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Abstract. The state complexity of a regular language is the number of states of its minimal
determinitisc finite automaton. The complexity of a language operation is the complexity of the
resulting language seen as a function of the complexities of the operation arguments. In this
report we review some of the results of state complexity of individual operations for regular
and some subregular languages.

1 State Complexity and Nondeterministic State Complexity

The state complexity of a regular language L, sc(L), is the number of states of its minimal DFA.
The nondeterministic state complexity of a regular language L, nsc(L), is the number of states of a
minimal NFA that accepts L.

Since a DFA is in particular an NFA, for any regular language L one has sc(L) ≤ nsc(L). It is well
known that anym-state NFA can be converted, via the subset construction, in an equivalent DFA with
at most 2m states [116] (we call this conversion determination). Thus, sc(L) ≤ 2nsc(L). To show that
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Fig. 1. Moore (i), Lupanov (ii), and Meyer & Fischer (iii) minimal m-state NFA’s with equivalent minimal
2m-state DFA’s

this upper bound is tight one must exhibit a family of languages (Lm)m≥1 such that nsc(Lm) = m
and sc(Lm) = 2m, for every m ≥ 1. In 1963, Lupanov [95] showed that this upper bound is tight using
a family of ternary languages. In 1971, Moore [107] and Meyer and Fischer [105] presented different
families of binary languages. All three families of NFA’s are represented in Figure 1. However, for
unary languages that upper bound is not achievable [96, 27, 28]. Chrobak [27, 28] proved that if L is



a unary language with nsc(L) = m, then sc(L) ≤ O(F (m)) where

F (m) = max{lcm(x1, . . . , xl) | x1, . . . , xl ≥ 1 and x1 + · · ·+ xl = m} (1)

is the Landau’s function and lcm denotes the least common multiple. It is known that F (m) ∈
O(eΘ

√
m lnm), so sc(L) = O(eΘ

√
m lnm). This asymptotic bound is tight, i.e., for every m there exists

a unary language Lm such that nsc(L) ≤ m and sc(Lm) = F (m − 1). Other related bounds were
studied by Meregethi and Pighizzini [104].

For a general finite language L, if nsc(L) = m then sc(L) = Θ(k
m

1+log k ) and this bound is
tight [129]. In the case of finite binary languages, Θ(2

m

2 ) is a tight bound. Mandl [98] had already
proved that, for any finite binary language L, if nsc(L) = m then sc(L) ≤ 2 · 2m/2 − 1 if m is even,
and sc(L) ≤ 3 · 2⌊m/2⌋ − 1 if m is odd, and these bounds are tight.

Finally, for finite unary languages, nondeterminism does not lead to significant improvements. If
L is a finite unary language with nsc(L) = m, then sc(L) ≤ m+ 1 [98].

The possible gap between state complexity and nondeterministic state complexity for general
regular languages lead to the notion of magic number introduced in 2000 by Iwama et al. [73, 74]. A
number α, such that α ∈ [m, 2m], ismagic form with respect to a given alphabet of size k, if there is no
minimal m-state NFA whose equivalent minimal DFA has α states. This notion has been extensively
researched in the last decade and has been extended to other gaps between two state complexity
values [78, 50, 49, 77, 82, 63]. We summarize here some of the results. The general observation is that,
apart from unary languages, magic numbers are hard to find. For binary languages, it was shown
that if α = 2m − 2n or α = 2m − 2n − 1, for n ∈ [0,m/2− 2] [73], and α = 2m − n for n ∈ [2, 2m− 2]
and some coprimality condition holds for n [74], then α is not magic. Also, for a binary alphabet, all
numbers α ∈ [m,m+2⌊m/3⌋] have been shown to be non-magic [80], which improves previous results,

[m,m2/2] [78] and [m, 2m
√

3

] [50]. For ternary or quaternary regular languages, and for languages
over an alphabet of exponential growing size there are no magic numbers [78, 77, 82]. For the unary

case, however, trivially all numbers between e(1+o(1))
√
m lnm and 2m are magic [96, 27, 49]. Moreover,

it has been shown that there are much more magic than non-magic numbers in the range from m to

e(1+o(1))
√
m lnm [49]. In the case of finite languages, partial results were obtained by Holzer et al. [63].

All numbers α ∈ [m+ 1, (m2 )
2 + m

2 + 1], if m even, and α ∈ [m+ 1, (m−1
2 )2 +m+ 1], if m is odd, are

non-magic. Moreover, all numbers of the form 3 · 2m

2
−1 + 2i − 1, if m is even, and 2

m+1

2 + 2i − 1, if
m is odd, for some integer i ∈ [1, ⌈m−1

2 ⌉] are non-magic.

1.1 State Complexity versus Quotient Complexity

Quotient complexity, introduced in 2009 by Brzozowski [10, 12], coincides, for regular languages, with
the notion of state complexity but it is defined in terms of languages and their (left) quotients. The
left quotient of a language L by a word w is defined as the language w−1L = {x ∈ Σ⋆ | wx ∈ L}. The
quotient complexity of L is the number of distinct languages that are left quotients of L by some word
(and is denoted by κ(L)). As it is well-known, for a regular language L, the number of left quotients is
finite and is exactly the number of states of the minimal DFA accepting L. So, in the case of regular
languages, state complexity and quotient complexity coincide. Considering that quotient complexity
is given in terms of languages, and their left quotients, some language’ algebraic properties can be
used in order to obtain upper bounds for the complexity of operations over languages. Actually, the
proof that the set of derivatives of a regular language is finite [9] was one of the earliest studies of state
complexity. Quotient complexity can also be useful to show that an upper bound is tight. If a given
operation can be expressed as a function of other operations (for example, L1 −L2 = L1 ∩L2), then,
witnesses for the complexity of those operations can be used to provide a witness for the complexity
of the first operation.

2 State Complexity of Individual Operations

The state complexity of an operation (or operational state complexity) on regular languages is the
worst-case state complexity of a language resulting from the operation, considered as a function of
the state complexities of the operands.



Adapting a formulation from Holzer and Kutrib [67], given a binary operation ◦, the ◦-language
operation state complexity problem can be stated as a decision problem:

– Given an m-state DFA A1 and an n-state DFA A2.
– How many states are sufficient and necessary, in the worst case, to accept the language L(A1) ◦

L(A2) by a DFA?

This formulation can be generalized for other operation arities, automata and languages.
Normally, an upper bound is obtained by providing an algorithm that, given the minimal complete

DFA’s for the operands, constructs a minimal complete DFA that accepts the resulting language. The
number of states of this minimal DFA (as a function of the state complexities of the operands) is
an upper bound for the state complexity of the referred operation. To show that an upper bound
is tight, for each operand a family of languages (one language, for each possible value of the state
complexity) must be given such that the resulting automata achieve that bound.

The same approach is used to obtain the nondeterministic state complexity of an operation on
regular languages.

No proofs are here presented for the stated results, although several examples of families of
languages, for which the operations achieve the given upper bound, are given.

There are very few results of the study of state complexity on the average case. However, whenever
some results are known they will be mentioned together with the worst-case analysis.

In this section, the following notation is used. When considering unary operations, let L be regular
language with sc(L) = m (nsc(L) = m) and let A = (Q,Σ, δ, q, F ) be the complete minimal DFA
(a minimal NFA) such that L = L(A). Furthermore, |Σ| = k or |Σ| = f(m) if a growing alphabet
is taken into account, |F | = f , and |F − {q}| = l. In the same way, for binary operations let L1

and L2 be regular languages over the same alphabet with sc(L) = m (nsc(L) = m) and sc(L2) = n
(nsc(L2) = n), and let Ai = (Qi, Σ, δi, qi, Fi) be complete minimal DFA’s (minimal NFA’s) such that
Li = L(Ai), for i ∈ [1, 2]. Furthermore, |Σ| = k or |Σ| = f(m,n) if a growing alphabet is taken into
account, |Fi| = fi, and |Fi − {qi}| = li, for i ∈ [1, 2].

2.1 Basic Operations

In this section we review the main results related with state complexity (and nondeterministic
state complexity) of some basic operations on regular languages: boolean operations (mainly union,
intersection, and complement), catenation, star (and plus), and reversal. For some languages, left and
right quotients are also considered. Because their particular characteristics, that were already pointed
out in Section 1, for each operation the languages are divided into regular (k ≥ 2 and infinite), finite
(k ≥ 2), unary (infinite) and finite unary. Whenever known, results on the range of complexities
that can be reached for each operation are also presented.

There are some survey papers that partially review the results here presented and that were a
reference to our presentation [138–140,71, 141, 128, 67, 10, 66].

General Regular Languages Table 1 summarizes the results for general regular languages. The
(fifth) third columns contains the smallest alphabet size of the witness languages for the (nondeter-
ministic) state complexity given in the (fourth) second column, respectively. Columns with this kind
of information will also appear in several tables to follow.

In 1994, Yu et al. [144] studied the state complexity of catenation, star, reversal, union, intersec-
tion, and left and right quotients. They also studied the state complexity of some operations for unary
languages. Before, in 1970, Maslov [99] had presented some estimates for union, catenation, and star.
Although Maslov considered possible incomplete DFA’s, and the paper has some incorrections, the
binary languages presented are tight witnesses for the upper bounds for that three operations [10].

Rabin and Scott [116] indicated the upper bound mn for the intersection (that also applies to
union). Maslov and Yu et al. gave similar witnesses of tightness, both for union and intersection.
The families of languages given by Yu et al. for intersection are {x ∈ {a, b} | #a(x) = 0 (mod m)}
and {x ∈ {a, b} | #b(x) = 0 (mod n)}. Their complements are witnesses for union. Hricko et al. [69]



Regular

sc |Σ| nsc |Σ|

L1 ∪ L2 mn 2 m+ n+ 1 2

L1 ∩ L2 mn 2 mn 2

L m 1 2m 2

(L1 − L2) mn 2

(L1 ⊕ L2) mn 2

L1L2
m2n − f12

n−1, if m ≥ 1, n > 1

m, if m ≥ 1, n = 1

2

1
m+ n 2

L⋆

2m−1 + 2m−l−1, if m > 1, l > 0

m, if m > 1, l = 0

m+ 1, if m = 1

2

1

1

m+ 1 2

L+ 2m−1 + 2m−l−1 − 1 2 m 2

LR 2m 2 m+ 1 2

L2 \ L1 2m − 1 2

L1 /L2 m 1

w−1L m 1 O(m+ 1)

Lw−1 m 1 m 1
Table 1. State complexity and nondeterministic state complexity for basic operations on regular languages

showed that for any integers m ≥ 2, n ≥ 2, and α ∈ [1,mn] there exist binary languages L1 and L2

such that sc(L1) = m, sc(L2) = n, and sc(L1 ∪ L2) = α. The same holds for intersection.
Complementation for DFA’s is trivial (one has only to exchange the final states) and thus,

the state complexity of the complement is the same one of the original language, i.e., sc(L) =
sc(L). For other boolean operations (set difference, symmetric difference, exclusive disjunction, etc.)
the state complexity can be obtained by expressing them as a function of union, intersection and
complement [10].

For catenation, Yu et al. gave the upper bounds m2n − f12
n−1, if m ≥ 1, n ≥ 2; and m, if

m ≥ 1, n = 1. They presented binary languages tight bound witnesses for m ≥ 1, n = 1 and
m = 1, n ≥ 2, but ternary languages tight bound witnesses for m > 1, n ≥ 2. But, for the following
binary language families presented by Maslov the bound is tight: {w ∈ {a, b}⋆ | #a(w) = (m − 1)
(mod m)} and L((a⋆b)n−2(a+ b)(b+a(a+ b))⋆), for all m,n ≥ 2 and f1 = 1. Other families of binary
languages for which the catenation achieves the upper bound were presented by Jirásková [79]. The
same author [81] proved that, for all m, n and α such that either n = 1 and α ∈ [1,m], or n ≥ 2
and α ∈ [1,m2n − 2n−1], there exist languages L1 and L2 with sc(L1) = m and sc(L2) = n, defined
over a growing alphabet, such that sc(L1L2) = α. Moreover, Jirásek et al. [76] showed that the upper
bound m2n − f12

n−1 on the catenation of two languages L1 and L2, with sc(L1) = m ≥ 2 and
sc(L2) = n ≥ 2 respectively, are tight for any integer f1 with f1 ∈ [1,m− 1]. The witness language
families are binary and accepted by the DFA’s presented in Figure 2.
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Fig. 2. Witness DFA’s for all range of state complexities of the catenation



The state complexity for the star on a regular language L was studied by Yu et al.. A lower bound
of 2m−1 was presented before by Ravikumar and Ibarra [120, 119]. If sc(L) = 1 then either L = Σ⋆,
and sc(L⋆) = 1, L = ∅, and sc(L⋆) = 2. If sc(L) = m > 1, but l = 0, i.e., the minimal DFA accepting
L has the initial state as the only final state, then sc(L⋆) = m, as L = L⋆. Finally, if sc(L) = m > 1,
and l > 0, then sc(L⋆) ≤ 2m−1+2m−l−1. The upper bound 2m−1+2m−2 is achieved for the language
{w ∈ {a, b} | #a(w) is odd}, if m = 2; if m > 2, for the family of binary languages accepted by the
DFA’s presented in Figure 2:(ii). We note that although the upper bound given by Maslov is incorrect
(342

m−1 instead of 3
42

m), the family of languages he presented are witnesses for the above bound (for
m > 2). Those languages are accepted by the DFA’s presented in Figure 3. Both DFA’s are shown in
Figure 3.
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Fig. 3. Maslov’s witness DFA’s for the state complexity of the star

Jirásková [80] proved the following theorem.

Theorem 1 For all integers m and α with either m = 1 and α ∈ [1, 2], or m ≥ 2 and α ∈ [1, 2m−1+
2m−2], there exists a language L over an alphabet of size 2m such that sc(L) = m and sc(L⋆) = α.

The state complexity for the plus on a regular language L (i.e., LL⋆) coincide with the one for
star in the first two cases, but for m > 1, l > 0 one state is saved (as a new initial state is not needed).

In 1966 Mirkin [106] pointed out that the reversal of the NFA’s given by Lupanov as an example
of a tight bound for determination (see Figure 1:(ii)), were deterministic. This yields that 2m is a
tight upper bound for the state complexity of reversal of a (at least ternary) language L such that
sc(L) = m. Leiss [94] studied also this problem and proved the tightness of the bound for another
family of ternary languages. Yu et al. presented also (independently) Lupanov example. Salomaa et
al. [127] studied several classes of languages where the upper bound is achieved. Nevertheless, a family
of binary languages therein presented as meeting the upper bound for m ≥ 5 was later shown not to
be so [83]. A family of binary languages for which the upper bound for reversal is tight was given by
Jirásková and Sěbej [88, 39] and their minimal DFA’s are represented in Figure 4.
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Fig. 4. Witness DFA’s for the state complexity of the reversal

In the paper cited above [80], Jirásková proved that,

Theorem 2 For all integers m ≥ 3 and α ∈ [logm, 2m], there exists a language L over an alphabet
of size 2m such that has sc(L) = m and sc(LR) = α. If sc(L) = 2 then sc(LR) can be 2, 3 or 4, and
if sc(L) = 1 then sc(LR) = 1.

Yu et al. showed that the state complexity for the left quotient of a regular language L1 by an
arbitrary language L2, L2 \ L1, is less or equal to 2m − 1, with sc(L1) = m, and that this bound



is tight for the family of binary languages given in Figure 2:(ii) and considering L2 = Σ⋆. In 1971,
Conway [29] had already stated that if L2 is a regular language then sc(L2 \L1) ≤ 2m. For the right
quotient of a regular language L1 by an arbitrary language L2 one has sc(L1/L2) ≤ m. The minimal
DFA accepting L1/L2 coincides with the one for L1, except that the set of final states is the set of
states q ∈ Q1 such that there exists a word of w ∈ L2 such that δ1(q, w) ∈ F1. The bound is tight for
L2 = {ε}. For the left and the right quotients of a regular language L by a word w ∈ Σ⋆ it is then
easy to see that sc(w−1L) = sc(Lw−1) ≤ m. As a family of languages for which the upper bound is
tight consider {al | l = 0 (mod m)} and w ∈ {a}⋆ [40].

The state complexity of basic operations on NFA’s was first studied by Holzer and Kutrib [64],
and also by Ellul [40]. We note that for state complexity purposes it is tantamount to consider NFA’s
with or without ε-transitions. NFA’s are considered with only one initial state and trimmed, i.e., all
states are accessible from the initial state and from all states a final state is reached.

For union, only a new initial state with ε transitions for each of the operands initial states is
needed, thus sc(L1 ∪ L2) ≤ m + n + 1. To see that the upper bound is tight, consider the families
(am)⋆ and (bn)⋆ over a binary alphabet. For intersection, a product construction is needed.

The nondeterministic state complexity of the complementation is, trivially, at most 2m. That
this upper bound is tight even for binary languages was proved by Jirásková [79], using a fooling-set
lower-bound technique [5, 52, 70]. Those languages are accepted by the NFA’s presented in Figure 5
(for m > 2).
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Fig. 5. Witness NFA’s for the nondeterministic state complexity of complementation

See Holzer and Kutrib [67] for other witness languages. Using the same techniques, Jirásková and
Szabari [76] proved the following theorem for languages over an alphabet of exponential growing size,
and that was improved to a five-symbol alphabet by Jirásková [80]:

Theorem 3 For all integers m ≥ 1 and α ∈ [logm, 2m], there exists a language L such that nsc(L) =
m and nsc(L) = α.

Mera and Pighizzini [103] proved a related best case result, i.e., for every m ≥ 2 there exists a
language L such that nsc(L) = m, nsc(L) ≤ m+ 1 and sc(L) = sc(L) = 2m. However, as we will see
below, this result does not hold if unary languages are considered.

The upper bound for the nondeterministic state complexity of catenation is m+n and this bound
can be reached considering the witness binary languages given for union. All the values α ∈ [1,m+n]
can be obtained as nondeterministic state complexity of catenation of unary languages [81].

For the plus of a regular language L, we have nsc(L+) ≤ nsc(L) = m: an NFA accepting L+

coincides with one accepting L except that each final state has also the transitions from the initial
state. In the case of the star, one more state can be needed (if L does not accept the empty word), i.e.,
sc(L⋆) ≤ m+1. Witness languages of the tightness of these bounds are {w ∈ {a, b}⋆ | #a(w) = (m−1)
(mod m)}. All range of values α ∈ [1,m+1] can be reached for the nondeterministic state complexity
of the star of binary languages [80].

For the reversal, at most one more state will be needed, so nsc(LR) ≤ m + 1. Witness ternary
languages were presented by Holzer and Kutrib, but the bound is tight even for the family of binary
languages which minimal NFA’s are presented in Figure 6 [79]. If nsc(L) = m ≥ 3 the possible values
for nsc(LR) are m−1, m or m+1 [80]. The first value is reached by the reversals of the above binary
languages and the second considering the languages {w ∈ {a, b}⋆ | |w| = 0 (mod m)}.

The nondeterministic state complexity of left and right quotients were studied by Ellul [40]. Given
a minimal NFA A1 = (Q,Σ, δ, q0, F ) accepting L, an NFA C accepting Lw−1, for w ∈ Σ, coincides



0 1 m− 2· · · m− 1
a a a a

b

Fig. 6. Witness NFA’s for the nondeterministic state complexity of reversal

with A1 except that the set of final states is {q ∈ Q | δ(q, w) ∩ F 6= ∅}. Thus nsc(Lw−1) ≤ nsc(L).
The witness languages used for the state complexity of right quotient show that the bound is tight.
An upper bound for nsc(w−1L) can be obtained by considering an NFA C with one new initial state
q′0 and ε-transitions from q′0 to each state of A1 reached when inputing w.

Unary Regular Languages Table 2 presents the main state complexity results of the basic
operations on unary languages. Given the constraints on both DFA’s and NFA’s over a one symbol
alphabet, and the results presented in Section 1, the state complexity for several operations on unary
languages is much lower than what is predicted by the general results of state complexity.

average case Some results on the average case state complexity of operations on unary languages
were presented by Nicaud [108, 109].

Unary Regular

sc nsc asc

L1 ∪ L2 ∼ mn m+ n+ 1, if m 6= ṅ ∼
3ζ(3)

2π2
mn

L1 ∩ L2 ∼ mn mn, if (m,n) = 1 ∼
3ζ(3)

2π2
mn

L m eΘ(
√
m logm)

(L1 − L2) mn

(L1 ⊕ L2) mn

L1L2 ∼ mn
[m+ n− 1,m+ n],

if m,n > 1
O(1), n < P (m)

L⋆ (m− 1)2 + 1,
if m > 1, l > 1

m+ 1, if m > 2 O(1)

L+ (m− 1)2 m, if m > 2

LR m m

w−1L m m

Lw−1 m m
Table 2. State complexity, nondeterministic state complexity and average state complexity of basic operations
on unary languages. The upper bounds of state complexity for union, intersection and catenation are exact
if (m,n) = 1. For the average state complexity of intersection and union, ζ(n) is the function ζ of Riemman.
For the average state complexity of catenation, n must be bounded by a polynomial P in m.

A DFA that accepts a unary language is characterized by a noncyclic part (the tail) and a cyclic
part (the loop). A characterization and the enumeration of minimal unary DFA’s was given by
Nicaud [108].

The state complexity of the reversal of a unary language L is trivially equal to the state complexity
of L. For the boolean operations, the state complexity coincides asymptotically with the one for gen-
eral regular languages. Yu [139] shown that the bound was tight for union (and thus, for intersection)
if m and n are coprimes and the witness languages are (am)⋆ and (an)⋆. The state complexity of
catenation and star was proved by Yu et al. [144] and the tightness for the first was also shown for
m and n coprimes. The witnesses for the catenation are (am)⋆am−1 and (an)⋆an−1. For the star, if
m = 2 a witness is (aa)⋆, and for each m > 2 a witness is (am)⋆am−1. The state complexity when m
and n are not necessarily coprimes was studied by Pighizzini and Shallit [114, 113]. In this case, the



tight bounds are given by the number of states in the tail and in the loop of the resulting automata.
The state complexity for left and right quotient by a word on unary languages coincides with the
general case.

Nicaud [108, 109] proved that the state complexity of union, intersection and catenation on two
languages L1 and L2 is asymptotically equivalent to mn., where m = sc(L1) and n = sc(L2).

Let Un be the set of unary (complete and initially connected) DFA’s with n states. The average
state complexity (asc) of a binary operation ◦ on regular languages is given by

∑

A1×A2∈Um×Un

sc(L(A1) ◦ L(A2))

|Um × Un|

This definition can be generalized to other operation arities, automata and languages. As shown in
Table 2, the average state complexity of catenation and star on unary languages are bounded by a

constant, and for intersection (and union) note that 3ζ(3)
2π2 ≈ 0.1826907423.

The nondeterministic state complexity of basic operations on unary languages was studied by
Holzer and Kutrib [65], and also by Ellul [40]. For union and intersection, the upper bound coincides
with the general case. However, it was proved to be achievable for union if m is not a divisor or
multiple of n. As in the deterministic case, the witnesses for intersection are (am)⋆ and (an)⋆, if
m and n are coprimes. The nondeterministic state complexity of the complementation is O(F (m))
(where F is the Landau’s function of equation (1)), which is directly related with the state complexity
of determination. Holzer and Kutrib [65] proved that this upper bound is tight in order of magnitude:

Theorem 4 For any integer m > 1 there exists a unary language L such that nsc(L) = m and
nsc(L) = Ω(F (m)).

Moreover, Mera and Pighizzini [103] shown that for each m ≥ 1 and unary language L, such that

nsc(L) = m and sc(L) = sc(L) = eO(
√

m logm), then nsc(L) ≥ m.
The upper bound m+ n for the catenation of two unary languages is not know to be tight. The

known lower bound is m + n − 1 achieved by the catenation of {al | l = m − 1 (mod m)} and
{al | l = (n− 1) (mod n)} [65]. The same languages can be used to show the tightness of the bound
m+ 1 for the star (and the plus) operation.

For the left and right quotients, notice that in the unary case w−1L = Lw−1, and the results for
the general case apply.

Finite Languages Finite languages are an important subset of regular languages. They are accepted
by complete DFA’s that are acyclic apart from a loop on the sink (or dead) state, for all alphabetic
symbols. Minimal DFA’s have also special graph properties that lead to a linear time minimisation
algorithm [121], and the length of the longest word accepted plays an important role.

Table 3 shows that the (nondeterministic) state complexity of operations on finite languages are,
in general, lower than in the general case.

Câmpeanu et al. [22] presented the first formal study of state complexity of operations on finite
languages. Yu [139] presented upper bounds of O(mn) for the union and the intersection. The tight
upper bounds were given by Han and Salomaa [59] using growing size alphabets. The upper bound
for union and intersection cannot be reached with a fixed alphabet when m and n are arbitrarily
large. Câmpeanu et al. gave tight upper bounds for catenation, star and reversal. For catenation the
bound (m− n+ 3)2n−2 − 1 is tight for binary languages if m+ 1 ≥ n > 2. The DFA’s of the witness
languages are presented in Figure 7.

For star, Câmpeanu et al. shown that the bound 2m−3 +2m−4 is tight for ternary languages. The
tight upper bound for the reversal of a finite binary language is 3 · 2p−1 − 1 if m = 2p, and 2p−1 − 1
if m = 2p− 1.

Nondeterministic state complexity of basic operations on finite languages were studied by Holzer
and Kutrib [64]. Minimal NFA’s accepting finite languages without the empty word can be assumed
to have only a final state (with no transitions); and if the empty word is in the language, the initial



Finite

sc |Σ| nsc |Σ|

L1 ∪ L2 mn− (m+ n) f(m,n) m+ n− 2 2

L1 ∩ L2 mn− 3(m+ n) + 12 f(m,n) mn 2

L m 1 Θ(k
m

1+log k ) 2

(L1 − L2)

(L1 ⊕ L2)

L1L2
O(mnf1−1 + nf1), if l1 > 1

m+ n− 2, if l1 = 1

2

1
m+ n− 1 2

L⋆ 2m−3 + 2m−l−2, l ≥ 2, m ≥ 4

m− 1, if f = 1

3

1
m− 1, m > 1 1

L+ m 1 m, m > 1 1

LR O(k
m

1+log k ) 2 m 2

L2 \ L1

L1/L2

Table 3. State complexity and nondeterministic state complexity of basic operations on finite languages

0 1 · · · m− 2 m− 1
a, b a, b a, b a, b

a, b

0 1 · · · m− 2 m− 1
b

a

a, b a, b a, b

a, b

Fig. 7. Witness DFA’s for the state complexity of catenation on finite languages

state is also final. Because there are no cycles, for the union of two finite languages three states can
be avoided: no new initial state is need, and the initial states and the final states can be merged. The
upper bound m + n − 2 is tight for the languages am−1 and bn−1, for m,n ≥ 2. In the case of the
intersection, the upper bound coincides with the general case, and it is tight for the binary languages
{w ∈ {a, b}⋆ | #a(w) = 0 (mod m)} and {w ∈ {a, b}⋆ | #b(w) = 0 (mod n)}. Considering the upper
bound of determination for finite languages, the nondeterministic state complexity for complement
is bounded by O(k

m

1+log k ). The tight bound Ω(k
m

2 log k ) is reached for alphabets Σ = {a1, . . . , ak} of
size k ≥ 2, and the languages Σja1Σ

iy, where i ≥ 0, 0 ≤ j ≤ i, y ∈ Σ \ {a1}, and m > 2.

For catenation of finite languages represented by NFA’s, one state can be saved. Witness languages
for the tightness of the bound m + n − 1 can be the ones used for union. Two states are also saved
for the star, and for plus the nondeterministic state complexity coincides with the one for the general
case. Witness languages are am and am−1, respectively.

NFA’s for the reversal are exponentially more succinct then DFA’s. In the case of finite languages,
and like other operations, one state can be spared. Witness languages are {a, b}m−1.

Finite Unary Languages Table 4 summarizes the state complexity and nondeterministic state
complexity results of basic operations on finite unary languages [22, 139, 65]. State complexity of
union, intersection and catenation on finite unary languages are linear, while they are quadratic for
general unary languages. In this setting, nondeterminism is only relevant for the star (and plus),
as unary regular languages are obtained. As already stated, for a finite unary language L, one has
sc(L) ≤ nsc(L) + 1, and sc(L) − 2 is the length of the longest word in the language. If a operation
preserves finiteness, for state complexity only the longest words must be considered.



Finite Unary

sc nsc

L1 ∪ L2 max{m,n} max{m,n}

L1 ∩ L2 min{m,n} min{m,n}

L m m+ 1

(L1 − L2) m

(L1 ⊕ L2) max{m,n}

L1L2 m+ n− 2 m+ n− 1

L⋆

2, if m = 3
m− 1, if f = 1

m2 − 7m+ 13, if m > 4, f ≥ 3
m− 1

L+ m m

LR m m
Table 4. State complexity and nondeterministic state complexity of basic operations on finite unary languages

2.2 Other Regularity Preserving Operations

Table 5 presents the results for the state complexity of some regularity preserving operations, that
are detailed in the next paragraphs.

Proportional removals
Proportional removals preserving regularity were studied by Hartmamis [136] and were full char-

acterized by Seiferas and McNaughton [132]. For any binary relation r ⊆ N × N and any language
L ⊆ Σ⋆, let the language P (r, L) be defined as

P (r, L) = {x ∈ Σ⋆ | ∃y ∈ Σ⋆ such that xy ∈ L ∧ r(|x|, |y|)}.

A relation r is regularity-preserving if P (r, L) is regular for every regular language L. Seiferas and
McNaughton [132] gave sufficient and necessary conditions of regularity preservation in this context.

For the special case where r is the identity, the correspondent language is denoted by 1
2 (L).

Domaratzki [36] proved that for a regular language L, sc(12 (L)) = O(sc(L)F (sc(L))) (where F is the
Landau’s function of equation (1)) and this bound is tight for ternary languages. In the case of L be
a unary language, one gets sc(12 (L)) = sc(L). Following Nicaud’s work on average case complexity,
mentioned above, Domaratzki showed that the average state complexity of the 1

2 (·) operation on a
m-state unary automaton is asymptotically equivalent to 5

8m+ c, for some constant c.
Domaratzki also studied the state complexity of polynomial removals:

Theorem 5 [36] Let f ∈ Z[x] be a strictly monotonic polynomial such that f(N) ⊂ N. Then the
relation rf = {(n, f(n)) | n ≥ 0} preserves regularity, and sc(P (rf , L)) ≤ O(sc(L)F (sc(L))).

In 1970, Maslov [99] had already studied the language p
q (L), i.e., a language P (r, L) such that r is

defined by {(m,n) | mq = pn} with p, q ∈ N. An open problem is to obtain the state complexity of
P (r, L) where r belongs to the broader class of regularity preserving relations studied by Seiferas and
McNaughton.

Power
Given a regular language L and i ≥ 2, an upper bound of the state complexity of the language

Li is given by considering the state complexity of catenation. However, a tight upper bound is
obtained if these operations is studied individually. Domaratzki and Okhotin [37] proved that sc(Li) =
Θ(m2(i−1)m), for i ≥ 2. The bound is tight for a family of languages over a six-symbol alphabet. In
the case i = 3, sc(L3) = 6m−3

8 4m − (m − 1)2m − m, for m ≥ 3, and the tightness is witnessed by
a family of languages over a four-symbol alphabet. The nondeterministic state complexity of Li is
proved to be mi. This bound is shown to be tight over a binary alphabet, for m ≥ 2. The power of
unary languages was studied by Rampersad [117]. If L is a unary language with sc(L) = m ≥ 2, then
sc(Li) = im+ i+ 1.



Regular

sc |Σ| nsc |Σ|

1
2
(L)

meΘ(
√
m logm)

m

3
1

Li

L3

Θ(m2(i−1)m)

im+ i+ 1
6m−3

8
4m−(m−1)2m−m

6

1

4

mi 2

LCS

2m
2+m logm−O(m)

2Θ(m2)

m

4

2,3

1

1, if m = 1

2m2 + 1, if m ≥ 2

m

2

1

L1 � L2 O(2mn − 1) 5 O(mn) 5

L1 ⊙⊥ L2
m2n−1 − 2n−2,
if m ≥ 3, n ≥ 4

4 m+ n 2

Unique Regular Operations

L1

◦
∪ L2 mn 2

L1 ◦ L2 O(m3n − f13
n−1) ≥ 2O(h)

L◦2 m3m − 3m−1 2

L◦ O(3m−1 + (f + 2)3m−f−1

−(2m−1 + 2m−f−1 − 2))
Table 5. State complexity and nondeterministic state complexity of some regularity preserving operations:
proportional removals for the identity relation ( 1

2
(L)); powerLi where i ≥ 2; cyclic shift LCS ; shuffle L1�L2;

orthogonal catenation L1 ⊙⊥ L2; unique operations: for unique star L◦, ε /∈ L; for the nondeterministic state
complexity of L1 ◦ L2, the combined state complexity of L1 and L2 is O(h).

Cyclic Shift
The cyclic shift of a language L is defined as LCS = {vu | uv ∈ L}. Maslov [99] gave an

upper bound of (m2m − 2m−1)m for the state complexity of cyclic shift and an asymptotic lower

bound of (m− 3)m−3 · 2(m−3)2 , by considering languages over a growing alphabet (if complete DFA’s
are considered). Jirásková and Okhotin [85] reviewed and improved Maslov results. Using a fixed
four-symbol alphabet, they obtained a lower bound of (m − 1)! · 2(m−1)(m−2), which shows that

sc(LCS) = 2m
2+m logm−O(m) for alphabets of size greater than 4. For binary and ternary languages,

they proved that the state complexity is 2Θ(n2). As this function grows faster than the number of
DFA’s for a given m, there must exist some magic numbers for the state complexity of the cyclic shift
over languages of a fixed alphabet.

The nondeterministic state complexity of this operation was shown to be 2m
2

+ 1, for m ≥ 2,
and the upper bound is tight for binary languages. Although the hardness of this operation on the
deterministic case, its nondeterministic state complexity is relatively low. For a unary language L, as
LCS = L, one gets sc(LCS) = nsc(LCS) = sc(L).

Shuffle
The shuffle operation of two words w1, w2 ∈ Σ⋆ is defined by

w1 � w2 = {u1v1 . . . umvm |
ui, vi ∈ Σ⋆, i ∈ [1,m], w1 = u1 . . . um and w2 = v1 . . . vm}.

This operation is extended trivially to languages. If two regular languages are regular their shuffle
is also a regular language. Câmpeanu et al. [24] obtained that the state complexity of the shuffle of
two regular languages L1 and L2 is less or equal to 2mn− 1. They proved that this bound is tight for
witness languages over a five symbols alphabet and if minimal incomplete DFA’s are considered (see
Figure 8). Thus, sc(L1� L2) is at least 2

(sc(L1)−1)(sc(L2)−1).
Various restrictions and generalizations of the shuffle operation have been studied. Mateescu

et al. [101] introduced the shuffle operation of two languages L1 and L2 on a set of trajectories
T ⊆ {0, 1}⋆, L1 �T L2. When L1, L2, and T are regular languages L1 �T L2 is a regular language.



0 1 · · · m− 1

d d, f d, f

a, c a, c a, c

a

0 1 · · · m− 1

c c, f c, f

b, d b, d b, d

b

Fig. 8. Incomplete DFA’s for the tight upper bound of state complexity of shuffle.

In particular, if T = {0, 1}⋆, then L1�T L2 = L1�L2; and if T = {0}⋆{1}⋆, then L1�T L2 = L1L2.
Domaratzki and Salomaa [38] studied the state complexity of the shuffle on regular trajectories. In
general, sc(L1 �T L2) ≤ 2nsc(L1)nsc(L2)nsc(T ). If T belongs to special families of regular languages,
tight bounds were also presented.

Orthogonal Catenation A language L is the orthogonal catenation of L1 and L2, and denoted by
L = L1 ⊙⊥ L2, if every word w of L can be obtained in just one way as a catenation of a word of L1

and a word of L2. If catenation uniqueness is not verified for every word of L, orthogonal catenation
of L1 and L2 is undefined, otherwise L1 and L2 are orthogonal. Daley et al. [32, 33] studied the state
complexity of orthogonal catenation and generalized orthogonality to other operations. Although it
is a restricted operation, its state complexity is only half of the one for the general catenation, i.e.,
m2n−1 − 2n−2 for m ≥ 3 and n ≥ 4. The tight bound was obtained for languages over a four-symbol
alphabet. Concerning nondeterministic state complexity, one has nsc(L1⊙⊥L2) = nsc(L1)+nsc(L2),
which coincides with the one for (general) catenation. Witness languages presented for the catenation
are orthogonal (see page 7), thus apply to orthogonal catenation.

Unique Regular Operations Similar to orthogonality is the concept of unique operation introduced
by Rampersad et al. [118]. However, instead of demanding that every pair of words of the operand
languages lead to a distinct word on the resulting language, the language resulting from a unique
operation only contains the words that are uniquely obtained through the given operation. Rampersad
et al. studied several properties of unique operations and of their poly counterpart (i.e. where
each resulting word must be obtained in more than one way), such as closure, ambiguity, and
membership and non-emptiness decision problems. Results on state complexity and nondeterministic

state complexity where obtained for unique union (L1

◦∪ L2), unique catenation (L1 ◦ L2), unique

square (L ◦ L = L◦2), and unique star (L◦). The state complexity of L1

◦∪ L2 is mn, and witness
binary languages are {x ∈ {a, b} | #a(x) = (m − 1) (mod m)} and {x ∈ {a, b} | #b(x) = (n − 1)
(mod n)}, for m,n ≥ 3 (that were also used by Maslov [99] for general union). For unique catenation,
sc(L1 ◦ L2) ≤ m3n − f13

n−1 which is much higher than the one for general catenation. It is an open
problem to know if this bound is tight, although several examples, for specific values of m and n,
were presented. However, for the unique square sc(L◦2) = m3m − 3m−1, and the bound is tight for
binary languages and m ≥ 3. For the nondeterministic state complexity of unique concatenation a
exponential lower bound was provided. An upper bound for the state complexity of the unique star
is 3m−1 + (f + 2)3m−f−1 − (2m−1 + 2m−f−1 − 2). But, again, it is an open problem to know if this
upper bound is tight.

2.3 Other Subregular Languages

Besides finite and unary languages, several other subregular languages are used in many applications
and are now theoretically well studied. Prefix-free or suffix-free languages are examples of codes that
are fundamental in coding theory [4, 89]. Prefix-closed, factor-closed, or subword-closed languages were
studied by several authors [58, 137, 34, 51]. These languages belong to a boarder set of languages,



the convex languages, for which a general framework have been recently addressed by Ang and
Brzozowski [1] and Brzozowski et al. [20]. A detailed survey on complexity topics was presented
by Brzozowski [11]. Partially based on that survey, here we summarize some of the results concerning
the state complexity of preserving regularity operations over some of the convex subregular languages.

Star-free languages are other family of subregular languages well studied [102, 131]. We will briefly
address recent results on the state complexity of basic regular operations on these languages.

Convex Subregular Languages We begin by some definitions and results on determination for
these languages.

Let E be a partial order on Σ⋆, and let D be its converse. A language L is E-convex if uE v and
v E w with u,w ∈ L implies v ∈ L. It is E-free if v E w and w ∈ L implies v /∈ L. It is E-closed if
vEw and w ∈ L implies v ∈ L. It is D-closed if v Dw and w ∈ L implies v ∈ L. The closure and the
converse closure operations are:

EL = {v | v E w for some w ∈ L},

LE = {v | w E v for some w ∈ L}.

The freeness operation, LE can defined for a language L, by

LE ⊆ L and ∀w ∈ LE, ∀v ∈ Σ⋆, v ⊳ w implies v /∈ LE.

The following proposition is from [1], except for the last item.

Proposition 1 Let E be an arbitrary relation on Σ⋆. Then

1. A language is E-convex if and only if it is D-convex.
2. A language is E-free if and only if it is D-free.

3. Every E-closed language and every D-closed language is E-convex.
4. A language is E-closed if and only if its complement is D-closed.

5. A language L is E-closed (D-closed) if and only if L =E L (L = LE).
6. A language L is E-free if and only if L = LE.

We consider E to be:

– ≤: if u, v, w ∈ Σ⋆ and w = uv, then u is prefix of w, and we write u ≤ w.
– �: if u, v, w ∈ Σ⋆ and w = uv, then v is suffix of w, and we write v � w

– ⊑: if u, v, w ∈ Σ⋆ and w = uxv, then x is factor of w, and we write x ⊑ w. Note that a prefix or
suffix of w is also a factor of w. This relation is also called infix.

– ⋐: if w = w0a1w1 · · · anwn, where a1, . . . , an ∈ Σ, and w0, . . . , wn ∈ Σ⋆, then v = a1 · · · an is a
subword of w; and we write v ⋐ w. Note that every factor of w is a subword of w.

If a language is both prefix- and suffix-convex it is bifix-convex. In the same way are defined
bifix-free and bifix-closed languages.

Ideals are languages directly related with closed languages. A non-empty language L ⊆ Σ⋆ is a

– right ideal if L = LΣ⋆ (also called ultimate definite [111]); the complement is prefix converse-
closed.

– left ideal if L = Σ⋆L (also called reverse ultimate definite [111]); the complement is suffix converse-
closed.

– two-sided ideal if L = Σ⋆LΣ⋆ (also called central definite); the complement is bifix converse-
closed.

– all-sided ideal if L = Σ⋆�L; the complement is subword converse-closed; also studied by Haines
[58] and Thierrin [137].



Free

≤ |Σ| � |Σ| ⊑ |Σ|

2m−1 + 1 3 2m−1 + 1 3 2m−2 + 2 3

]m, 2m−1 + 1] ]m, 2m−1 + 1] ]m, 2m−2 + 2]

Closed

≤ |Σ| � |Σ| ⊑ |Σ|

2m 3 2m−1 + 1 4 2m−1 + 1 4

]m, 2m] [m, 2m−1 + 1] ]m, 2m−1 + 1]

Ideal

right |Σ| left |Σ| two-sided |Σ|

2m−1 2 2m−1 + 1 3 2m−2 + 1 3
Table 6. State complexity of determination of free, closed and ideal languages considering prefix, suffix and
factor partial orders, respectively. For each free and closed of languages, the range of correspondent non-magic
numbers appears on the second row.

Some of the languages defined above are also characterized in terms of properties of the finite
automata that accept them. In particular: prefix-closed languages are accepted by NFA’ s where all
states are final; suffix-closed languages are accepted by NFA’s where all states are initial; factor-
closed languages are accepted by NFA’s where all states are initial and final; prefix-free languages
are accepted by non-exiting NFA’s (i.e. there are no transitions from the final states); suffix-free
languages are accepted by non-returning NFA’s (i.e. there are no transitions to the initial state); and
factor-free languages are accepted by non-returning and non-exiting NFA’s.

The state complexity of the determination on some subregular languages (or for the kind of NFA’s
they are defined by) was recently studied by Bordihn et al. [8], Jui-Yi Kao et al. [90], and Jirásková
et al. [83]. Table 6 presents some of the values for the languages considered above. The existence of
magic numbers for some subregular languages was studied by Holzer et al. [63]. As can be seen in
Table 6, m is the only magic number for all free languages and for both prefix- and factor-closed
languages (except if m = 1, where m is non-magic). Suffix-closed languages have no magic numbers.

Prefix-free

sc |Σ| nsc |Σ|

L1 ∪ L2 mn− 2 2 m+ n 2

L1 ∩ L2 mn− 2(m+ n− 3) 2 mn− (m+ n) + 2 1

L m 1 2m−1 3

(L1 − L2) mn−m− 2m + 4 3 (m− 1)2n−1 + 1 4

(L1 ⊕ L2) mn− 2 2

L1L2 m+ n− 2 1 m+ n− 1 1

L⋆ m
m− 2

2
1

m 1

L+

LR 2m−2 + 1 3 m 1

L2 \ L1

L1/L2

LCS (2m− 3)m−2 6 2m2 − 4m+ 3 2
Table 7. State complexity and nondeterministic state complexity of some operations on prefix-free languages

Free languages Table 7 summarizes state complexity results of individual operations on prefix-free
languages [62, 83, 16]. In the case of state complexity, the results are valid for boolean operations if
m,n ≥ 3; for catenation if m,n ≥ 2; for star if k = 1, then m ≥ 3, if k = 2 then m 6= 3, and else
m ≥ 2; and for star if m ≥ 4 and the tight bound cannot be reached if k = 2 [83]. Note that the state
complexity of the catenation and the star are much lower than on general regular languages.



Suffix-free

sc |Σ| nsc |Σ|

L1 ∪ L2 mn− (m+ n− 2) 2 m+ n− 1 2

L1 ∩ L2 mn− 2(m+ n− 3) 2 mn− (m+ n− 2) 2

L

L1 − L2 mn− (m+ 2n− 4) 4

L1 ⊕ L2 mn− (m+ n− 2) 5

L1L2 (m− 1)2n−2 + 1 4

L⋆ 2m−2 + 1 4

LR 2m−2 + 1 3
Table 8. State complexity and nondeterministic state complexity of some operations on suffix-free languages

Table 8 summarizes the state complexity of some regular operations on suffix-free languages. Han
and Salomaa showed that all bounds, except for difference and symmetric difference, were tight [60,
61]. Jirásková and Olejár [87] provided binary witnesses for intersection and union. They also proved
that for all integer α between 1 and the respective bound there are languages L1 and L2 such that
(n)sc(L1 ◦ L2) = α, for ◦ ∈ {∩,∪} (and witnesses are all ternary, except for L1 ∩ L2 for which
they are over a four-symbol alphabet). The bounds for difference and symmetric difference are from
Brzozowski and Jirásková [16].

Free

≤ ∪ � ⊑ ⋐

sc |Σ|

L1 ∪ L2 mn−m− n 5 5 ≥ m+ n− 3

L1 ∩ L2 mn− 3m− 3n+ 12, m,n ≥ 4 3 3 m+ n− 7

L1 − L2 mn− 2m− 3n+ 9 4 4 ≥ m+ n− 6

L1 ⊕ L2 mn−m− n 5 5 m+ n− 3

L1L2 m+ n− 2, m,n > 1 1 1 1

L⋆ m− 1, m > 2 2 2 2

LR 2m−3 + 2, m ≥ 3 2 2 2m−3 − 1
Table 9. State complexity of basic operations on bifix-, factor-, and subword-free languages

If a language is subword-free then it is factor-free, and if it is factor-free then it is bifix-free.
Table 9 summarizes the state complexity of some regular operations on bifix-, factor-, and subword-
free languages [16]. The tight upper bounds for the state complexity of these operations on the three
classes of languages coincide.

Closed Languages and Ideals Table 10 shows the state complexity results of some basic operations
on prefix-, suffix-, factor-, and subword-closed languages [17]. A language is factor-closed if and only
if it is subword-closed. So the state-complexity results of operations are the same for those classes.
The state complexity of the closure on the respective partial orders is also considered. Subword
and converse subword closures were first studied by Gruber and Holzer [56, 57] and Okhotin [110].
Brzozowski and Jirásková presented the tight upper bound. Given a regular language L with sc(L) =
m, nsc(⋐L) = nsc(L⋐) = m and these upper bounds are tight for witness binary languages.

If L is a right (respectively, left, two-sided, all-sided) ideal, any language G ⊆ Σ⋆ such that
L = GΣ⋆ (respectively, L = Σ⋆G, L = Σ⋆GΣ⋆,L = Σ⋆�G) is a generator of L.

Prefix, suffix, and factor closures (respectively, ≤L, �L, and ⊑L) were studied by Kao et al. [90].
Brzozowski and Jirásková [15] studied state complexity on ideals. Table 11 presents the state

complexity of basic operations on ideals. As stated before closed languages and ideals are related. In
particular, the state complexity of basic operations on two-sided and all-sided ideals coincide.
Brzozowski [11] observed that for the four types of convex languages (prefix, suffix, factor and
subword) the state complexity of the boolean operations is mn.



Closed

≤ |Σ| � |Σ| ⊑,⋐ |Σ|⊑ |Σ|⋐
L1 ∪ L2 mn 4 mn 2 mn 2 2

L1 ∩ L2 mn−m−
n+ 2

2 mn 2 mn−m−
n+ 2

2 2

L1 − L2 mn−n+1 2 mn 4 mn−n+1 2 2

L1 ⊕ L2 mn 2 mn 2 mn 2 2

L1L2 m2n−2 +
2n−2

3 mn− fn+ f 2 m+ n− 1 3 2

L⋆ 2m−2 + 1 3 m 2 2 2 2

LR 2m−1 2 2m−1 + 1 3 2m−2 + 1 3 2m

EL m 1 2m−1 2 2m − 1 2

⋐L 2m−2 + 1 m− 2
Table 10. State complexity of some operations on prefix-, suffix-, factor-, and subword-closed languages. The
last two columns correspond to factor and subword, respectively. The last but one row contains the state
complexity of the closure of prefix, suffix, and factor respectively. The last row contains state complexity of
the subword closure.

Ideal

right |Σ| left |Σ| -sided |Σ|two |Σ|all
L1 ∪ L2 mn−m−n+2 2 mn 4 mn−m−n+2 2 2

L1 ∩ L2 mn 2 mn 2 mn 2 2

L1 − L2 mn−m+1 2 mn 4 mn−m+1 2 2

L1 ⊕ L2 mn 2 mn 2 mn 2 2

L1L2 m+2n−2 1 m+n−1 1 m+n−1 1 3

L⋆ m+ 1 2 m+ 1 2 m+ 1 2 2
If ε ∈ L, then L = Σ⋆ and sc(L⋆) = 1.

LR 2m−1 2 2m−1 + 1 3 2m−2 + 1 3 2m−4

Table 11. State complexity of basic operations on ideals. The last two columns correspond to two-sided and
all-sided ideals, respectively.

Unary convex languages In the case of unary languages, prefix, suffix, factor, and subword partial
orders coincide. Table 12 summarizes the state complexity of basic operations on unary free, unary
closed, unary ideals and unary convex languages.

Freeness Operations Here we analyse the state complexity of freeness operations for prefix, suffix,
bifix and factor orders that were studied by Pribavkina and Rodaro [115]. Given a regular language
L, the E-free language LE for E ∈ {≤,�,⊑}, is respectively 1:

– prefix: L≤ = L− LΣ+

– suffix: L� = L−Σ+L
– factor: L⊑ = L− (Σ+LΣ⋆ ∪Σ⋆LΣ+)

The bifix operation is defined by Lb = L≤ ∩ L�. If L is an ideal, prefix, suffix and factor operations
were studied by Brzozowski and Jirásková [15]. In this case, the resulting languages are minimal
generators for left, right and two sided ideals, respectively. Table 13 presents the state complexity of
prefix, suffix, factor and bifix operations on regular languages (and correspondent ideals). The state
complexity of this operations is much lower in the case of right and two-sided ideals than for general
regular languages.

Star-free languages Star-free languages are the smallest class containing the finite languages and
closed under boolean operations and catenation. This class of languages correspond exactly to the

1 In [115] the superscripts for prefix, suffix and factor operations were respectively p, s and ι.



Unary

Free Closed Ideal Convex

L1 ∪ L2 max{m,n} max{m,n} min{m,n} max{m, n}

L1 ∩ L2 m = n min{m,n} max{m,n} max{m, n}

L1 − L2 m m n max{m, n}

L1 ⊕ L2 max{m,n} max{m,n} max{m,n} max{m, n}

L1L2 m+ n− 2 m+ n− 2 m+ n− 1 m+ n− 1

L⋆ m− 2 2 m− 1 n2 − 7n+ 13

LR m m m m
Table 12. State complexity of basic operations on unary convex languages

Regular Ideal

sc |Σ| sc |Σ|

L≤ m+ 1 2 m+ 1 2

L� (m− 1)2m−2 + 2, m ≥ 4 4 n(n−1)
2

+ 2 1

L⊑ (m− 2)2m−3 + 3, m ≥ 4 3 n+ 1 1

Lb (m− 2)2m−2 + 3, m ≥ 4 4
Table 13. State complexity of prefix, suffix, factor and bifix operations on regular languages and on ideals
(right, left and two sided, respectively).

regular languages of star height 0. The minimal DFA’s of star-free languages are permutation-free
(i.e. no word performs a non-trivial permutation of a subset of its states). Bordhin et al. [8] showed
that the state complexity of the determination of a star-free language L is 2nsc(L). Figure 9 presents a
family of ternary NFA’s for which the bound is tight. Holzer et al. [63] showed that star-free languages
have no magic numbers.

0 1 2 · · · m− 1

b, c

a, b

b

a, c

b

a, c a, c

b

Fig. 9. Minimal m-state NFA’s with equivalent minimal 2m-state DFA for star-free languages

Brzozowski and Liu [19] studied the state complexity of the basic regular operations on star-free
languages, and their results are summarized in Table 14. The bounds obtained for general regular
languages are reached except in the catenation for n = 2, the reversal, and operations on unary
languages.

2.4 Some more results

Here we briefly cite some more work on operational state complexity. Câmpeanu and Ho [21] and Brzo-
zowski and Konstantinidis [18] considered uniform finite languages. Krieger et al. studied decimations
of languages [92]. Câmpeanu and Konstantinidis [23] analysed a subword closure operation. Union-
free languages were considered by Jirásková and Masopust [84]. Bassino et al. [3] provided upper
bounds of the state complexity of basic operations on cofinite languages as a function of the size the
complementary finite language (take as the summation of the lengths of all its words). The average
state complexity on finite languages is addressed in two works. Gruber and Holzer [55] analysed the
average state complexity of DFA’s and NFA’s based on a uniform distribution over finite languages
whose longest word is of length at most n. Based on the size of finite languages as the summation of
the lengths of all its words and a correspondent uniform distribution, Bassino et al. [2] establish that
the average state complexities of the basic regular operations are asymptotically linear.



Star-free

sc |Σ| Unary

L1 ◦ L2 mn 2 max{m,n}

L1L2
(m− 1)2n + 2n−1, if n ≥ 3
[3m− 2, 3m− 1], if n = 2

4
3

m+ n− 1

L⋆ 2, if m = 1
2m−1 + 2m−2, if m ≥ 2

1
4

2, if m = 1
m, if m ∈ [2, 5]

m2 − 7m+ 13, if m > 5

LR 2m − 1 m− 1 m
Table 14. State complexity of basic regular operations on star-free regular and unary languages, where
◦ ∈ {∪,∩, \,⊕}. For non-unary star-free languages and n = 2, m ≥ 2. For non-unary star-free languages if
m ∈ [1, 2], the bound for reversal is tight for |Σ| ≥ m.
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In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics, 9th Latin American Symposium,

Oaxaca, Mexico, April 19-23, 2010. Proceedings, volume 6034 of Lecture Notes in Computer Science,
pages 222–233. Springer, 2010.

4. Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Number 129 in
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2009.

5. Jean-Camille Birget. Intersection of regular languages and state complexity. ACM SIGACT News,
22(2), 1991.

6. Jean-Camille Birget. Partial orders on words, minimal elements of regular languages and state
complexity. Theor. Comput. Sci., 119(2):267–291, 1993.

7. Jean-Camille Birget. The state complexity of Σ⋆L and its connection with temporal logic. Inf. Process.
Lett., 58(4):185–188, 1996.

8. Henning Bordihn, Markus Holzer, and Martin Kutrib. Determination of finite automata accepting
subregular languages. Theor. Comput. Sci., 410(35):3209–3222, 2009.

9. J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494, October 1964.
10. Janusz A. Brzozowski. Quotient complexity of regular languages. CoRR, abs/0907.4547, 2009.
11. Janusz A. Brzozowski. Complexity in convex languages. In Adrian Horia Dediu, Henning Fernau,

and Carlos Mart́ın-Vide, editors, Language and Automata Theory and Applications, 4th International

Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceedings, volume 6031 of Lecture Notes

in Computer Science, pages 1–15. Springer, 2010.
12. Janusz A. Brzozowski. Quotient complexity of regular languages. Journal of Automata, Languages and

Combinatorics, To appear.
13. Janusz A. Brzozowski, Elyot Grant, and Jeffrey Shallit. Closures in formal languages and Kuratowski’s

theorem. In Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory, 13th

International Conference, DLT 2009, Stuttgart, Germany, June 30 - July 3, 2009. Proceedings, volume
5583 of Lecture Notes in Computer Science, pages 125–144. Springer, 2009.

14. Janusz A. Brzozowski, Elyot Grant, and Jeffrey Shallit. Closures in formal languages: Concatenation,
separation, and algorithms. CoRR, abs/0901.3763, 2009.
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Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics, 9th Latin American Symposium,

Oaxaca, Mexico, April 19-23, 2010. Proceedings, volume 6034 of Lecture Notes in Computer Science,
pages 208–221. Springer, 2010.
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88. Galina Jirásková and Juraj Sebej. Note on reversal of binary regular languages. In Markus Holzer,
Martin Kutrib, and Giovanni Pighizzini, editors, Descriptional Complexity of Formal Systems - 13th

International Workshop, DCFS 2011. Proceedings, volume 6808 of Lecture Notes in Computer Science,
pages 212–221, Gießen/Limburg, Germany, July 2011. Springer.

89. Helmut Jürgensen and Stavros Konstantinidis. Codes. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, volume 1, pages 511–607. Springer, 1997.

90. Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On NFAs where all states are final, initial, or both.
Theor. Comput. Sci., 410(47-49):5010–5021, 2009.

91. George Anton Kiraz. Compressed storage of sparse finite-state transducers. In Oliver Boldt and
Helmut Jürgensen, editors, Automata Implementation, 4th International Workshop on Implementing

Automata, WIA’99, Potsdam, Germany, July 17-19, 1999, Revised Papers, volume 2214 of Lecture

Notes in Computer Science, pages 109–121. Springer, 2001.



92. Dalia Krieger, Avery Miller, Narad Rampersad, Bala Ravikumar, and Jeffrey Shallit. Decimations of
languages and state complexity. Theor. Comput. Sci., 410(24-25):2401–2409, 2009.

93. Ernst L. Leiss. Succint representation of regular languages by boolean automata. Theor. Comput. Sci.,
13:323–330, 1981.

94. Ernst L. Leiss. Succinct representation of regular languages by boolean automata ii. Theor. Comput.

Sci., 38:133–136, 1985.
95. O. B. Lupanov. A comparison of two types of finite sources. Problemy Kibernetiki, 9:321–326, 1963.
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thesis, Université de Paris 7, 2000.

110. Alexander Okhotin. On the state complexity of scattered substrings and superstrings. Fundam. Inform.,
99(3):325–338, 2010.

111. Azaria Paz and Bezalel Peleg. Ultimate-definite and symmetric-definite events and automata. J. ACM,
12(3):399–410, 1965.

112. Mika Perles, Michael O. Rabin, and E. Shamir. The theory of definite automata. Electronic Computers,

IEEE Transactions on, EC-12(3):233 –243, june 1963.
113. Giovanni Pighizzini. Unary language concatenation and its state complexity. In Sheng Yu and Andrei

Paun, editors, Implementation and Application of Automata, 5th International Conference, CIAA 2000,

London, Ontario, Canada, July 24-25, 2000, Revised Papers, volume 2088 of Lecture Notes in Computer

Science, pages 252–262. Springer, 2001.
114. Giovanni Pighizzini and Jeffrey Shallit. Unary language operations, state complexity and Jacobsthal’s

function. International Journal of Foundations of Computer Science, 13(1):145–159, 2002.
115. Elena V. Pribavkina and Emanuele Rodaro. State complexity of prefix, suffix, bifix and infix operators

on regular languages. In Yuan Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu, editors, Developments

in Language Theory, volume 6224 of Lecture Notes in Computer Science, pages 376–386. Springer, 2010.
116. Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM J Research

Development, 3(2):114–129, 1959.



117. Narad Rampersad. The state complexity of L2 and Lk. Information Proceesing Lettes, 98:231–234,
2006.

118. Narad Rampersad, Jeffrey Shallit, and Bala Ravikumar. State complexity of unique rational operations.
Theor. Comput. Sci., 410:2431–2441, 2009.

119. Bala Ravikumar. Some applications of a technique of sakoda and sipser. SIGACT News, 21(4):73–77,
1990.

120. Bala Ravikumar and Oscar H. Ibarra. Relating the type of ambiguity of finite automata to the
succinctness of their representation. SIAM J. Comput., 18(6):1263–1282, 1989.

121. Dominique Revuz. Minimisation of acyclic deterministic automata in linear time. Theor. Comput. Sci.,
92(1):181–189, 1992.

122. William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way finite automata. In
Conference Record of the Tenth Annual ACM Symposium on Theory of Computing, 1-3 May 1978, San

Diego, California, USA, pages 275–286. ACM, 1978.
123. Arto Salomaa. On the reducibility of events represented in automata. Annales Academiae Scientiarum

Fennicae, Series A(I. Mathematica 353), 1964.
124. Arto Salomaa. Theorems on the representation of events in Moore-automata. Turun Yliopiston

Julkaisuja Annales Universitatis Turkuensis, Series A(69), 1964.
125. Arto Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.
126. Arto Salomaa, Kai Salomaa, and Sheng Yu. State complexity of combined operations. Theor. Comput.

Sci., 383(2-3):140–152, 2007.
127. Arto Salomaa, Derick Wood, and Sheng Yu. On the state complexity of reversals of regular languages.

Theor. Comput. Sci., 320(2-3):315–329, 2004.
128. Kai Salomaa. Descriptional complexity of nondeterministic finite automata. In Tero Harju, Juhani
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