 ~D〉

where ~D = D[[M1]](M0 . . .Mn) . . . D[[Mn]](M0 . . .Mn)

and M0 . . .Mn = modules({run( self ) = e}) ++ {}

Figure 15: The translation of Callas programs.

module M in the array is a map from strings (the function names) onto tuples composed
of an environment array E , a byte-code array B, and a constants array U . The environment
(or environment frame) is an array where the values of the local variables for a function
are stored. The byte-code component contains the sequence of instructions ~c and ends with
instruction return. There are instructions for manipulating modules, making calls, moving
data, network I/O, control-flow, and basic arithmetic and logic operations. The constants
array holds constants from the source program addressed by integer indexes, allowing for
a simple and compact instruction set with few addressing modes. We present relevant
instructions whilst describing the translation function.

3.1 The translation function

A translation function maps each term of the source language into zero or more terms of the
target language. In Figure 15 we define the translation of expression e, denoted by [[e]], into a
CVM program P. For translating expression e into a program we identify modules ~M present
in e and then translate each module Mi into a module declaration Di via function D[[Mi]]( ~M).
The first declaration D0 consists of function run, which CVM executes upon starting. The
byte-code of function run results from the translation of expression e described above. We
define operator ++ for concatenating two sequences and filtering out repeated members.
Function modules finds all modules in an expression tree, yielding a sequence. We concatenate
the sequence of found modules with the empty module, because some expressions return an
empty module, (e.g., E[[receive ]](~x, ~M,~v) in Figure 18).

As an example, we apply the translation function to the running example of the node
broadcasting the sensed temperature listed in Figure 8. Let e be such program. We apply
function modules to module {run( self ) = e} and obtain a sequence of modules that consists
of the argument of modules function and the only module found in e

{run( self ) = e}, {sample(self ) = let currTemp = extern getTemp() in send log(curTemp)}

Let ~M be the concatenation of the modules above with the empty module {}. The generated
program consists of an array holding three module declarations

〈D[[{run( self ) = e}]]( ~M),

D[[{sample(self ) = let currTemp = extern getTemp() in send log(curTemp)}]]( ~M),

D[[{}]]( ~M)〉

Function D[[·]]( ~M), defined in Figure 16, translates a module M into a module declara-
tion D. The translation function F[[·]]( ~M) yields a function declaration that is divided into
a triple: an environment frame, whose size is computed by counting all variables present
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D[[{li(~xi) = ei}i∈I ]]( ~M)
def
= {li 7→ F[[li(~xi) = ei]]( ~M)}i∈I

F[[l(~x) = e]]( ~M)
def
= (|~x|, |{~y} ∪ bn(l(~x) = e)|, 〈~c〉, 〈~v〉), |~y|

where ~y = sort(fn(l(~x) = e))

and ~c = E[[e]](~x++ ~y, ~M,~v), return

and ~v = consts(e)

Figure 16: Translation of modules.

in e; the byte-code of the function; and all constants found in e computed by consts function
(omitted). We append instruction return to the result of the translation function body.
Function sort (not shown) takes a set of names and creates a sequence of names ordered
lexicographically, to enable a predictable ordering of variables in the environment.

Continuing with the translation of the sampling node, we evaluate function D[[·]]( ~M) and
obtain the following program

〈{run 7→ F[[run( self ) = e]]( ~M)},
{sample 7→ F[[sample(self ) = let currTemp = extern getTemp() in send log(curTemp)]]( ~M)},
{}〉

Next we dwell on the translation of function run, F[[run( self ) = e]]( ~M) that yields the pair

(1, 5, 〈E[[e]]( self , ~M,~v), return〉, 〈~v〉), 0
where ~v = ”sample”, ”getTemp”, ”log”, 60, 10, 24, 7

The former member declares one parameter, a frame of five slots, a byte-code we discuss
below, the sequence of constants ~v found in e (obtained by function consts). The latter
specifies that there are no free variables.

Function E[[·]](~x, ~M,~v) generates byte-code from expressions. The parameters for this
translation function are: the sequence ~x used for getting the index of a variable in the
environment frame; the sequence of modules ~M used for obtaining the index of a module
in the program; and the sequence of constants ~v used to obtain the index of a constant in the
symbol array. The code generated for any expression leaves a value on top of the operands
stack. The translation of a basic value, Figure 17, simply recurs to the position of the basic
value in sequence ~v to obtain which index to utilise. For variables the position of the variable
in the know variables ~x (calculated at compile-time) is the argument of the load instruction.
When translating a module {li(~xi) = ei}i∈Ij , the j-th module in the program, we push the
closure of each function before loading the module (with loadm)—again, the position is given
by the module’s position in the sequence of known modules ~M . To produce the code for a
closure, we use function A[[·]](~x, ~M,~v) that translates each free variable as well as the name of
the function.

Figure 18 describes the translation of expressions other than values; a rather straightfor-
ward and compact translation scheme. We comment just a few cases. The translation of a
call v.l(~v) is the composition of translating its arguments augmented with module v, then
its function name, and then instruction call. The translation of the arguments and of the
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E[[v]](~x, ~M, v0 . . . vi . . . vn)
def
= loadc i if v = vi

E[[x]](x0 . . . xi . . . xn, ~M,~v)
def
= load i if x = xi

E[[{li(~xi) = ei}i∈Ij ]](~x, ~M,~v)
def
= A[[l0(sort(fn((~x0)e0)))]](~x, ~M,~v),

. . .

A[[ln(sort(fn((~xn)en)))]](~x, ~M,~v),

loadm j

where ~M is M0 · · · {li(~xi) = ei}i∈Ij︸ ︷︷ ︸
Mj

· · ·Mm

A[[l(v0 . . . vk)]](~x, ~M,~v)
def
= E[[vk]](~x, ~M,~v),

· · ·
E[[v0]](~x, ~M,~v),

E[[l]](~x, ~M,~v)

Figure 17: Translation of values and of sequences of values.

function name involves translating each argument in the right-to-left order (the cdecl calling
convention), and then translating the function name. The case for extern l(~v) is similar to
a function invocation, except that, because this is a direct system call, we do not place the
target module in the first argument. The timed call expression l(~v) every e expire e′ has
a slightly more contrived translation. First, we translate the expiration time, the period of
the call, the arguments, and the name of the function. Thereafter we issue timer instruction
to program the timer. Lastly, we translate the empty module, for placing the result of the
operation onto the operands stack, since the operation always returns the empty module {}.

To give a flavour of how the translation algorithm develops, we translate the arithmetic
expression 24 ∗ 7, an instance of a binary operation. Henceforth, for the remaining examples
let

~v = ”sample”, ”getTemp”, ”log”, 60, 10, 24, 7

The translation is valid for any sequence of names ~x, as well as for any sequence of modules ~M .

E[[24∗7]](~x, ~M,~v) = loadc 6, loadc 5, mul

The outcome is pushing constant 7 and then pushing constant 24 to the operands stack; then,
by issuing a mul, the machine takes both numbers from the top of the stack, performs the
multiplication, and pushes number 168 onto the stack.

A composite arithmetic expression like 60∗60∗24∗7 is more complex, but standard for
stack-based machines. We annotate each instruction with its respective source operand or
operator to ease the comprehension.

E[[60∗60∗24∗7]](~x, ~M,~v) = loadc 6︸ ︷︷ ︸
7

, loadc 5︸ ︷︷ ︸
24

, mul︸︷︷︸
∗

, loadc 3︸ ︷︷ ︸
60

, mul︸︷︷︸
∗

, loadc 3︸ ︷︷ ︸
60

, mul︸︷︷︸
∗
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E[[load ]](~x, ~M,~v)
def
= loadb

E[[store v]](~x, ~M,~v)
def
= E[[v]](~x, ~M,~v), storeb, E[[{}]](~x, ~M,~v)

E[[v1 || v2]](~x, ~M,~v)
def
= E[[v2]](~x, ~M,~v), E[[v1]](~x, ~M,~v), update

E[[v1 binop v2]](~x, ~M,~v)
def
= E[[v2]](~x, ~M,~v), E[[v1]](~x, ~M,~v), binop

E[[unop v]](~x, ~M,~v)
def
= E[[v]](~x, ~M,~v), unop

E[[v.l(~v)]](~x, ~M,~v)
def
= A[[l(v~v)]](~x, ~M,~v), call

E[[extern l(~v)]](~x, ~M,~v)
def
= A[[l(~v)]](~x, ~M,~v), extern

E[[l(~v) every e1 expire e2]](~x, ~M,~v)
def
=

A[[l(~ve1e2)]](~x, ~M,~v), timer, E[[{}]](~x, ~M,~v)

E[[send l(~v)]](~x, ~M,~v)
def
= A[[l(~v)]](~x, ~M,~v), send, E[[{}]](~x, ~M,~v)

E[[receive ]](~x, ~M,~v)
def
= receive, E[[{}]](~x, ~M,~v)

E[[let x = e1 in e2]](~x, ~M,~v)
def
=

E[[e1]](~x, ~M,~v), store i, E[[e2]](y1 . . . yi . . . yn, ~M,~v) if x = yi

where y1 . . . yi . . . yn = ~x++ x

E[[if e1 then e2 else e3]](~x, ~M,~v)
def
=

E[[e1]](~x, ~M,~v), ift i3, E[[e3]](~x, ~M,~v),

jmp i2, E[[e2]](~x, ~M,~v)

where i2 = |E[[e2]](~x, ~M,~v)|
and i3 = |E[[e3]](~x, ~M,~v)|+ 1

Figure 18: Translation of expressions (except values).
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We create a module by specifying the value of each free variable it holds and then
issuing loadm. Translating the empty module, in the third position of ~M , consists of only one
instruction.

E[[{}]](~x, ~M,~v) = loadm 2

Translating the timed call sample() every 60∗10 expire 60∗60∗24∗7 pushes expression 60∗
60 ∗ 24 ∗ 7, expression 60 ∗ 10, and the function’s name (plus zero arguments); then issues
a timer, and finishes by pushing the empty module onto the stack.

E[[sample() every 60∗10 expire 60∗60∗24∗7]](~x, ~M,~v) =

loadc 6, loadc 5, mul, loadc 3, mul, loadc 3, mul︸ ︷︷ ︸
E[[60∗60∗24∗7]](... )

,

loadc 4, loadc 3, mul︸ ︷︷ ︸
E[[60∗10]](... )

, loadc 0︸ ︷︷ ︸
sample

, timer, loadm 2︸ ︷︷ ︸
E[[{}]](... )

We translate expression store newMem that stores a module from variable newMem in the
memory of the device. The generated code is straightforward; we load the module in slot 3
(the fourth know variable), then issue a storeb that pops the module on top of the operands
stack and uses it as the installed code of the device, and then push an empty module onto
the operands stack (the result of the expression).

E[[store newMem]](( self , s ,mem,newMem), ~M,~v) = load 3, storeb, loadm 2

Let expression e1 be

let skip = store newMem in sample() every 60∗10 expire 60∗60∗24∗7

Translating the composite expression e1 amounts to translate store newMem, then issue
instruction store to copy the value on top of the operands stack into the slot with index 4 of
the environment (given by the position of variable skip in the sequence of known variables),
and then translating the timed call.

E[[e1]](( self , s ,mem,newMem), ~M,~v) = load 3, storeb, loadm 2︸ ︷︷ ︸
E[[store newMem]](... )

, store 4︸ ︷︷ ︸
skip

, loadc 0︸ ︷︷ ︸
sample

,

loadc 4, loadc 3, mul, loadc 6, loadc 5, mul,︸ ︷︷ ︸
E[[sample() every 60∗10 expire 60∗60∗24∗7]](... )

loadc 3, mul, loadc 3, mul, timer, loadm 2︸ ︷︷ ︸
(continuation) E[[sample() every 60∗10 expire 60∗60∗24∗7]](... )

= ~c1

The translation of let newMem = mem || s in e1 is similar to translating a binary
arithmetic operation, thus we translate variables s and mem, next we issue instruction update

that takes two modules from the top of the operands stack and merges them into a new module
that is pushed on the operands stack. Afterwards we store the new module in slot with index 3,
reserved for variable newMem, and translate expression e1 whose result is sequence ~c1.

E[[let newMem = mem || s in e1︸ ︷︷ ︸
e2

]](( self , s ,mem), ~M,~v) = load 1, load 2, update, store 3,~c1
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The new module, created by instruction update, is composed of the functions in both operands
(on the top of the operands stack). In case there exists a function in the first operand with the
same name than a function in the second operand, the function in second operand is chosen
to compose the new module.

Translating expression let mem = load in e2 that loads the memory of the device into
variable mem and continues with expression e2 is trivial, where expression e2 = let newMem =
mem || s in e1.

E[[let mem = load in e2]]( self s, ~M,~v) = loadb, store 2, load 1, load 2, update, store 3,~c1︸ ︷︷ ︸
E[[e2]](... )︸ ︷︷ ︸

~c2

We translate expression load into instruction loadb that pushes the installed code onto the
operands stack.

Let moduleM2 = {sample(self ) = let currTemp = extern getTemp() in send log(curTemp)}.
To generate code for creating this module, we push name sample along with the free variables
of the function. In this case there are none, so we just push the function name prior to issuing
instruction loadm.

E[[M2]]( self , ~M,~v) = loadc 0, loadm 1

To translate expression let s = M2 in e3 that creates module M2, saves it in variable s,
and proceeds with expression e3, where e3 = let mem = load in e2, we translate module M2

(as above) and proceed with the translation of e3 (sequence ~c2).

E[[let s = M2 in e3]]( self , ~M,~v) = loadc 0, loadm 1, store 1,~c2

Going back to the example of the module declaration for module M1, we have that

D[[M1]]( ~M) = {run = (〈0〉, 〈loadc 0, loadm 1, store 1,~c2, return〉,
〈”sample”,”getTemp”,”log”,60,10,24,7〉)}

Thus, the translated program follows

〈{run = (1, 5, 〈loadc 0, loadm 1, store 1,~c2, return〉,
〈”sample”, ”getTemp”, ”log”, 60, 10, 24, 7〉), 0},

{sample = (1, 2, 〈loadc 0, extern, store 1, load 1, loadc 1, send, loadm 2, return〉
〈”getTemp”,”log”〉), 0},

{}〉

We omit the detailed translation of module sample.

3.2 The operational semantics of CVM

The entry point of every program is the function that is executed when the machine starts,
namely run function of the first module in the program. The function declaration for run

22



must have one parameter, a frame of size k + 1, a byte-code B, and a constant array U ; run
function of this module must not hold free variables.

P[0](run) = (1, k + 1,B,U)︸ ︷︷ ︸
Frun

, 0

The initial state of a machine running P where |~0| = k is

〈0, {}, {}, (0, 〈{run 7→ Frun},~0〉, ε,B,U), ε〉εε

The first member is the machine’s current time and starts at zero. The second member, the
installed code, begins with no functions stored. The third member is a pool of timed events
(initially empty). The fourth member is the call-stack that starts with a frame holding: a
program counter pointing to the first instruction, an environment that consists of the first
module in the program and zeroes, an empty operands stack, byte-code B of function run,
and constant pool U . The fifth member is the run-queue and commences with no pending
calls. Finally, the incoming- and outgoing-queues initiate cleared.

The execution of the program proceeds through a series of state transitions, presented in
Figures 19 and 20, that were designed to match the operational semantics given in Section 2.
Rule R-extern performs a synchronous invocation to an external function l via instruc-
tion extern, for an operating system call. The virtual machine removes function name l
and arguments ~v from the top of the operands stack, respectively. Function externArgsCount
maps a function name to the number of arguments the external function accepts. Function
callExtern abstracts the execution by producing value v, placed at the top of the operand
stack. Instructions send and receive handle the interaction of CVM with the network layer.
Instruction send (Rule R-send) takes a function name l and a sequence of values ~v from the
operands stack into output queue O. Instruction receive takes a passivated function call l(~v)
from the nonempty input queue I into run-queue R (Rule R-receiveM). Rule R-receiveE

asserts that instruction receive is non-blocking. Thus, if the input queue is empty, CVM
just increments the program counter. Rule R-load copies the k-th value of environment E
to the top of the operands stack. Instruction store k copies value v on top of the operands
stack into the k-th slot of the environment and then pops the top of the operands stack
(Rule R-store). With Rule R-loadC, we push the k-th value of constant array U into the
operands stack.

Instruction loadb pushes the installed code M onto the operands stack (Rule R-loadB).
Instruction storeb takes module M1 from the top of the operands stack and uses it as the
installed code of the device (Rule R-storeB). Rule R-loadM pushes a new module from the
k-th declaration in program P. In the operands stack, for each function li we expect the
label of the function and closure ~vi; the length of the closure (ki) is specified by entry D(li).
The i-th function of the created module holds function declaration Fi (given by the module
declaration) and closure ~vi. Instruction update takes modules M1 and M2 from the top of
the operands stack and merges them into a new module M3 that is pushed on the operands
stack (Rule R-update). ModuleM3 consists of the functions inM1 plus the functions inM2.
In case there exists a function in M1 with the same name as a function in M2, the latter
is chosen to compose module M3. We instruction call invokes functions in modules and
expects a moduleM1, a string l, and a sequence of arguments ~v1 on top of the operands stack
(Rule R-call). We use string l to select a function in module M1 and obtain the number of
parameters to take from the operands stack, the size of the frame we are creating, the byte
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B[i] = extern k ← externArgsCount(l) |~v| = k v ← callExtern(l : ~v)

〈t,M, T , (i, E , l : ~v : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E , v : S,B,U) : C,R〉IO
(R-extern)

B[i] = send M(l) = (|~v|+ 1, , , ),

〈t,M, T , (i, E , l : ~v : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E ,S,B,U) : C,R〉IO::l(~v)
(R-send)

B[i] = receive

〈t,M, T , (i, E ,S,B,U) : C,R〉l(~v)::IO →P 〈t′,M, T , (i+ 1, E ,S,B,U) : C, R :: l(~v)〉IO
(R-receiveM)

B[i] = receive

〈t,M, T , (i, E ,S,B,U) : C,R〉εO →P 〈t′,M, T , (i+ 1, E ,S,B,U) : C,R〉εO
(R-receiveE)

B[i] = load k E [k] = v

〈t,M, T , (i, E ,S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E , v : S,B,U) : C,R〉IO
(R-load)

B[i] = store k E [k]← v

〈t,M, T , (i, E , v : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E ,S,B,U) : C,R〉IO
(R-store)

B[i] = loadc k U [k] = v

〈t,M, T , (i, E ,S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E , v : S,B,U) : C,R〉IO
(R-loadC)

B[i] = loadb

〈t,M, T , (i, E ,S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E ,M : S,B,U) : C,R〉IO
(R-loadB)

B[i] = storeb

〈t,M, T , (i, E ,M1 : S,B,U) : C,R〉IO →P 〈t′,M1, T , (i+ 1, E ,S,B,U) : C,R〉IO
(R-storeB)

B[i] = loadm k P[k] = D |D| = n D(li) = Fi, ki |~vi| = ki

〈t,M, T , (i, E , l0 : ~v0 : · · · : ln : ~vn : S,B,U) : C,R〉IO →P
〈t′,M, T , (i+ 1, E , {li 7→ Fi, ~vi}i∈0...n : S,B,U) : C,R〉IO

(R-loadM)

B[i] = update M1 +M2 =M3

〈t,M, T , (i, E ,M1 :M2 : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E ,M3 : S,B,U) : C,R〉IO
(R-update)

B[i] = call M1(l) = (|M1~v1|, |M1~v1~v2~0|,B′,U ′), ~v2 E ′ = 〈M1~v1~v2~0〉
〈t,M, T , (i, E , l :M1 : ~v1 : S,B,U) : C,R〉IO →P

〈t′,M, T , (0, E ′, ε,B′,U ′) : (i+ 1, E ,S,B,U) : C,R〉IO
(R-call)

Figure 19: Reduction rules for CVM: system, network, data, modules and calls.
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B[i] = timer M(l) = (|~v|+ 1, , , ),

〈t,M, T , (i, E , l : ~v : t1 : t2 : S,B,U) : C,R〉IO →P
〈t′,M, T ] {(l(~v), t1, t+ t1, t+ t2)}, (i+ 1, E ,S,B,U) : C,R〉IO

(R-timer)

t1 ≤ t
〈t,M, T ] {(l(~v), t0, t1, t2)}, C,R〉IO →P

〈t,M, T ] {(l(~v), t0, t1 + t0, t2)}, C, l(~v) :: R〉IO

(R-interrupt)

t1 > t > t2

〈t,M, T ] {(S, , t1, t2)}, C,R〉IO →P 〈t,M, T , C,R〉IO
(R-expire)

B[i] = return

〈t,M, T , (i, E , v : S,B,U) : (i′, E ′,S ′,B′,U ′) : C,R〉IO →P
〈t′,M, T , (i′, E ′, v : S ′,B′,U ′) : C,R〉IO

(R-return)

B[i] = return B′ = 〈loadb, loadc 0, call, return〉
〈t,M, T , (i, E , v : S,B,U), l(v0, . . . , vn) :: R〉IO →P

〈t′,M, T , (0, ε, v0 : · · · : vn,B′, 〈l〉),R〉IO

(R-next)

B[i] = return

〈t,M, T , (i, E , v : S,B,U), ε〉IO →P 〈t′,M, T , (i, E , v : S,B,U), ε〉IO
(R-idle)

B[i] = jmp n

〈t,M, T , (i, E ,S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1 + n, E ,S,B,U) : C,R〉IO
(R-jump)

B[i] = ift n

〈t,M, T , (i, E ,True : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1 + n, E ,S,B,U) : C,R〉IO
(R-ifT)

B[i] = ift n

〈t,M, T , (i, E , False : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E ,S,B,U) : C,R〉IO
(R-ifF)

B[i] = binop v ← binop(binop, v1, v2)

〈t,M, T , (i, E , v1 : v2 : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E , v : S,B,U) : C,R〉IO
(R-bin)

B[i] = unop v ← unop(unop, v1)

〈t,M, T , (i, E , v1 : S,B,U) : C,R〉IO →P 〈t′,M, T , (i+ 1, E , v : S,B,U) : C,R〉IO
(R-un)

Figure 20: Reduction rules for CVM: timers, control flow, binary and unary operators.
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code to execute, the constant pool, and the closure of this function. The new environment
E ′ is composed by the function’s arguments M1~v1 (from the operands stack), the function’s
closure ~v2 (from function l), and some zeros (the amount is calculated using the frame size
minus the arguments count and the closure length). The resulting call-frame is placed on top
of the call-stack C.

We use instruction timer to program an event that periodically schedules a call to installed
function l with arguments ~v (Rule R-timer). The periodicity t1 and the duration of the timer
t2 are taken from the operands stack. Rule R-interrupt precises how CVM monitors the
system clock, placing a function call in front of the run queue R every time a period has
passed since the last trigger. The monitoring is done on a best effort basis, meaning that the
calls may not be strictly periodic and there may be some drift over time. With Rule R-expire

the machine discards expired timers.

CVM functions always return a value. The last instruction of every function is a return

that expects an operands stack with a return value to pass to the calling frame. In case there
is a call-frame below, i.e., a function calling another function, the top frame is discarded
and the return value is pushed onto the operands stack of the calling frame (Rule R-return).
Otherwise, in case there is no call-frame below, the machine waits for the existence of a
pending call in the run queue (Rule R-idle) and then (Rule R-next) constructs a new call-
frame that consists of: a program counter pointing to the first instruction of the byte-code,
an operands stack holding the arguments of the function, the byte-code necessary to invoke
function l from the installed module, and a constant pool with the function’s name.

Instructions jmp and ift are the unconditional and the conditional branching, respectively.
Both use a relative address to obtain the next instruction to execute, rather than an absolute
addresses. Rules R-bin and R-un concern binary and unary operations, respectively. In these
rules the instruction itself is a parameter of the rule, meaning that, for example Rule R-bin,
applies to zero or more instructions—like the addition operator, or the subtraction operator.
These are the typical operations over primitive values (e.g., arithmetic, or logic) commonly
found on stack-based architectures.

To illustrate the workings of the virtual machine, take the program generated in the
previous section:

P =〈{run 7→ (1, 5,B,U)︸ ︷︷ ︸
F0

, 0}, {sample 7→ (1, 2,B′,U ′)︸ ︷︷ ︸
F1

}, {}〉

B =〈loadc 0, loadm 1, store 1, loadb, store 2, load 1, load 2, update, store 3,

load 3, storeb, loadm 2, store 4, loadc 6, loadc 5, mul, loadc 3, mul,

loadc 3, mul, loadc 4, loadc 3, mul, loadc 0, timer, loadm 2, return〉
U =〈”sample”, ”getTemp”, ”log”, 60, 10, 24, 7〉
B′ =〈loadc 0, extern, store 1, load 1, loadc 1, send, loadm 2, return〉
U ′ =〈”getTemp”, ”log”〉

and we execute, step-by-step, the byte-code for the function run, as generated in Section 3.1.
The initial state CVM for the translated program is

〈0, {}, {}, (0, 〈{run 7→ F0, 〈〉}︸ ︷︷ ︸
M0

, 0, 0, 0, 0〉, ε,B,U), ε〉εε
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The virtual machine executes the byte-code sequentially, at each step examining the instruc-
tion indexed by the program counter and performing the associated changes in the state. The
following listing shows a trace of the execution. The first two executions steps create a module
from the module declaration at slot 1 and stores the module in index 0 of the environment
frame. The first reduction pushes the free variables of sample function; since there are none,
we just push the function’s name. The second instruction issues instruction loadm, pushing
M1 = {sample 7→ F1, 〈〉} onto the operands stack.

〈0, {}, {}, (0, 〈M0, 0, 0, 0, 0〉, ε, 〈loadc 0, . . .〉,U), ε〉εε →
〈1, {}, {}, (1, 〈M0, 0, 0, 0, 0〉, ”sample”, 〈. . . , loadm 1, . . .〉,U), ε〉εε →
〈2, {}, {}, (2, 〈M0, 0, 0, 0, 0〉,M1, 〈. . . , store 1, . . .〉,U), ε〉εε

The subsequent eight reduction steps update the memory of the sensor (an empty module)
with the module M1 stored in slot 1. Note that {}+M1 =M1.

〈3, {}, {}, (3, 〈M0,M1, 0, 0, 0〉, ε, 〈. . . , loadb, . . .〉,U), ε〉εε →
〈4, {}, {}, (4, 〈M0,M1, 0, 0, 0〉, {}, 〈. . . , store 2, . . .〉,U), ε〉εε →
〈5, {}, {}, (5, 〈M0,M1, {}, 0, 0〉, ε, 〈. . . , load 1, . . .〉,U), ε〉εε →
〈6, {}, {}, (6, 〈M0,M1, {}, 0, 0〉,M1, 〈. . . , load 2, . . .〉,U), ε〉εε →
〈7, {}, {}, (7, 〈M0,M1, {}, 0, 0〉, {} :M1, 〈. . . , update, . . .〉,U), ε〉εε →
〈8, {}, {}, (8, 〈M0,M1, {}, 0, 0〉,M1, 〈. . . , store 3, . . .〉,U), ε〉εε →
〈9, {}, {}, (9, 〈M0,M1, {},M1, 0〉, ε, 〈. . . , load 3, . . .〉,U), ε〉εε →
〈10, {}, {}, (10, 〈M0,M1, {},M1, 0〉,M1, 〈. . . , storeb, . . .〉,U), ε〉εε →

The next two instructions store an empty module in slot 4.

〈11,M1, {}, (11, 〈M0,M1, {},M1, 0〉, ε, 〈. . . , loadm 2, . . .〉,U), ε〉εε →
〈12,M1, {}, (12, 〈M0,M1, {},M1, 0〉, {}, 〈. . . , store 4, . . .〉,U), ε〉εε

The posterior execution is the translation of E[[sample() every 60∗10 expire 60∗60∗24∗7]](. . . ).
The machine pushes expression 60 ∗ 60 ∗ 24 ∗ 7, expression 60 ∗ 10, and string ”sample”;
sets up a timed call, and pushes a new empty module onto the operands stack. Let E0 =
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〈M0,M1, {},M1, {}〉.

〈13,M1, {}, (13, E0, ε, 〈. . . , loadc 6, . . .〉,U), ε〉εε →
〈14,M1, {}, (14, E0, 7, 〈. . . , loadc 5, . . .〉,U), ε〉εε →
〈15,M1, {}, (15, E0, 24 : 7, 〈. . . , mul, . . .〉,U), ε〉εε →
〈16,M1, {}, (16, E0, 168, 〈. . . , loadc 3, . . .〉,U), ε〉εε →
〈17,M1, {}, (17, E0, 60 : 168, 〈. . . , mul, . . .〉,U), ε〉εε →
〈18,M1, {}, (18, E0, 10080, 〈. . . , loadc 3, . . .〉,U), ε〉εε →
〈19,M1, {}, (19, E0, 60 : 10080, 〈. . . , mul, . . .〉,U), ε〉εε →
〈20,M1, {}, (20, E0, 604800, 〈. . . , loadc 4, . . .〉,U), ε〉εε →
〈21,M1, {}, (21, E0, 10 : 604800, 〈. . . , loadc 3, . . .〉,U), ε〉εε →
〈22,M1, {}, (22, E0, 60 : 10 : 604800, 〈. . . , mul, . . .〉,U), ε〉εε →
〈23,M1, {}, (23, E0, 600 : 604800, 〈. . . , loadc 0, . . .〉,U), ε〉εε →
〈24,M1, {}, (24, E0, ”sample” : 600 : 604800, 〈. . . , timer, . . .〉,U), ε〉εε →
〈25,M1, {(sample(), 600, 624, 604824)}, (25, E0, ε, 〈. . . , loadm 2, . . .〉,U), ε〉εε

Afterwards, CVM sits idle until the event is triggered and the running call-frame C0 is
replaced.

〈26,M1, {(sample(), 600, 624, 604824)}, C0, ε〉εε →
. . .

〈624,M1, {(sample(), 600, 1224, 604824)}, C0, sample()〉εε →
〈624,M1, {(sample(), 600, 1224, 604824)}, (0, ε, ε,Bnext, 〈”sample”〉), ε〉εε →
. . .

where C0 = (26, E0, {}, 〈. . . , return〉,U)

and Bnext = 〈loadb, loadc 0, call, return〉

The translation we present here is simple and there is room for optimisations, but this is
not the focus of this paper.

3.3 Run-Time Soundness

We have proved that the specification of CVM given in section 3.2 preserves the semantics
of Callas programs. More precisely, we proved that, if we start with a byte-code program [[e]]
that is the result of the translation of a Callas expression e, and that this program, as it
is executed by the virtual machine, evolves through a sequence of transitions into another
expression [[e′]], which is again the translation of some Callas expression e′, then there exists
a one step reduction using the Callas semantics from e to e′. Formally, this result could be
stated as the following.

Theorem 1 if [[e]]→∗ [[e′]], then e→ e′

(sketch) We take e and proceed by induction on the translation of e, analysing the last
rule applied from the translation function (vide Figures 15, 16, 17 and 18). For each case
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we consider the result of translating e into byte-code program [[e]]; next we use the semantic
rules from Figures 19 and 20 to compute [[e′]] such that it is exactly the result of translating
Callas program e′. Using the rules in Figure 11 we prove each case, namely that e → e′.
For the cases of the let x = e1 in e2 and if b then e1 else e2 instructions we need to use
the induction hypothesis, since for such cases the function is used recursively to translate
programs e1 and e2.

This theorem establishes a deep link between the operational semantics of the Callas
programming language and the operational semantics for the run-time. The importance of
this result cannot be overstated. It implies that byte-code programs generated by the Callas
compiler (and thus free of run-time protocol errors) is going to be executed by the run-time
system in accordance with the operational semantics for the language as given in Section 2.
Thus, the byte-code programs will be also immune to misbehaviour on the part of the run-time
system. In this way another potentially problematic source of (run-time) errors is eliminated
a priori by carefully designing the language and its run-time system.

4 PROTOTYPE IMPLEMENTATION ANDDEPLOYMENT

As a proof-of-concept we have built two Software Development Kits (SDKs) for programming
WSN with Callas in two different platforms, one for real life Sun SPOT devices, and another
for the VisualSense simulator. Since we abstract the run-time system (e.g., sensor’s hardware)
with CVM, the same compiler can be used in the various SDKs. Each SDK, however, must
provide its implementation of CVM.

The Callas compiler implementation is divided into three components: a syntactic anal-
yser, a semantic analyser, and a code generator. The compiler uses the syntactic analyser to
parse the source code and construct an abstract syntactic tree—an abstract representation
of the program based on the syntax in Figure 6. Afterwards, the compiler verifies the parsed
program with the semantic analyser, according to our type system (not shown; refer to [11],
Figures 4 and 5). Finally, the compiler generates a byte-code program from the abstract
representation of the program, following the translation function in Figure 15. To give some
flavour of the size of the source (Java), the code generation component consists of eight classes
that represent 1400 lines of code, half of these represent test cases.

Both SDKs target a Java run-time system (JVM); Sun SPOT applications run on top
of Squawk [14], a JVM for embedded systems; and the simulated components (e.g., sensors)
in VisualSense are Java classes themselves that run on the standard JVM, which also runs
the simulator itself. To improve maintenance both SDKs share most of the code for CVM
implementation. Each Java-based SDK must only implement the network component and
the available external operations (extern ). The shared codebase is divided into two parts:
the interpreter and the byte-code manipulation. The former consists of data-structures rep-
resenting the state of the virtual machine, and implements the reduction rules presented in
Section 3.2. We rely entirely on Java’s garbage collector for memory management. This choice
is adequate for a proof-of-concept implementation. The interpreter is a switch statement on
the next instruction being executed, where each case implements a different rule from the
operational semantics. The byte-code manipulation part includes a parser that loads a byte-
code program to create the run-time data-structures needed to start the interpreter, and is
also responsible for marshaling and un-marshaling Callas values (for network communication).

The code specific for implementing CVM in Sun SPOT devices is about 400 lines of
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Figure 21: The Callas run-time.

Java code. The network layer is responsible for (un-)marshaling and broadcasting (receiving)
remote function calls. We expose external calls that give access to the existing sensors and
actuators of Sun SPOTs. There are sensors for luminosity, temperature, motion, orientation,
and battery level. As for actuators, we have light-emitting diodes.

The architecture of the run-time system can be seen in Figure 21. The full program
includes three threads, one that runs the interpreter, one that receives messages from the
network, and one that sends messages to the network. The communication model of the virtual
machine is very akin to middleware systems except that calls are obviously asynchronous. The
main thread interleaves the execution between: (a) the interpreter, that evaluates terms and
triggers timed-calls, (b) placing function calls produced by the thread receiving data in the
input queue of the interpreter, and; (c) transferring all function calls in the interpreter’s
output queue to the thread transmitting data. The thread responsible for receiving data
uses the network infrastructure to accept byte-code that is un-marshaled into function calls,
subsequently consumed by the main thread. Finally, the thread transmitting data to the
network consumes available function calls, produced by the main thread, and marshals them
into byte-code that is broadcast to the network. Low-level network communication is handled
by the Squawk virtual machine that uses the ZigBee 802.15.4 wireless protocol intended for
low-speed and low-power communication between devices.

The SDK for simulating Callas applications using VisualSense consists on two applications
(besides the Callas compiler): a generator of simulation models and the run-time system,
VisualSense extended to run Callas applications. Our compiler currently uses a file format,
called the network file, to describe the code that runs on a certain category of sensors, the
existing remote function calls, and the available external operations. The network file is
an extensible format and allows for more metadata to be included. The model generator
uses a network file with simulation specific parameters to emit a simulation model, to be
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Nodes Duration Memory Usage
(hours) (GB)

100 0.05 0.25
200 0.21 0.23
400 0.48 0.26
500 0.72 0.31

1000 1.43 0.45
2000 3.80 0.87
3000 6.65 1.44
4000 9.97 2.14
5000 15.90 2.55

Table 1: Results for networks with sizes from 100 up to 5000 nodes.

used by VisualSense. In VisualSense, adding specific support for simulated devices running
CVM requires an implementation work similar to the one performed for Sun SPOTs, namely,
writing the network-related code, the external operations of the run-time system, and the
intermediary code that executes CVM in the simulator. The component that exposes CVM
as a simulation element amounts to 900 lines of code. We performed a simulation of the
running example (Figures 3 and 4) for 10 minutes, but varied the amount of devices in the
network, as depicted in Table 1. The results were obtained with VisualSense 7.01 on a Linux
based PC with an Intel QuadCore 2.66GHz CPU and 3.4GB of RAM. Our experiments show
that the simulation duration grows polynomially while the memory footprint grows linearly.
We believe that simulation duration is not a critical factor, as one would expect to wait
for a few hours before having results for a 5000 node network. Moreover, an inspection of
the simulated application reveals that the number of messages flowing on the network grows
exponentially with the increase of the number of nodes.

5 CONCLUSION AND FUTURE WORK

In this paper we address the problem of providing WSN with programming languages that
minimise or even eliminate some types of run-time errors, aiming to simplify the debugging
and the deployment of applications. Our main argument is that this can be achieved by
carefully designing programming languages and their run-time systems, to be safe-by-design.
Accordingly, we design a language that enjoys type-safety. Well-typed programs in this
language cannot produce run-time errors due to misuse of component interfaces. Another
design principle we adopt is the specification of the language run-time system in such a
way that we can verify its soundness, i.e., that it preserves the operational semantics of the
language. Programs executed by this run-time system never misbehaves. A further design
principle, which is the subject of ongoing work, allows the proof that the language compiler
preserves the semantics of the programming language. These design principles eliminate
the major sources of subtle semantic errors from WSN applications and provide a typed
programming discipline that allows the premature detection of would-be run-time errors.

To demonstrate the feasibility of this approach we present a new programming language,
Callas, and show how it can be formalised in a precise way. Such a language, we have shown,
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is type-safe. Moreover, we provide a specification for the run-time and the compilation scheme
for the language. We use these definitions to prove that the run-time specification preserves
the language semantics.

We describe two SDKs for programming and deploying WSN applications, one targets real
life Sun SPOT devices, and the other is directed at simulated environments (via VisualSense).
We detail these two implementations of the language in the form of a compiler and two run-
time system (abstracted by CVM) that follow the formal definitions above.

In terms of future work, besides the ongoing work on the Callas compiler, we are interested
in developing higher level idioms for programming WSN (e.g. a macroprogramming language)
fully encoded in Callas. With the idea of making the run-time system safer, we intend to
incorporate types into CVM, making it reject programs that misbehave. Afterwards, we can
then use type-preserving compilation to retain the operational properties captured by types
from end-to-end.
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