A Tool for Automatic Model

Extraction of Ada/SPARK
Programs

Nuno Silva Nelma Moreira Simao Melo de Sousa Sabine Broda

Technical Report Series: DCC-2011-2
Version 1.0 October 2011

[BAPORTO

FACULDADE DE CIENCIAS

F(' UNIVERSIDADE DO PORTO

Departamento de Ciéncia de Computadores
&

Laboratério de Inteligéncia Artificial e Ciéncia de Computadores

Faculdade de Ciéncias da Universidade do Porto
Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

A Tool for Automatic Model Extraction of Ada/SPARK
Programs

I Simao Melo de Sousa? Sabine Brodal

Nuno Silval Nelma Moreira
1 Departamento de Ciéncia de Computadores / LTACC-UP
Universidade do Porto, Portugal
2 Departamento de Informética / LIACC-UP
Universidade da Beira Interior, Portugal

Abstract

This paper presents a brief description of the current work on a tool that analyses
temporal behavior of Ada/RavenSPARK programs and, with the use of a translation
algorithm, outputs an Uppaal system that simulates the program’s control flow.

The focus will be the translation algorithm, it’s implementation and syntactic scope,
along with results and difficulties encountered during the development process.

1 Introduction

The use of model-checking [1] as a means to perform software verification appears to us
currently as one of the most prominent methods to achieve formal verification of software
correction. Although an ambitious and difficult task, the correct syntactic translation and
modeling of the source code would come as a very important aid in achieving this goal.

This report describes the recent developments in a tool that aims at translating and ver-
ifying temporal behavior of real-time applications. The starting point is the Ada/Ravenscar
profile [2], a subset of the Ada tasking model restricted to meet the real time community’s
requirements for determinism, schedulability analysis and memory-boundness. The existence
of the Ada Semantic Interface Specification (ASIS) [3], an interface for retrieving syntactic
and semantic information from the Ada environment, and of a number of XML-based tools
for processing this information make it an ideal candidate for this translation process. On
the other end, the UPPAAL application [4], based on networks of timed automata, offers
the simulation and functionality needed for modeling an application’s temporal behavior.

We'll focus mainly on the second stage of development of this tool, which has been the
development and implementation of a process to achieve a solid syntactic translation of a
program’s source code into a temporal system that correctly models the program’s control
flow.

2 The deadline annotation

Modeling the temporal behavior of a program requires the programming language to have a
certain expressiveness in order for the timing bounds to be set in the source code. Although

Ada has a very complete set of concurrency constructs, the use of additional annotations
can further increase the precision of these timing bounds.

Fidge et al. in [5] introduced a set of real-time programming constructs that enable timing
constraints to be directly expressed in a natural and explicit way. The most important of
these is the deadline command - a simple statement that expresses upper timing bounds. It
accepts an absolute time-valued expression and requires the current time to be no later than
this value when the statement is reached. Complemented by the delay until statement,
which expresses a lower timing bound, available in Ada since its 1995 revision, these con-
structs enable all the timing constraints to be unambiguously expressed. Originally proposed
as an additional annotation to the Spark [6] subset of Ada, it has become an important part
of a set of annotations that aim at facilitating the verification of timing properties through
static analysis of source code.

Due to this fact, the deadline has become the only annotation required for modeling a
program’s control and time flow. A further set of annotations is being explore with the
goal of property verification, which will be used after the translation process as a means to
express and verify the program’s timing restraints.

3 Tool work flow description

We can divide the tool’s work flow in three stages, each with it’s particular scope. In this
section we aim at providing the reader with a brief explanation of the tool’s implementation
by describing each stage. The following diagram synthesizes the tool’s work flow, giving a
broad perspective of the translation process.

Stage 1: Preprocessing input files. The first stage relies heavily on the Ada Semantic
Interface Specification (ASIS) as a means to transform the Ada source code into a format
suitable for translation. To achieve this transformation two applications are used:

e Avatox [7], an application that traverses one or more Ada compilation units and
outputs the ASIS representation of the unit(s) as a XML document. Given that
the Avatox XML representation of the source code comprehensively represents the
content and layout of the source code, many methods for extracting and processing
this information become available.

e XALAN [8], a XSLT [9] processor for transforming XML documents. It is used to
further optimize the ASIS hierarchical representation of the Ada source code by deleting
a number of tree levels and moving import attribute information.

After these two preprocessing steps the Ada source code has been converted into a suitable
format for translation. Our Java application RAST (RAvenScar Translator) will then use
Java APT’s to manage the information contained in the XML input files.

Stage 2: Preprocessing source code information. In this stage we collect, organize
and store all the information necessary to perform the translation and modeling of the
Ada/Ravenscar program. We start by organizing the input files in groups that correspond
to Ada packages. Each of these groups will then be transformed into a data structure we call
an Ada module. This will be done in two steps. First, the specification parts of each package
will be processed: a loop will iterate each ASIS element present in the specification file of

ADA SOURCE CODE
ADA SOURCE CODE ADA SOURCE CODE ASIS XML REPRESENTATION
AVATOX ASIS XML REPRESENTATION XALAN
*ADS RAST INPUT FILES

*
.ADB L

group system files ()

* ADS.XML *ADS.XML * ADS.XML
* ADB.XML *ADB.XML *ADB.XML

——
load system modules ()

ADA MODULE

- FILES &
[cFo :) optimize cfgs ()
- DATA DECLARATIONS

load templates ()

collect global data ()

UPROCESS

UTEMPLATE
- USATES

- UNIT NAME
GLOBAL,DATA collect global data () | ADA TYPE - UEEQ??ONS

- SYNCHRONIZED DATA e - UVARIABLES

- CONSTANT DATA R - UCHANNELS

|- UPROCESSES

load uppaal system ()

UPPAAL SYSTEM
UPPAAL SYSTEM FILE

. PROCESSES write system file ()

- CHANNELS
- VARIABLES
- CLOCKS

- TEMPLATES

* XTA

Figure 1: Tool workflow diagram.

the package and a switch-case will filter and store relevant package, variable and function
information. Next, using the information collected, we process the package’s body file: in
a similar way, we loop through the ASIS elements and use a switch-case to filter additional
declaration data and to build the control flow graphs that correspond to the package’s body
work flow. Here, the ASIS elements are processed in several levels: the first level focuses
on the main Ada constructs in the Ada package (tasks, protected objects, procedures and
functions), which will probably result in Uppaal processes after translation. For each of
these elements, a new traversal is created which generates the CFG (control flow graph) [10]
of the construct. Of course, some of the body’s statements, such as loops and conditional
expressions, require a recursive treatment, giving rise to new traversals that are automatically
coupled with the CFG to be generated.

After these steps, performed for each Ada package, we’ll have a set of Ada modules that
will contain all the information needed for translation. To end this preprocessing stage we
run a series of routines that optimize the CFG’s in order for them to contain only the relevant
modeling information and perform a final sweep of the input data to gather global system
data for the purpose of system synchronization and package dependency inspection.

Stage 3: Translation and output. The final step consists in the actual translation.
Each of the CFG’s contained in each of the Ada modules is translated to what we call a
Uppaal template (which has a different meaning of the template type used in the uppaal

input language), that contains the timed automata that represents the construct’s control
flow plus all the declaration data associated to it, representing closely an uppaal process.

This is accomplished by traversing each CFG and converting each node to an uppaal
state and each edge to an uppaal transition. Of course, in some cases, translation cannot be
performed locally, that is, we need to inspect more than one node and variable information
in order to translate a single transition/state. However, an effort has been made to make
each translation as local as possible. Uppaal clocks and other variables are translated by
inspecting the module’s declaration data and uppaal channels by searching the synchronized
nodes of the CFG. After the translation, each template will contain an uppaal process plus
the necessary information needed for it to be instantiated in an uppaal system.

Finally, after we run a final sweep of all templates to gather all necessary global data
and the uppaal constructs are assembled in a single uppaal input file that contains all the
uppaal system data.

4 Algorithm Details

In this section we’ll describe the current state of the tool, focusing on the details concerning
how the most relevant Ada constructs are translated to the uppaal input language. Since the
main focus of this tool is to model the temporal behavior of concurrent Ada/Ravenscar ap-
plications [11], the translation algorithm focuses it’s attention on the specific Ada constructs
[12] that relate directly to these characteristics. To further illustrate how the translation is
done we will show the input and output results taken from two Ada/Ravenscar programs
used to test the tool.

The first has been inspired by the test case used in [13] and [14], and serves to illustrate
how ordinary sequential commands contained in an Ada task body are translated. It intends
to simulate a system that reads data from one of two possible sensors, a simple sensor and a
smart sensor, producing and writing new data in a protected object. The difference between
the two sensors lies on the reliability of the values read: one provides a reliable value for
each reading while the other requires the sensor to be read ten times in order to get one
single reliable value. The system also requires that timing bounds be specified for some
situations. For instance, it is specified that the protected object’s data must be updated
with a new value every 200 milliseconds and that the smart sensor should provide a reading
30 milliseconds after being enabled.

The second has been taken from [15] and consists on a simple stopwatch program. In this
section we’ll use parts of this application to exemplify specific translation methods while in
the next section we’ll describe this system’s functionality in full to experimentally validate
the tool’s translation algorithm. Next we give an overview of the translation process for the
most relevant ADA constructs present in typical Ada/Ravenscar based applications.

Regular sequential flow. Modeling simple sequential instructions that do not relate
to the program’s concurrent and timing behavior, such as single instructions, loops or
conditional expressions, is done in a very straightforward way through the use of a branch
generating algorithm normally used in CFG creation. However it’s important to notice that
this must be done so that the model’s behavior is the same as the program’s, otherwise we
would get an inaccurate simulation of the program’s behavior.

The following example, part of the sensor system referred above, shows exactly this; we
have a for loop that increments the variable count 10 times. The count variable is evaluated

in an if expression and while it takes values from 1 to 9 the program stalls for 15 milliseconds
and the count variable is incremented. When the variable takes the value 10 a protected
procedure is called and the loop exits. Not modeling correctly loop variables and almost
any other conditional variable represents a flaw in the model and invalidates any temporal
analysis. This represents a major difficulty in accomplishing such a translation due to the
extension of ADA’s data types and syntax variations.

Thus far the main part of ADA’s syntax is encompassed by the tool for translation, such
as if expressions, for/while loops that evaluate an integer variable, among others, which is
enough to perform a complete translation of simple programs.

Data_eq_0_9 loop_10 End_loop_37
© ,fc‘\ c deadline_Current_plus_Milliseconds_4_24
_ b delay_until_Current_plus_Milliseconds_2_23
Mext:=0 it R e —
Current <=2 L /C) if_Count_eq_10_25
Current==2 _— o
Next == Nextint ERUSIE el
Currefit:=0
Device_eq_smart_11 Nextint=p, Next:=0 Count==10 HCourp==10]
Input_Data_Data_WLHE _| CUERt S0
delay_until_Next_plus_Milliseconds_7¢_15 coun= ST b dounte_10 () Current <= 15
for_Count in Il 10 loop_21 deadline_Current_pjus_Milliseconds_15_31
Next <= 70 \(_:/
if_Device_eq smart_12
Next==7(
| H(Count>=1 A&« Input_Datg_Data_Write!
curreht:=0 delay_untif_Next 36
delay_until_Current plus_Milliseconds_30_17 () Nextis SN extint
Current <=3
Currenf== Current==15

deadline_Next_plug Milliseconds_:

End_loop_33 (€ Current <= 15

hextiz=:200 delay_until_Current_plus Milliseconds 15 32

Input_Data_Datg_Write_Data_18

Nextint ;= 200

Input_Data |Data_Write!

Next==130

Next <= 130
delay_until_Mext_plus_Milliseconds_130_19

Figure 2: Ada task containing common sequential instructions.

Tasks. Ada tasks are in charge of most of the activity that is performed by an Ada/Raven-
scar application. As happens with protected objects, Ada tasks may be declared as types or
single tasks, whose type is referred to as anonymous. When declared as a type, a task can be
instantiated any number of times with different arguments. Modeling a task type requires
that a template be created for the task. This template is translated to an Uppaal process and
is instantiated accordingly with the number of calls and corresponding arguments present in
the source code. A task’s body is translated in a straightforward way and, as is a requirement
of the ravenscar profile, cannot terminate, so we always find at the end of a task’s body an
infinite loop that ensures this requirement.

Protected Objects. The protected object’s translation method is the only Ada construct
which requires a different treatment. A protected object is translated into an automata that
models all the protected entries, procedures and functions in the protected object’s body.
Through Uppaal’s synchronization primitives [16], a channel listens at the start of each
procedure/function/entry and when a signal arrives it’s body is executed. Since all of the
states are committed, the execution of the body happens instantaneously, which simulates
the atomicity inherent to a protected object’s methods.

Procedures and Functions. For a program’s behavior to be correctly modeled an Uppaal
process must be created for every procedure or function. This happens because any procedure
or function may have, in it’s body, temporal primitives or calls to other functions that
condition the program’s behavior. To describe this situation we’ll use part of the stopwatch

package body Display
is

State : PT;

Port : Integer; :
Init_Procedure_1 Display_AddSecond_2

Init_Procedure_1
@ Display AddSecond?

protected body PT is
procedure Increment
--# global in out Counter; out Port;
--# derives Port, Counter from Counter;
is
begin
Counter := Counter + 1;
Port := Counter;
end Increment;

Display_Initialize?

gL Display _PT |

nitialize_2

State_Increment_3
procedure Reset State_ReSEt_E‘

--# global out Counter, Port;

--# derives Counter, Port from ;

is

begin Init_Protected_1 protected_body_PT_is_2
Counter := 0;
Port := Counter;
end Reset; 2
end PT; lay_PT_Increment?

procedure Initialize
is
begin
State.Reset;
end Initialize; Counter_eq_0_7
procedure AddSecond
is
begin
State.Increment; proceayre_
end AddSecond;

end Display;
Figure 3: Stopwatch Display package translation.

system taken from a RavenSpark application [15]. The first two automatas correspond to the
procedures declared in the package. One initializes the display associated with the stopwatch
and the other increments the clock’s counter. Within the body of the first procedure a
protected call is made to procedure Reset which will cause the counter to be set to zero.
This is a common case in Ada/Ravenscar applications referred to as protected refinement,
where protected calls are encapsulated in procedure calls.

We can easily observe that if this procedure was not modeled in such a way the protected
object’s procedures would never be executed and, although in this specific case it does not
happen, important control flow information could be missed thus compromising the system’s
correct simulation of the original application.

Suspension Objects. Ada’s suspension objects [12] have been so far the only Ada con-
currency construct to be processed by the tool. This construct behaves much like a binary
semaphore, with the normal blocking and querying operations associated with it. Although
it is not the only one that needs such a treatment, it’s translation is vital for the control flow
of the model to resemble that of an Ada program. This translation however is quite simple:
to represent the internal state of the suspension object a boolean variable is created and
initialized with a false value. The atomic operations that change the suspension object’s state
are modeled with simple attribution’s to this boolean variable. The only blocking operation

this construct provides, the Ada.Synchronous_Task_Control.Suspend_Until_True procedure,
is modeled by simply placing a guard on the ongoing transition in the model that tests if
the variable’s value is true, in which case it proceeds normally . If not, the model’s flow will
stall in the current state until the variable’s value is set to true.

package body Timer
is

Operate : Ada.Synchronous Task Control.Suspension Object;

TimingLoop : TT;
Ada_Synchronous_Task_Control_Set_True_Operate_6

task body TT is
Release Time : Ada.Real Time.Time;
Period : constant Ada.Real Time.Time Span :=
TuningData.TimerPeriod;
begin
Display.Initialize; -- ensure we get © on the screen at start up Display_lnitialize_3
Release_Timg|nt := Period

loop
-- wait until user allows clock to run © © 1oop.2
Ada.Synchronous Task Control.Suspend Until True (Operate); Display_lnitialize! delay_until_Rglease_Time_9
Ada.Synchronous_Task_Control.Set True (Operate); .

- once running, count the seconds eSS Time <= Release Timelnt
Release Time := Ada.Real Time.Clock; - -
Release Time := Release Time + Period;
delay until Release Time;
-- each time round, update the display
Display.AddSecond; Display_AddSecond_10
end loop;
end TT;
end Timer;

Operate==true
<Q, Operate=true

Ada_Synchronous_Task_Controk-SUspend_Until_True_Operate_5

Release_Time_eq_Release_Tifne_plus_Period_8

Figure 4: Task containing a suspension object.

Variables: Clocks and Time Spans. Given the tool’s purpose we identify two variable
types as the most important for the translation process: clocks and time spans. Their
translation is direct from Ada types Ada.RealTime.Time and Ada.RealTime. TimeSpan to
Uppaal types clock and const int respectively. Ada’s time spans usually contain values used
to set task periods: their argument is directly translated to an uppaal const int variable.
However, clock behavior is different in each language: in Ada these variables are used
to store time values through a group of operations such as Ada.RealTime.clock(), which
retrieves the current internal time value, arithmetic operations, among others. Bounding
instructions such as the delay until command will compare Ada’s internal real time clock
value to values stored in the clocks to control the program’s time flow. In Uppaal, clock
variables have a different behavior: the time value they hold is incremented automatically
by uppaal’s model-checking engine and they are questioned by uppaal’s invariant and guards,
which control the time flow of the automata. Given this fact, clock translation requires a
special treatment: regarding clock attributions, we opted to create auxiliary variables in each
uppaal model to contain the values that are updated in the Ada source code. When clocks
are questioned, for example with a delay until command, the value of the uppaal clock is
compared to that of the auxiliary variable. This method allows us to model the time flow in
an uppaal automata in a very similar to that of an Ada program.
The main operations regarding these variables are:

e Attributions: Attributions to clock variables are translated to uppaal by creating an
auxiliary integer variable that will contain the final value of the attribution made in
the Ada source code. These auxiliary variables will resemble closely the behavior of
Ada’s time variables providing bounds for the clock variables to be tested against. The
main difference resides on the task’s infinite loops: here, instead of letting the time
values increase infinitely, as happens in an Ada program, in uppaal we choose to reset

the clocks in every loop iteration, keeping the clock time values bounded by the period
of the loop. This facilitates translation and eases the burden of testing extremely large
time values to the model-checking engine.

e Reset: The Ada instruction <Clock_varname>:= Ada.RealTime.Clock(), which sets
the variable’s value with the current time value of Ada’s internal clock is translated as
simple reset of the uppaal clock variable (clock := 0).

e Delay Until: In Ada, the delay until semantics provide a lower bound for the pro-
gram’s time flow to proceed. However this presents an incompatibility with Uppaal’s
time flow constraints: allowing an automata state to have just a lower time bound
would lead the model-checking engine to test extremely large time values for that state
which will inevitably lead to an erroneous system state. Therefore, in order to model
correctly a program we chose to compromise the delay until’s semantics and ensure
that this lower bound will in fact be an exact value for the time flow to proceed. A
translation example will be provided in the following figure.

Annotations: Deadline. Thus far the tool makes use only of annotations present in
an Ada package’s body. As proposed in [5, 13], the deadline annotation will allow the
programmer to fully expressed all the timing bounds that he wishes the program to have.
Thus we employ the use of the deadline annotation to express an upper bound on the
program’s time flow as presented below: the translation to uppaal is made by creating a
state in which the invariant expresses the bound that appears as the deadline’s argument.

delay_until_Current_plus_Milliseconds_2_23

© ,O Current <=2

Current := Clock; Current:=0
delay until Current+Milliseconds(2); |00p_21 CU rre t> =2

--@ deadline Current+Milliseconds(4); . 7 [
deadline_Current_plus|Milliseconds_4 24

@ O Current <=4

if Count_eq_10_25

if Count =10 then

Figure 5: Delay until and Deadline translation.

System Synchronization : There are two types of synchronization applied during the
translation process. To model protected objects correctly, as has already been stated above,
a channel must be created for every protected procedure, function and entry so that, upon
invocation, that method will be executed. In a similar way, for all procedures and functions
present in Ada packages a new uppaal process is created as well as an uppaal channel that
will listen at the start of the procedure/function for it’s invocation. For large systems this
approach will result in the creation of a reasonable amount of uppaal channels, but for
reasons stated above, this must be done so that the program can be correctly translated into
an uppaal model.

10

4.1 Experimental Validation

In this section we’ll observe an Ada program chosen from our test cases and describe it’s full
translation to exemplify the tool’s ability to translate and model an operating Ada program.
Parts of this program have already been shown in the former section and will be referred to
as needed. The tool’s utility will then be described by an auxiliary model that will simulate
a user’s interaction with the program and with examples of timing properties that can aid
in proving that the program’s timing constraints are being met.

Program description. The following Ada program was taken from the SPARK Ravenscar
development report [15] and consists of a simple stopwatch that counts and displays seconds.
The watch has three buttons: the first starts the timer, the second stops it and the third
resets the counter to zero but does not change whether the watch is running or not.

The program comprises three main packages: a User interface, a Timer task and a
Display manager. A fourth package provides a set of constants that can be used to “tune”
the behavior of the program. This package will not be modeled because it contains only
specification parameters for other packages, as happens with specifications packages, but it’s
data will be used in the translating process.

procedure StartClock
is
begin
Ada.Synchronous Task Control.Set True (Operate); .
end srar{clock; : Init_Procedure_1 Timer_StartClock_2

@ Timer_StartClock?

Init_Procedure_1 Timer_StopClock_2

© Timer_StopClock? e

procedure StopClock
is
begin

Operats=true

Ada.Synchronous_Task_Control.Set False (Operate); Operatexfalse

end StopClock; o
with Timer, Display; Ada_Synchronous_Task_Control_Set_True_Operate_3 Ada_Synchronous_Task_Control_Set_False_Operate_3
package body User
is)
Buttons : PT; it Protected 1 protected_body PT is_2 procedure_StopClock_is_5
protected body PT is - = User_PT_StopClock?
procedure StartClock @)
is
begin Timer_StartClockt

Timer.StartClock;
end StartClock; Timer_StartCloc

procedure StopClock

is

begin
Timer.StopClock;

end StopClock;

User_PT /StartClock? User PT Red

procedure ResetClock Display_lpitialize!

is

begin
Display.Initialize;

end ResetClock;

deEd PT; procedure_StartClock_is_3
en ser;

procedure_RegetClock_is_7

©
Display_Initialize_8

Figure 6: Stopwatch User package and the procedures associated with it.

The user package contains a protected type with an interrupt handler for each of the three
buttons. The start and stop button alter a suspension object that controls whether the timer
task runs. The reset button calls the display manager to zero the second count. The timer
package, described in figure 4, declares the suspension object Operate and procedures to
allow it to be set and reset. It also declares a periodic task that actually counts the seconds
timed by the stopwatch.

Finally, the Display package, described in figure 3, maintains an internal counter for the
seconds and also protects an output port which causes the counter to be displayed on the
stopwatch’s screen.

The following figure shows how the uppaal system declarations will look like after the
program is fully translated.

11

;buul Operate; : : Display_protected_State = Display PTO);
9 Project ggcgnstDmtlTumP.rT]g?atajlmirPerJ.ud = 1008; glsp%ayfprucegurefigé_gmllge :Dplsglayjégétlaléf?();
chan Display_PT_Increment; isplay procedure_ econd = Display_ . econd();

D “lchan Display_PT Reset;
o Display PT ichan Display_Initialize; Timer_procedure_StartClock = Timer_ StartClock();
:§ E‘Sp:af—':f'jtf'ﬁl‘ze o chan Display_ddSecond; Timer_procedure_StopClock = Timer_ StopClock();
r mTi‘riznytartCa\i:En ‘chan Timer_StartClock; Timer_task_Timingloop = Timer_TT();
& % Timer_StopClock chan Timer_StopClock; User_protected_Buttons = User_PT();
o % Timer TT sjchan User_PT_StartClock;
o % User PT iichan User_PT_StopClock; system User_Simulation,Display_protected_State, Display_procedure_Initialize,
o % User Simulation -lchan User_PT_ResetClock; Display procedure_AddSecond, Timer_procedure_StartClock,

[y system declarations i Timer_procedure_stopClock, Timer_task_TiminglLoop, User_protected_Buttons;

Figure 7: Stopwatch model global declarations and system declarations.

Program verification. After the translation process of a program we now have a number
of interactive simulation and verification possibilities with which we can test the correctness
of the source code. For example, our stopwatch program consists only in the stopwatch’s
functionality. In order to simulate it’s interaction with the user another timed automata
can be added to the system to model the user’s behavior. With this automata we add user

User_PT_StopClock!

User_PT_ResetClock!
aux > TuningData_Time

TuningData_TimerPeriod

griog User PT ResetClock!

User_PT_StartClock!

Figure 8: User simulation automata.

functionality by activating the button signals. Timing restraints state only that the user will
wait at least the value of TunningData_TimingPeriod, which in our system corresponds to
one second, until another stopwatch button is pushed. This easily allows the programmer
to use a different number of user behaviors through automata specification and test the
program’s robustness.

In a more formal way, we can test the program’s timing constraints with the aid of
temporal logic rules: Uppaal offers simulation and verification functionality based on the
model checking of a subset of TCTL logic [4]. Timing requirements (target properties to be
checked) can be specified using the editing facilities of the GUI, or separately in a file. The
following properties have been proven correct in our stopwatch uppaal system.

A[] not deadlock
A[] Timer_task_TimingLoop.Release_.Time <= 1000

Through the use of counter-examples, uppaal’s model-checking engine proves the failure
of any property and allows the programmer to detect errors in his code and correct them.

5 Conclusion and Future Work

Various different programs have been used to test the tool’s translating capabilities, such
as the Minepump program, an Autopilot simulation program, among others. As can be

12

expected, each new program showed a number of new Ada instructions which, associated
with different coding styles, brought new difficulties and challenges to the translation process.

The main goal of this development stage has been to enlarge the processing scope of the
tool in order for it to encompass a reasonable section of Ada’s sequential instructions and
generate a secure and solid translation algorithm. This has been partially achieved with
results the have become trustworthy with continued testing and development. However, to
extract formal proofs of the system’s correction based on this syntactic translation further
work must be yet performed.

Another dificulty encountered consists in the size of the program: Larger program’s
increase the complexity of the translation process. Real-time systems are often composed
by many modules, and when processing communication aspects in large programs, several
difficulties arise. In order to accurately simulate the program’s behavior the concurrency
model has to be well taken into account. For instance, when modeling Ravenscar compliant
programs, task priorities and scheduling policies must have a precise equivalence in the
generated model. Due to Uppaal’s limited input language, this and other similar problems
present difficulties that must be addressed in the near future.

Future work scheduled for the tool’s development will adress the completion of the
algorithm that automatically infers properties using a larger set of code annotations. We
believe this step is very important since the generation and verification of properties that
cover most of the program’s timing requirements will improve the system’s reliability.

Summing up, this tool may improve the current set of alternatives to analyze real-time
systems. Moreover, we hope this work represents an open door to further publications on
this topic. Indeed, the main goal of this project is to offer the industry an useful and reliable
tool capable of improving the quality and security in the software development area.

13

References

1]

2]

E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model checking. Cambridge, MA,
USA: MIT Press, 1999.

A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the ada ravenscar profile
in high integrity systems,” Ada Lett., vol. XXIV, no. 2, pp. 1-74, 2004.

ACM, “Association of computing machinery (acm) special interest group on ada (sigada)
asis home page,” 2009.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in Formal Methods
for the Design of Real-Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM-RT 200
(M. Bernardo and F. Corradini, eds.), no. 3185 in LNCS, pp. 200-236, Springer—Verlag,
September 2004.

C. Fidge, I. Hayes, and G. Watson, “The deadline command,” 1998.

J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

M. A. Criley, “Avatox (ada, via asis, to xml),” Aug. 2007.
T. A. X. Project, “Xalan,” Nov. 2007.
W. W. W. Consortium, “Xsl transformations (xslt) - version 2.0,” tech. rep., 2007.

E. Moretti, G. Chanteperdrix, and A. Osorio, “New algorithms for control-flow graph
structuring,” in CSMR ’01: Proceedings of the Fifth European Conference on Software
Maintenance and Reengineering, (Washington, DC, USA), p. 184, IEEE Computer
Society, 2001.

P. N. Amey and B. J. Dobbing, “Static analysis of ravenscar programs,” Ada Lett.,
vol. XXIII, no. 4, pp. 5864, 2003.

A. Burns and A. Wellings, Concurrent and Real-Time Programming in Ada. Cambridge
University Press, 2007.

A. Burns and T.-M. Lin, “Adding temporal annotations and associated verification to
ravenscar profile,” in Reliable Software Technologies—Ada-Europe 2003 (J.-P. Rosen
and A. Strohmeier, eds.), vol. 2655 of Lecture Notes in Computer Science, pp. 8091,
Springer-Verlag, 2003. Ravenscar Profile, Model Checking, UPAAL, SPARK.

A. Burns and T. M. Lin, “An engineering process for the verification of real-time
systems,” Form. Asp. Comput., vol. 19, no. 1, pp. 111-136, 2007.

S. Team, “Spark examiner - the spark ravenscar profile,” pp. 1-73, 2008.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in Formal Methods
for the Design of Real-Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SEM-RT 200/,
no. 3185 in LNCS, pp. 200-236, September 2004.

14

