
Deciding Regular Expressions
(In-)Equivalence in Coq

Nelma Moreira, David Pereira, and Simão Melo de Sousa

Technical Report Series: DCC-2011-06
Version 1.0

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Deciding Regular Expressions (In-)Equivalence in Coq∗

Nelma Moreira David Pereira
DCC-FC & CMUP – University of Porto DCC-FC & LIACC – University of Porto
Rua do Campo Alegre 1021, 4169-007 Rua do Campo Alegre 1021, 4169-007

Porto, Portugal Porto, Portugal
nam@dcc.fc.up.pt dpereira@ncc.up.pt

Simão Melo de Sousa
LIACC & DI – University of Beira Interior
Rua Marquês d’Ávila e Bolama, 6201-001

Covilhã, Portugal
desousa@di.ubi.pt

Abstract

In this paper we present a mechanically verified implementation of an algorithm
for deciding regular expression (in-)equivalence within the Coq proof assistant. This
algorithm is a version of a functional algorithm proposed by Almeida et al. which decides
regular expression equivalence through an iterated process of testing the equivalence
of their partial derivatives. In particular, this algorithm has a refutation step which
improves the process of checking if two regular expressions are not equivalent.

1 Introduction

Recently, much attention has been given to the mechanisation of Kleene algebra (KA)
within proof assistants. J.-C. Filliâtre [Fil97] provided a first formalisation of Kleene theo-
rem for regular languages [Kle] within the Coq proof assistant [BC04]. Höfner and Struth
[HS07] investigated the automated reasoning in variants of Kleene algebras with Prover9 and
Mace4 [McC]. Pereira and Moreira [MP08] implemented in Coq an abstract specification
of Kleene algebra with tests (KAT) [Koz97] and the proofs that Propositional Hoare logic
deduction rules are theorems of KAT. An obvious follow up of that work was to implement
a certified procedure for deciding equivalence of KA terms, i.e regular expressions. A first
step was the proof of the correctness of the partial derivative automata construction from
a regular expression presented in [AMPMdS11]. In this paper, our goal is to mechanically
verify a decision procedure based on partial derivatives proposed by Almeida et al. [AMR08]
that is a functional variant of the rewrite system of Antimirov and Mosses [AM94].

In a different setting, Braibant and Pous [BP10] formally verified Kozen’s proof of the
completeness of Kleene algebra [Koz94] in Coq. This proof is based on the classic conversion

∗This work was partially funded by Funda cão para a Ciência e Tecnologia (FCT) and program POSI,
and by the CANTE project PTDC/EIA-CCO/101904/2008. David Pereira is funded by FCT grant
SFRH/BD/33233/2007.

2

of regular expressions into equivalent minimal deterministic finite automata formulated in a
algebraic setting.

Independently of the work here presented, Coquand and Siles [CS] mechanically veri-
fied an algorithm for deciding regular expression equivalence based on Brzozowski’s deriva-
tives [Brz64] using Coq’s SSReflect extension [Theb] and an inductive definition of finite
sets called Kuratowski-finite sets. Finally, Krauss and Nipkow [KN11] provide an elegant
and concise formalisation of Rutten’s co-algebraic approach of regular expression equivalence
[Rut98], in the Isabelle proof assistant [NPW02], but they do not address the termination of
the formalised decision procedure.

Our formalisation differs from the two previous formalisations as it is a refutation method
based on partial derivatives. The use of partial derivatives avoids the necessary normalisation
of regular expressions modulo ACI (i.e associativity, idempotence and commutativity of
union) in order to ensure the finiteness of Brzozowski’s derivatives. The refutation step
improves the detection of inequivalent regular expressions. Similarly to those works, the
procedure we have formalised is purely syntactic and does not require the construction of
automata. Our long term objective is to use the procedure we have implemented as a way
to automate the process of reasoning about programs encoded as KAT terms.

This paper is organised as follows: in Section 2 we recall the basic definitions of regular
languages; in Section 3 we show how the decision procedure was formalised and proved correct
and complete with respect to regular expression equivalence; finally, in Section 4 we draw
our main conclusions and we point to some current and future work.

2 Some basic notions of regular languages

This section presents the basic notions of regular languages that are required to implement
our decision procedure. This definitions can be found on standard books such as Hopcroft’s
et al. [HMU00], and their formalisation in the Coq proof assistant are presented by Almeida
et al. in [AMPMdS11].

2.1 Alphabets, words, languages and regular expressions

Let Σ = {a1, a2, . . . , an} be an alphabet (non-empty set of symbols). A word w over Σ is any
finite sequence of symbols. The empty word is denoted by ε and the concatenation of two
words w1 and w2 is the word w = w1w2. Let Σ? be the set of all words over Σ. A language over
Σ is a subset of Σ?. If L1 and L2 are two languages, then L1L2 = {w1w2 |w1 ∈ L1, w2 ∈ L2}.
The power of a language is inductively defined by L0 = {ε} and Ln = LLn−1, with n ≥ 1.
The Kleene star L? of a language L is ∪n≥0L

n. Given a word w ∈ Σ?, the (left-)quotient of
L by the word w is the language w−1(L) = {v |wv ∈ L}.

A regular expression (re) α over Σ represents a regular language L(α) ⊆ Σ∗ and is
inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε}; ∀ a ∈ Σ, a is
a re and L(a) = {a}; if α and β are re’s, (α + β), (αβ) and (α)∗ are re’s, respectively with
L(α + β) = L(α) ∪ L(β), L(αβ) = L(α)L(β) and L(α?) = L(α)?. If Γ is a set of re’s, then
L(Γ) = ∪α∈ΓL(α). The alphabetic size of a re α is the number of symbols of the alphabet in
α and is denoted by |α|Σ. The empty word property (ewp for short) of a re α is denoted by
ε(α) and is defined by ε(α) = ε if ε ∈ L(α) and by ε(α) = ∅, otherwise. If ε(α) = ε(β) we
say that α and β have the same ewp. Given a set of re’s Γ we define ε(Γ) = ε if there exists
a re α ∈ Γ such that ε(α) = ε and ε(Γ) = ∅, otherwise. Two re’s α and β are equivalent if
they represent the same language, that is, if L(α) = L(β), and we write α ∼ β.

3

2.2 Partial derivatives

The notion of derivative of a re was introduced by Brzozowski [Brz64]. Antimirov [AM94]
extended this notion to the one of set of partial derivatives, which correspond to a finite set
representation of Brzozowski’s derivatives.

Let α be a re and let a ∈ Σ. The set ∂a(α) of partial derivatives of the re w.r.t. the
symbol a is inductively defined as follows:

∂a(∅) = ∅ ∂a(α+ β) = ∂a(α) ∪ ∂a(β)

∂a(ε) = ∅ ∂a(αβ) =

{
∂a(α)β ∪ ∂a(β) if ε(α) = ε
∂a(α)β otherwise

∂a(b) =

{
{ε} if a ≡ b
∅ otherwise ∂a(α

?) = ∂a(α)α?,

where Γβ = {αβ |α ∈ Γ} if β 6= ∅ and β 6= ε, and Γ∅ = ∅ and Γε = Γ otherwise (in the same
way we define βΓ). Moreover one has

L(∂a(α)) = a−1(L(α)) (1)

The definition of partial derivative is extended to sets of re’s and to words. Given a re α, a
symbol a ∈ Σ, a word w ∈ Σ?, and a set of re’s Γ, we define ∂a(Γ) = ∪α∈Γ∂a(α), ∂ε(α) = {α},
and ∂wa = ∂a(∂w(α)). Equation (1) can be extended to words w ∈ Σ?. The set of partial
derivatives of a re α is defined by PD(α) = ∪w∈Σ?(∂w(α)). This set is always finite and its
cardinality is bounded by |α|Σ + 1.

Champarnaud and Ziadi show in [CZ01] that partial derivatives and Mirkin’s prebases
[Mir66] lead to identical constructions. Let π(α) be a function inductively defined as follows:

π(∅) = ∅ π(α+ β) = π(α) ∪ π(β)
π(ε) = ∅ π(αβ) = π(α)β ∪ π(β)
π(a) = {ε} π(α?) = π(α)α?

(2)

In his original paper, Mirkin proved that #π(α) ≤ |α|Σ, while Champarnaud and Ziadi
established that PD(α) = {α} ∪ π(α). These properties were proven correct in Coq by
Almeida et al. [AMPMdS11] and will be used to prove the termination of the decision
procedure described in this paper.

An important property of partial derivatives is that given a re α we have

α ∼ ε(α) +
∑
a∈Σ

a∂a(α) (3)

and so, checking if α ∼ β can be reformulated as

ε(α) +
∑
a∈Σ

a∂a(α) ∼ ε(β) +
∑
a∈Σ

a∂a(β). (4)

This will be an essential ingredient to our decision method because deciding if α ∼ β is
tantamount to check if ε(α) = ε(β) and if ∂a(α) ∼ ∂a(β), for each a ∈ Σ. We also note that
testing if a word w ∈ Σ? belongs to L(α) can be reduced to the purely syntactical operation
of checking if

ε(∂w(α)) = ε. (5)

By (4) and (5) we have that

(∀w ∈ Σ?, ε(∂w(α)) = ε(∂w(β)))↔ α ∼ β (6)

4

3 The decision procedure

In this section we describe the implementation in Coq of a procedure for deciding the
equivalence of re’s based on partial derivatives. First we give the informal description of
the procedure and afterwards we present the technical details of its implementation in Coq’s
type theory. The Coq development of the decision procedure presented in this paper is
available online in [MPaM].

3.1 Informal description

The procedure for deciding the equivalence of re’s, which we call equivP, is presented in Fig.1.
Given two re’s α and β this procedure corresponds to the iterated process of deciding the
equivalence of α and β by computing the equivalence of their derivatives, in the way noted
in equation (4). The function equivP works over pairs of re’s (Γ,∆) such that Γ = ∂w(α)
and ∆ = ∂w(β), for some word w ∈ Σ?. From now on, we refer to these pairs simply by
derivatives. To check if α ∼ β it is enough to test the ewp ’s of the derivatives, ie., if (Γ,∆)
verify the condition

ε(Γ) = ε(∆) (7)

S={({α}, {β})}
H=∅
def equivP(H,S):
while S 6= ∅ :

(Γ,∆) = POP(S)
i f ε(Γ) 6= ε(∆):

return false
else :
H = H ∪ {(Γ,∆)}
for a ∈ Σ:
(Λ,Θ) = ∂a(Λ,∆)
i f (Λ,Θ) 6∈ H :
S = S ∪ {(Λ,Θ)}

return true

Figure 1: The procedure equivP.

Two finite sets of derivatives are required for implementing equivP: a set H that serves
as an accumulator for the derivatives already processed by the procedure, and a set S which
serves as a working set that gathers new derivatives yet to be processed. The set H ensures
the termination of equivP due to the finiteness of the number of derivatives.

When equivP terminates, either the set H of all the derivatives of α and β has been
computed, or a counter-example (Γ,∆) has been found, ie., ε(Γ) 6= ε(∆). By equation (6),
in the first case we conclude that α ∼ β and, in the second case we conclude that α 6∼ β.
The correctness of this method can be found in Almeida et al. [AMR08, AMR10].

3.2 Implementation in Coq

In this section we describe the mechanically verified formalisation of equivP in the Coq proof
assistant and show its termination and correctness.

5

3.2.1 Certified pairs of derivatives.

The main data structures underlying the implementation of equivP are pairs of sets of re’s and
sets of these pairs. Each pair (Γ,∆) corresponds to a word derivative (∂w(α), ∂w(β)), where
w ∈ Σ? and α and β are the re’s being tested by equivP. The pairs (Γ,∆) are encoded by the
type ReW α β, presented in Fig.2. This is a dependent record built from three parameters: a
pair of sets of re’s dp that corresponds to the actual pair (Γ,∆), a word w, and a proof term
cw that certifies that (Γ,∆) = (∂w(α), ∂w(β)). The dependency of ReW α β comes from cw,
which is a proof depending on the values of the re’s α and β, and on the word parameter w.
This dependency ensures, at compilation time, that equivP will only accept as input pairs
of re’s that correspond to derivatives of α and β.

Record ReW (α β: r e) := mkReW {
dp :> s e t r e * s e t r e ;
w : word ;
cw : dp === (∂w(α),∂w(β))

}.

Program Definition ReW_1st (α β: r e) : ReW α β.
refine(Build_ReW ({r1},{r2}) nil _).
(* Proof that ({α}, {β}) = (∂ε(α), ∂ε(β)) *).
Defined.

Definition ReW_pdrv(α β: r e)(x:ReW α β)(a:A) : ReW α β.
refine(match x with

| mkReW α β K w P => mkReW α β (pdrvp K a) (w++[a]) _
end).

(* Proof that ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)) *)
Defined.

Definition ReW_pdrv_set(s:ReW α β)(sig: s e t A) : s e t (ReW α β) :=
fold (fun x:A => add (ReW_pdrv s x)) sig ∅.

Definition ReW_wpdrv (α β: r e)(w:word) : ReW α β.
refine(mkReW α β (∂w(α), ∂w(β)) w _).
reflexivity.
Defined.

Definition c_of_rep(x: s e t r e * s e t r e) :=
Bool.eqb (c_of_re_set (fst x)) (c_of_re_set (snd x)).

Definition c_of_ReW(x:ReW α β) := c_of_rep (dp x).

Definition c_of_ReW_set (s: s e t (ReW α β)) : bool :=
fold (fun x => andb (c_of_ReW x)) s t r u e .

Figure 2: Definition of the type ReW and the extension of derivatives and ewp functions.

The type ReW α β provides also an easy way to relate the computation of equivP and
the equivalence of α and β: if H is the set returned by equivP, then the equation (6) is
tantamount to check the ewp of the elements of H. Furthermore, using this type provides a
simple way of keeping the set of words from which the set of derivatives of α and β has been
obtained. For that it is enough to apply the projection w to each pair (Γ,∆) ∈ H.

The notions of derivative and of ewp are extended to the type ReW α β as implemented
by the functions ReW_pdrv and c_of_ReW, and to sets of terms ReW α β by the functions
ReW_pdrv_set and c_of_ReW_set, respectively.

6

3.2.2 Computation of new derivatives.

The while-loop of equivP describes the process of testing the equivalence of the derivatives of
α and β. In each iteration of this process, new derivatives (Γ,∆) are computed until either
the working set S becomes empty, or a pair (Γ,∆) such that ε(Γ) 6= ε(∆) is found. This is
precisely what the function step presented in Fig.3 does.

Definition ReW_pdrv_set_filtered(x:ReW α β)(H: s e t (ReW α β))
(sig: s e t A) : s e t (ReW α β) :=
filter (fun y => negb (y ∈ H)) (ReW_pdrv_set x sig).

Inductive step_case (α β: r e) : Type :=
|proceed : step_case α β
|termtrue : s e t (ReW α β) → step_case α β
|termfalse : ReW α β → step_case α β.

Definition step (H S: s e t (ReW α β))(sig: s e t A) :
((s e t (ReW αβ) * s e t (ReW α β)) * step_case α β) :=
match choose s with
|None => ((H,S),termtrue α β H)
|Some (Γ,∆) =>

if c_of_ReW _ _ (Γ,∆) then
let H′ := add (Γ,∆) H in
let S′ := remove (Γ,∆) S in
let ns := ReW_pdrv_set_filtered α β (Γ,∆) H′ sig in
((H′,ns ∪ S′),proceed α β)

else
((H,S),termfalse α β (Γ,∆))

end.

Figure 3: The function step.

The step function proceeds as follows: it obtains a pair (Γ,∆) from the working set S,
generates new derivatives by a symbol

(Λ,Θ) = (∂a(Γ), ∂a(∆))

and adds to S all the (Λ,Θ) that are not elements of {(Γ,∆)} ∪H. This is implemented by
ReW_pdrv_set_filtered which prevents the whole process from entering potential infinite
loops since each derivative is considered only once during the execution of equivP.

The return type of step is

((set (ReW α β) * set (ReW α β)) * step_case)

where the first component corresponds to the pair (H,S), constructed as described above.
The second component is a term of type step_case which has the purpose of guiding the
iteractive process of computing the equivalence of the derivatives of α and β: if it is the term
proceed, then the iterative process should continue; if it is a term termtrue H then the
process should terminate and H contains the set of all the derivatives of α and β. Finally,
if it is a term termfalse (Γ,∆), then the process should terminate. The pair (Γ,∆) is a
witness that α 6∼ β, since ε(Γ) 6= ε(∆).

3.2.3 Implementation and termination of equivP.

The formalisation of equivP in the Coq proof assistant is presented in Fig.5. Its main
component is the function iterate which is responsible for the iterative process of calculating

7

the derivatives of α and β, or to find a witness that α 6∼ β if that is the case. The function
iterate executes recursively until the function step returns either a term termtrue H, or
a term termfalse (Γ,∆). Depending on the result of step, the function iterate returns a
term of type term_cases, which can be the term Ok H indicating that α ∼ β, or the term
NotOk (Γ,∆) indicating that α 6∼ β, respectively.

A peculiarity of the Coq proof assistant is that it only accepts provably terminating
functions, ie., it only accepts structurally decreasing functions. Nevertheless, general recursive
functions can be expressed in Coq via an encoding into structural recursive functions. The
Function [BC02] command helps users to define such functions which are not structurally
decreasing along with an evidence of its termination, as an illustration of the certified
programming paradigm that Coq promotes. In the case of iterate such evidence is given
by the proof that its recursive calls follow a well-founded relation.

The decreasing measure (of the recursive calls) for iterate is defined as follows: in each
recursive call the cardinal of the accumulator set H increases by one element due to the
computation of step. This increase of H can occur only less than

2|α|Σ+1 × 2|β|Σ+1 + 1

times, due to the upper bounds of the cardinalities of PD(α) and of PD(β). Therefore, in
each recursive call of iterate, if

stepH S_ = (H ′,_,_)

then the following condition holds:

(2(|α|Σ+1) × 2(|β|Σ+1) + 1)−#H ′ < (2(|α|Σ+1) × 2(|β|Σ+1) + 1)−#H (8)

The relation LLim presented in Fig.4 defines the decreasing measure imposed by equation
(8). Furthermore, the definition of iterate requires an argument of type DP α β that
imposes that the accumulator set H and the working set S are invariantly disjoint along the
computation of iterate which is required to ensure that the set H is always increased by
one element at each recursive call.

Besides the requirement of defining LLim to formalise iterate, we had to deal with two
implementation details: first, we have used the type N which is a binary representation of
natural numbers provided by Coq’s standard library [Thea], instead of the type nat so that the
computation of MAX becomes feasible for large natural numbers. The second detail is related
to the computation over terms representing well founded relations: instead of using the proof
LLim_wf directly in iterate, we use the proof returned by the call to the function guard
that lazily adds 2n constructors Acc_intro in front of LLim_wf so that the actual proof is
never reached in practice, while maintaining the same logical meaning. This technique avoids
normalisation of well founded relation proofs which is usually highly complex and may take
too much time.

Finally, the function equivP is defined as a call to equivP_aux with the correct input, ie.,
with the accumulator set H = ∅ and with the working set S = {({α}, {β})}. The function
equivP_aux is a wrapper that pattern matches over the term of type term_cases returned
by iterate and returns the corresponding Boolean value.

3.2.4 Correctness and completeness.

To prove the correctness of equivP we must prove that, if equivP returns true, then iterate
generates all the derivatives and prove that all these derivatives agree on the ewp of its

8

Definition lim_cardN (z:N) : relation (s e t A) :=
fun x y: s e t A => nat_of_N z - (cardinal x) < nat_of_N z - (cardinal y).

Lemma lim_cardN_wf : ∀ z, well_founded (lim_cardN z).

Section WfIterate.
Variables α β : r e .

Definition MAX_fst := |α|Σ + 1.
Definition MAX_snd := |β|Σ + 1.

Definition MAX := (2MAX_fst × 2MAX_snd) + 1.
Definition LLim := lim_cardN (ReW α β) MAX.

Theorem LLim_wf : well_founded LLim.

Fixpoint guard (n : nat)(wfp : well_founded (LLim)) : well_founded (LLim):=
match n with
|O => wf
|S m => fun x => Acc_intro x (fun y _ => guard m (guard m wfp) y)
end.

End WfIterate.

Figure 4: The decreasing measure of iterate.

components. To prove that all derivatives are computed, it is enough to ensure that the step
function returns a new accumulator set H ′ such that:

step H S sig = (H ′, S′,_) → ∀(Γ,∆) ∈ H ′, ∀a ∈ Σ, ∂a(Γ,∆) ∈ (H ′ ∪ S′) (9)

The predicate invP and the lemma invP_step presented in Fig.6 prove this property.
This means that, in each recursive call to iterate, the sets H and S hold all the derivatives
of the elements in H. At some point of the execution, by the finiteness of the number
of derivatives, H will contain all such derivatives and S will eventually become empty.
Lemma invP_iterate proves this fact by a proof by functional induction over the structure
of iterate. From lemma invP_equivP we can prove that

∀w ∈ Σ?, (∂w(α), ∂w(β)) ∈ equivP ∅ {({α}, {β})} (10)

by induction over the word w and using the invariants presented above.
To finish the correctness proof of equivP one needs to make sure that all the derivatives

(Γ,∆) verify the condition ε(Γ) = ε(∆). For that, we have defined the predicate invP_final
which strengthens the predicate invP by imposing that the previous property is verified. The
predicate invP_final is proved to be an invariant of equivP and this implies re equivalence
by equation (6), as stated by theorem invP_final_eq_lang.

For the case of completeness, it is enough to reason by contradiction: assuming that
α ∼ β then it must be true that

∀w ∈ Σ?, ε(∂w(α)) = ε(∂w(β))

which implies that iterate may not return a set of pairs that contain a pair (Γ,∆) such that
ε(Γ) 6= ε(∆) and so, equivP must always answer true.

Using the lemmas equivP_correct and equivP_correct_dual of Fig.6 a tactic was
developed to prove automatically the (in)equivalence of any two re’s α and β. This tactic

9

Inductive term_cases α β : Type :=
|OK : s e t (ReW α β) → term_cases α β | NotOk : ReW α β → term_cases α β.

Inductive DP (α β: r e)(H S: s e t (ReW α β)) : Prop :=
| is_dp : H ∩ S = ∅ → c_of_ReW_set α β H = t r u e → DP α β H S.

Lemma DP_upd : ∀ (h s : s e t (ReW α β)) (sig : s e t A), DP α β h s →
DP α β (fst (fst (step α β h s sig))) (snd (fst (step α β h s sig))).

Function iterate(α β: r e)(H S: s e t (ReW α β))(sig: s e t A)(D:DP α β h s)
{wf (LLim α β) H}: term_cases α β :=
let ((H′,S′,next) := step H S in
match next with
|termfalse x => NotOk α β x
|termtrue h => Ok α β h
|progress => iterate α β H′ S′ sig (DP_upd α β H S sig D)

end.
Proof.
(* Proof that LLim is a decreasing measure for iterate *)
exact(guard r1 r2 100 (LLim_wf r1 r2)).

Defined.

Definition equivP_aux(α β: r e)(H S: s e t (ReW α β))(sig: s e t A)(D:DP α β H S):=
let H′ := iterate α β H S sig D in
match H′ with
| Ok _ => t r u e | NotOk _ => f a l s e

end.

Definition mkDP_ini : DP α β ∅ {ReW_1st α β} := (* . . . *).

Definition equivP (α β: r e)(sig: s e t A) :=
equivP_aux α β ∅ {ReW_1st α β} sig (mkDP_ini α β).

Figure 5: Implementation of equivP
.

works by reducing the logical proof of the (in)equivalence of re’s into a Boolean equality
involving the computation of equivP. After effectively computing equivP into a Boolean
constant, the rest of the proof amounts at applying the reflexivity of Coq’s primitive equality.
Note that this tactic is also able to solve re containment due to the equivalence

α ≤ β ↔ α+ β ∼ β (11)

4 Concluding remarks and applications

In this paper we have described the formalisation of the procedure equivP for deciding re
equivalence based in partial derivatives. This procedure has the advantage of not requiring
the normalisation modulo ACI of re’s in order to prove its termination. Furthermore, the
procedure equivP includes a refutation step that allows to prove the inequivalence of two re’s
without the need to compute all their derivatives, which considerably improves its efficiency.

We have implemented equivP with no focus on its computational efficiency, but rather
with the goal of providing a mechanically verified evidence that the algorithm suggested
by Almeida et al [AMPMdS11] is correct. However, the performance exhibited by equivP
is acceptable in the sense that it is able to prove "human written" equivalences (or re
containment) almost instantaneously, and it is even faster when deciding re’s (in)equivalences
due to the refutation step built-in in the procedure.

10

Definition invP (α β: r e)(H S: s e t (ReW α β))(sig: s e t A) :=
∀ x, x \In H → ∀a, a \In sig → (ReW_pdrv α β x a) \In (H ∪ S).

Lemma invP_step : ∀ H S sig,
invP H S sig → invP (fst (fst (step α β H S sig)))

(snd (fst (step α β H S sig))) sig.

Lemma invP_iterate : ∀ H S sig D,
invP H S sig → invP (iterate α β H S sig D) ∅ sig.

Lemma invP_equivP :
invP (equivP α β Σ) ∅ Σ.

Definition invP_final (α β: r e)(H S: s e t (ReW α β))(sig: s e t A) :=
(ReW_1st α β) \In (H ∪ S) /\
(∀ x, x ∈ (H ∪ S) → c_of_ReW α β x = t r u e) /\ invP α β H S sig.

Lemma invP_final_eq_lang :
invP_final α β (equivP α β Σ) ∅ Σ → α ∼ β.

Theorem equivP_correct : ∀ α β, equivP α β sigma = t r u e → α ∼ β.
Theorem equivP_complete : ∀ α β, α ∼ β → equivP α β sigma = t r u e .
Theorem equivP_correct_dual : ∀ α β, equivP α β sigma = f a l s e → α 6∼ β.
Theorem equivP_complete_dual : ∀ α β, α 6∼ β → equivP α β sigma = f a l s e .

Figure 6: Invariants of step and iterate.

The purpose of this research is part of a broader project, where we plan to use Kleene
algebra with tests to reason about the partial correctness of programs. The idea is to use
the formalised decision procedure described in this paper as a certified trust-base to compare
KAT terms once these terms are reduced into KA terms [Coh94, Wor08].

References

[AM94] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions.
In G. Rozenberg and A. Salomaa, editors, Developments in Language Theory,
pages 195 – 209. World Scientific, 1994.

[AMPMdS11] José Bacelar Almeida, Nelma Moreira, David Pereira, and Simão Melo de
Sousa. Partial derivative automata formalized in Coq. In M. Domaratzki
and K. Salomaa, editors, CIAA’10: Proceedings of the 15th international
Conference on Implementation and Application of Automata, number 6482
in LNCS, pages 59–68. Springer-Verlag, 2011.

[AMR08] Marco Almeida, Nelma Moreira, and Rogério Reis. Antimirov and Mosses’s
rewrite system revisited. In O. Ibarra and B. Ravikumar, editors, CIAA
2008: 13th International Conference on Implementation and Application of
Automata, number 5448 in LNCS, pages 46–56. Springer-Verlag, 2008.

[AMR10] M. Almeida, N. Moreira, and R. Reis. Testing regular languages equivalence.
Journal of Automata, Languages and Combinatorics, 15(1/2):7–25, 2010.

[BC02] Gilles Barthe and Pierre Courtieu. Efficient reasoning about executable
specifications in Coq. In Victor Carreño, César Muñoz, and Sofiène Tahar,

11

editors, TPHOLs, volume 2410 of Lecture Notes in Computer Science, pages
31–46. Springer, 2002.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[BP10] Thomas Braibant and Damien Pous. An efficient Coq tactic for deciding
Kleene algebras. In Proc. 1st ITP, volume 6172 of LNCS, pages 163–178.
Springer, 2010.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[Coh94] Ernie Cohen. Hypotheses in Kleene algebra. Technical report, 1994.

[CS] Thierry Coquand and Vincent Siles. A decision procedure for regular
expression equivalence in type theory. In Jean-Pierre Jouannaud and Zhong
Shao, editors, CPP 2011, Kenting, Taiwan, December 7-9, 2011., number 7086
in LNCS, pages 119–134. Springer-Verlag.

[CZ01] Jean-Marc Champarnaud and Djelloul Ziadi. From Mirkin’s prebases to
Antimirov’s word partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[Fil97] J.-C. Filliâtre. Finite Automata Theory in Coq: A constructive proof of
Kleene’s theorem. Research Report 97–04, LIP - ENS Lyon, February 1997.

[HMU00] J. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2000.

[HS07] P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In
F. Pfenning, editor, CADE 2007, number 4603 in LNAI, pages 279–294.
Springer-Verlag, 2007.

[Kle] S. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages
3–42. Princeton University Press, shannon, C. and McCarthy, J. edition.

[KN11] Alexander Krauss and Tobias Nipkow. Proof pearl: Regular expression
equivalence and relation algebra. Journal of Automated Reasoning, 2011.
Published online.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Infor. and Comput., 110(2):366–390, May 1994.

[Koz97] Dexter Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[McC] William McCune. Prover9 and Mace4. http://www.cs.unm.edu/smccune/
mace4. Access date: 1.10.2011.

[Mir66] B.G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:110–116, 1966.

12

[MP08] Nelma Moreira and David Pereira. KAT and PHL in Coq. Computer Science
and Information Systems, 05(02), December 2008. ISSN: 1820-0214.

[MPaM] Nelma Moreira, David Pereira, and Sim ao Melo de Sousa. Source code of the
formalization. http://www.liacc.up.pt/~kat/equivP.tgz.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[Rut98] Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra).
In Davide Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466
of Lecture Notes in Computer Science, pages 194–218. Springer, 1998.

[Thea] The Coq Development Team. Coqlib. http://coq.inria.fr/stdlib/.

[Theb] The Ssreflect Development Team. Ssreflect. http://www.msr-inria.inria.
fr/Projects/math-components.

[Wor08] James Worthington. Automatic proof generation in Kleene algebra. In
RelMiCS’08/AKA’08, volume 4988 of LNCS, pages 382–396, Berlin, Heidel-
berg, 2008. Springer-Verlag.

13

