
On the Average Size of PD

automata: an Analytic

Combinatorics Approach

Sabine Broda António Machiavelo Nelma Moreira Rogério Reis

Technical Report Series: DCC-2010-04

Version 1.1 January 2011

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

2

On the Average Size of PD automata: an Analytic

Combinatorics Approach

Sabine Broda António Machiavelo Nelma Moreira Rogério Reis∗

{sbb,nam,rvr}@ncc.up.pt
DCC-FC & LIACC, Universidade do Porto

Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

CMUP, Universidade do Porto
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

Abstract

The partial derivative automaton (Apd) is usually smaller than other non-deterministic
finite automata constructed from a regular expression, and it can be seen as a quotient
of the Glushkov automaton (Apos). By estimating the number of regular expressions
that have ε as a partial derivative, we compute a lower bound of the average number of
mergings of states in Apos and describe its asymptotic behaviour. This depends on the
alphabet size, k, and its limit, as k goes to infinity, is 1

2
. The lower bound corresponds

exactly to consider the Apd automaton for the marked version of the regular expression,
i.e. where all its letters are made different. Experimental results suggest that the average
number of states of this automaton, and of the Apd automaton for the unmarked regular
expression, are very close to each other.

1 Introduction

There are several well-known constructions to obtain non-deterministic finite automata from
regular expressions. The worst case analysis of both the complexity of the conversion
algorithms, and the size of the resulting automata, are well studied. However, for practical
purposes, the average case analysis can provide a much more useful information. Recently,
Nicaud [Nic09a] presented an average case study of the size of the Glushkov automata,
proving that, on average, the number of transitions is linear in the size of the expression.
This analysis was carried out using the framework of analytic combinatorics.

Following the same approach, in this paper we focus on the partial derivative automaton
(Apd), which was introduced by Antimirov [Ant96], and is a non-deterministic version of the
Brzozowski automaton [Brz64]. In order to have an inductive definition of the set of states of
Apd, we consider Mirkin’s formulation of prebases. The equivalence of the two constructions,
Mirkin’s prebases, and sets of partial derivatives, was pointed out by Champarnaud and
Ziadi [CZ01]. We briefly revisit Mirkin’s algorithm, due to an inaccuracy in that presentation.

In 2002, Champarnaud and Ziadi [CZ02] showed that the partial derivative automaton is
a quotient of the Glushkov automaton. As such, the Apd automaton can be obtained from

∗This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and Program POSI, and
by projects RESCUE (PTDC/EIA/65862/2006) and CANTE (PTDC/EIA-CCO/101904/2008).

3

the Apos automaton by merging states. The number of states in Apd, which never exceeds
the number of states in Apos, appears to be significantly smaller in practice. In this work we
are particularly interested in measuring this difference. By estimating the number of regular
expressions that have ε as a partial derivative, we compute a lower bound for the average
number of mergings of states in Apos, and study its asymptotic behaviour. This behaviour
depends on the alphabet size, k, and its limit, as k goes to infinity, is half the number of
states in Apos. Our experimental results suggest that this lower bound is very close to the
actual value.

In appendix A, some explanatory computations of some of Nicaud results can be found.

2 Regular Expressions and Automata

In this section we briefly review some basic definitions about regular expressions and finite
automata. For more details, we refer the reader to Kozen [Koz97] or Sakarovitch [Sak09].

Let Σ = {σ1, . . . , σk} be an alphabet (set of letters) of size k. A word w over Σ is any
finite sequence of letters. The empty word is denoted by ε. Let Σ⋆ be the set of all words
over Σ. A language over Σ is a subset of Σ⋆. The set R of regular expressions over Σ is
defined by:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | α⋆ (1)

where the operator · (concatenation) is often omitted. The language L(α) associated to α
is inductively defined as follows: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ} for σ ∈ Σ, L((α+ β)) =
L(α) ∪ L(β), L((α · β)) = L(α) · L(β), and L(α⋆) = L(α)⋆. The size |α| of α ∈ R is the
number of symbols in α (parentheses not counted); the alphabetic size |α|Σ is its number
of letters. We define ε(α) by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. If two regular
expressions α and β are syntactically identical we write α ≡ β. Two regular expressions
α and β are equivalent if L(α) = L(β), and we write α = β. With this interpretation,
the algebraic structure (R,+, ·, ∅, ε) constitutes an idempotent semiring, and with the unary
operator ⋆, a Kleene algebra.

A non-deterministic automaton (NFA) A is a quintuple (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q the transition relation, q0 the initial
state, and F ⊆ Q the set of final states. The size of a NFA is |Q|+ |δ|. For q ∈ Q and σ ∈ Σ,
we denote the set {p | (q, σ, p) ∈ δ} by δ(q, σ), and we can extend this notation to w ∈ Σ⋆,
and to R ⊆ Q. The language accepted by A is L(A) = {w ∈ Σ⋆ | δ(q0, w) ∩ F 6= ∅}.

3 The Partial Derivative Automaton

Let S ∪ {β} be a set of regular expressions. Then S ⊙ β = {αβ |α ∈ S} if β 6∈ {∅, ε},
S ⊙ ∅ = ∅, and S ⊙ ε = S. Analogously, one defines β ⊙ S.

For a regular expression α and a letter σ ∈ Σ, the set ∂σ(α) of partial derivatives of α
w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅
∂σ(σ

′) =

{

{ε} if σ′ ≡ σ
∅ otherwise

∂σ(α
⋆) = ∂σ(α)⊙ α⋆

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) =

{

∂σ(α)⊙ β ∪ ∂σ(β) if ε(α) = ε
∂σ(α)⊙ β otherwise.

4

This definition can be extended to sets of regular expressions, to words, and to languages by:
given α ∈ R and σ ∈ Σ, ∂σ(S) = ∪β∈S∂σ(β) for S ⊆ R; ∂ε(α) = {α}, ∂wσ(α) = ∂σ(∂w(α)) for
w ∈ Σ⋆; and ∂L(α) = ∪w∈L∂w(α) for L ⊆ Σ⋆. The set of partial derivatives of α, {∂w(α) |
w ∈ Σ⋆}, is denoted by PD(α). The partial derivative automaton Apd(α), introduced by
Antimirov, is defined by

Apd(α) = (PD(α),Σ, δpd, α, {q ∈ PD(α) | ε(q) = ε}),

where δpd(q, σ) = ∂σ(q), for all q ∈ PD(α) and σ ∈ Σ.

Proposition 3.1 (Antimirov) L(Apd(α)) = L(α).

Example 3.2 Throughout the paper we will use the regular expression τ = (a + b)(a⋆ +
ba⋆ + b⋆)⋆, given by Ilie and Yu [IY03]. This example illustrates perfectly the purpose of our
constructions in Section 5.1. For τ one has, PD(τ) = {τ, τ1, τ2, τ3}, where τ1 = (a⋆ + ba⋆ +
b⋆)⋆, τ2 = a⋆τ1 and τ3 = b⋆τ1. The corresponding automaton Apd(τ) is the following:

τ τ1

τ2

τ3

a, b
a, bb

a, b

b

a, b

b

3.1 Mirkin’s Formulation

Champarnaud and Ziadi [CZ01] showed that partial derivatives and Mirkin’s prebases [Mir66]
lead to identical constructions of non-deterministic automata. In order to do this, they
proposed a recursive algorithm for computing the Mirkin’s prebases. However, that algorithm
has an inaccuracy for the concatenation rule. Here, we give the corrected version of the
algorithm.

Let α0 be a regular expression. A set π(α0) = {α1, . . . , αn}, where α1, . . . , αn are non-
empty regular expressions, is called a support of α0 if, for i = 0, . . . , n, there are αil ∈ R (
l = 1, . . . , k), linear combinations of the elements in π(α0), such that αi = σ1 · αi1 + . . . +
σk · αik + ε(αi), where, as above, Σ = {σ1, . . . , σk} is the considered alphabet. If π(α) is a
support of α, then the set π(α) ∪ {α} is called a prebase of α.

Proposition 3.3 (Mirkin/Champarnaud&Ziadi1) Let α be a regular expression. Then
the set π(α), inductively defined by

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)⊙ β ∪ π(β)
π(α⋆) = π(α)⊙ α⋆,

is a support of α.

Proof. For α ≡ ∅ and α ≡ ε, π(α) = ∅ is a support of α, since

α = σ1 · ∅+ . . .+ σk · ∅+ ε(α).

For α ≡ σl, with l = 1, . . . , k, one has
{

σl = σ1 · ∅+ . . .+ σl · ε . . .+ σk · ∅+ ε(σl)
ε = σ1 · ∅+ . . . + σk · ∅+ ε(ε).

5

Thus, π(σl) = {ε}.
Let π(β0) = {β1, . . . , βn} be a support of β0, and let π(γ0) = {γ1, . . . , γm} be a support of
γ0. Thus, for i = 0, . . . , n one has

{

β ≡ β0
βi = σ1 · βi1 + . . .+ σk · βik + ε(βi)

where βil, for i = 0, . . . , n and l = 1, . . . , k, is a linear combination of elements in π(β0).
Also, for j = 0, . . . ,m

{

γ ≡ γ0
γj = σ1 · γj1 + . . .+ σk · γjk + ε(γj)

where γjl, for j = 0, . . . ,m and l = 1, . . . , k, is a linear combination of elements in π(γ0).

Now consider α ≡ β0 + γ0. To show that

π(β0 + γ0) = π(β0) ∪ π(γ0) = {β1, . . . , βn} ∪ {γ1, . . . , γm}

is a support for α note that,

{

β0 = σ1 · β01 + . . .+ σk · β0k + ε(β0)
γ0 = σ1 · γ01 + . . .+ σk · γ0k + ε(γ0).

Consequently,

β0 + γ0 = σ1 · (β01 + γ01) + . . .+ σk · (β0k + γ0k) + ε(β0 + γ0).

Let α ≡ β0γ0. For i = 0, . . . , n, one has

{

α ≡ β0γ0
βiγ0 = σ1 · βi1γ0 + . . . + σk · βikγ0 + ε(βi)γ0.

If ε(βi) = ∅, then ε(βi)γ0 = ∅ = ε(βiγ0). Otherwise

ε(βi)γ0 = γ0 = σ1 · γ01 + . . . + σk · γ0k + ε(γ0)

and ε(βiγ0) = ε(γ0). One gets,

βiγ0 = σ1 · (βi1γ0 + γ01) + . . .+ σk · (βikγ0 + γ0k) + ε(βiγ0).

Since βil are linear combinations of elements in π(β0), we conclude that βilγ0 are linear
combinations of elements in π(β0) ⊙ γ0, and βilγ0 + γ0j are combinations of elements of
π(β0)⊙ γ0 ∪ π(γ0). Note that there must exist at least a 1 ≤ i ≤ n such as ε(βi) = ε. Thus,

π(β0γ0) = π(β0)⊙ γ0 ∪ π(γ0) = {β1γ0, . . . , βnγ0, γ1, . . . , γm}.

Finally, consider α ≡ β⋆
0 . Note that

β⋆
0 = (σ1 · β01 + . . .+ σk · β0k + ε(β0))

⋆ = (σ1 · β01 + . . .+ σk · β0k)β⋆
0 + ε(β⋆

0).

For i = 1, . . . , n we have

βiβ
⋆
0 = σ1 · βi1β⋆

0 + . . .+ σk · βikβ⋆
0 + ε(βi)β

⋆
0 .

6

If ε(βi) = ∅, then ε(βi)β
⋆
0 = ε(βiβ

⋆
0) = ∅ and we are done. Otherwise, as for the case

α ≡ β0γ0, we conclude that each

βiβ
⋆
0 = σ1 · (βi1β⋆

0 + β01β
⋆
0) + . . .+ σk · (βikβ⋆

0 + β0kβ
⋆
0) + ε(βiβ

⋆
0).

Thus,
π(β⋆

0) = π(β0)⊙ β⋆
0 = {β1β⋆

0 , . . . , βnβ
⋆
0}.

�

In his original paper Mirkin showed that |π(α)| ≤ |α|Σ. Furthermore, Champarnaud and
Ziadi established that PD(α) = π(α) ∪ {α}. Thus |PD(α)| ≤ |α|Σ + 1.

3.2 The Glushkov Automaton

To review the definition of the Glushkov automaton, let Pos(α) = {1, 2, . . . , |α|Σ} be the set
of positions for α ∈ R, and let Pos0(α) = Pos(α)∪{0}. We consider the expression α obtained
by marking each letter with its position in α, i.e. L(α) ∈ Σ

⋆
where Σ = {σi | σ ∈ Σ, 1 ≤

i ≤ |α|Σ}. The same notation is used to remove the markings, i.e., α = α. For α ∈ R and
i ∈ Pos(α), let first(α) = {i | ∃w ∈ Σ

⋆
, σiw ∈ L(α)}, last(α) = {i | ∃w ∈ Σ

⋆
, wσi ∈ L(α)} and

follow(α, i) = {j | ∃u, v ∈ Σ
⋆
, uσiσjv ∈ L(α)}. The Glushkov automaton for α is Apos(α) =

(Pos0(α),Σ, δpos, 0, F), with δpos = {(0, σj , j) | j ∈ first(α)} ∪ {(i, σj , j) | j ∈ follow(α, i)}
and F = last(α) ∪ {0} if ε(α) = ε, and F = last(α), otherwise. We note that the number
of states of Apos(α) is exactly |α|Σ + 1. Champarnaud and Ziadi [CZ02] showed that the
partial derivative automaton is a quotient of the Glushkov automaton. The right-invariant
equivalence relation used in showing that the Apd is a quotient of Apos relates the sets first
and last with (multi-)sets of partial derivatives w.r.t a letter.

Example 3.4 The Glushkov automaton for τ , Apos(τ), is the following:

0

1

2

3

4 5

6

a

b

a
b

b

a
b
b

ba

b

a

b
b

a

b

a

b

a

a

b

b

4 Generating Functions and Analytic Methods

A combinatorial class C is a set of objects on which a non-negative integer function (size)
| · | is defined, and such that for each n ≥ 0, the number of objects of size n, cn, is finite.
The generating function C(z) of C is the formal power series

C(z) =
∑

c∈C
z|c| =

∞
∑

n=0

cnz
n.

The symbolic method (Flajolet and Sedgewick [FS08]) is a framework that allows the
construction of a combinatorial class C in terms of simpler ones, B1,. . . ,Bn, by means of

7

specific operations, and such that the generating function C(z) of C is a function of the
generating functions Bi(z) of Bi, for 1 ≤ i ≤ n. For example, given two disjoint combinatorial
classes A and B, with generating functions A(z) and B(z), respectively, the union A ∪ B is
a combinatorial class whose generating function is A(z) + B(z). Other usual admissible
operations are the cartesian product and the Kleene closure.

Usually multivariate generating functions are used in order to obtain estimates about
the asymptotic behaviour of various parameters associated to combinatorial classes. Here,
however, we consider cost generating functions, as Nicaud did. Given f : C → N, the cost gen-
erating function F (z) of C associated to f is F (z) =

∑

c∈C f(c)z
|c| =

∑

n≥0 fnz
n, with fn =

∑

c∈C,|c|=n f(c). With [zn]F (z) denoting the coefficient of zn, the average value of f for the
uniform distribution on the elements of size n of C is, obviously,

µn(C, f) =
[zn]F (z)

[zn]C(z)
.

For the regular expressions given in (1), but without ∅, an average case analysis of different
descriptional measures, including the number of letters or the size of its Glushkov automaton,
has been presented by Nicaud. In particular, it was shown that, for the generating function
for regular expressions, Rk(z), which satisfies

Rk(z) =
1− z −

√

∆k(z)

4z
, where ∆k(z) = 1− 2z − (7 + 8k)z2, (2)

one has

[zn]Rk(z) ∼
√

2(1 − ρk)

8ρk
√
π

ρ−n
k n−3/2, where ρk =

1

1 +
√
8k + 8

. (3)

Here [zn]Rk(z) is the number of regular expressions α with |α| = n.

Nicaud also showed that the cost generating function for the number of letters in an
element α ∈ R is

Lk(z) =
kz

√

∆k(z)
, (4)

and satisfies

[zn]Lk(z) ∼
kρk

√

π(2− 2ρk)
ρ−n
k n−1/2. (5)

From this he deduced that
[zn]Lk(z)

[zn]Rk(z)
∼ 4kρ2k

1− ρk
n. (6)

For k = 2 this results in approximately 0.277n (and not 0.408n, as stated by Nicaud), and
it is easy to see that

lim
k→∞

4kρ2k
1− ρk

ր 1

2
. (7)

This means that the average number of letters in a regular expression grows to about

half its size, for large alphabets. In particular, for k = 10, 100, 1000 we have
4kρ2

k

1−ρk
=

0.467, 0.485, 0.494 respectively.

8

4.1 Analytic Asymptotics

Generating functions can be seen as complex analytic functions, and the study of their
behaviour around their dominant singularities gives us access to the asymptotic form of
their coefficients. We refer the reader to Flajolet and Sedgewick for an extensive study on
this topic. Here we only state the propositions and lemmas used in this paper. Let R > 1
and 0 < φ < π/2 be two real numbers, the domain ∆(φ,R) at z = ξ is ∆(φ,R) = {z ∈
C | |z| < R, z 6= ξ, and |Arg(z − ξ)| > φ}, where Arg(z) denotes the argument of z ∈ C.
A domain is a ∆-domain at ξ if it is a ∆(φ,R) at ξ for some R and φ. The generating
functions we consider have always a unique dominant singularity, and satisfy one of the two
conditions of the following proposition, given by Nicaud.

Proposition 4.1 Let f(z) be a function that is analytic in some ∆-domain at ρ ∈ R
+. If

at the intersection of a neighborhood of ρ and its ∆-domain,

1. f(z) = a − b
√

1− z/ρ + o
(

√

1− z/ρ
)

, with a, b ∈ R, b 6= 0, then [zn]f(z) ∼
b

2
√
π
ρ−nn−3/2.

2. f(z) = a√
1−z/ρ

+ o

(

1√
1−z/ρ

)

, with a ∈ R, and a 6= 0, then [zn]f(z) ∼ a√
π
ρ−nn−1/2.

The following straightforward lemma was used though out our analytic computations.

Lemma 4.2 If f(z) is an entire function with lim
z→ρ

f(z) = a and r ∈ R, then

f(z)(1 − z/ρ)r = a(1− z/ρ)r + o((1− z/ρ)r).

5 The Average Number of State Mergings

5.1 Regular Expressions with ε as a Partial Derivative

Since Apd(α) is a quotient of the Glushkov automaton, we know that it has at most |α|Σ+1
states. But this upper bound is reached if and only if, in every step, during the computation
of π(α), all unions are disjoint. There are however two cases in which this clearly does not
happen. Whenever ε ∈ π(β) ∩ π(γ),

|π(β + γ)| = |π(β) ∪ π(γ)| ≤ |π(β)| + |π(γ)| − 1, (8)

and also

|π(βγ⋆)| = |π(β) ⊙ γ⋆ ∪ π(γ⋆)| = |π(β) ⊙ γ⋆ ∪ π(γ)⊙ γ⋆|
≤ |π(β)| + |π(γ)| − 1. (9)

In this section we will estimate the number of non-disjoint unions formed during the
computation of π(α), that are due to either one of the above cases. This corresponds to
the merging of states in the Glushkov automaton. Notice that there might be additional
mergings resulting from other identical elements in the support of the regular expressions.
Therefore our estimation is only a lower bound of the actual number of state mergings, that
turns out to be surprisingly tight as shown in Section 6.

9

Example 5.1 In order to illustrate the effect of ε being a partial derivative of a subexpres-
sion, we consider the marked version of τ , τ = (a1 + b2)(a

⋆
3 + b4a

⋆
5 + b⋆6)

⋆. In Apos(τ) each
position corresponds to a state. Now, note that, for instance, one has

π(a1 + a2) = π(a1) ∪ π(a2) = {ε} ∪ {ε} = {ε},

and
π(b4a

⋆
5) = π(b4)⊙ a⋆5 ∪ π(a5)⊙ a⋆5 = {ε} ⊙ a⋆5 ∪ {ε} ⊙ a⋆5.

These two cases originate the mergings of states 1 and 2, as well as 4 and 5 of Apos(τ).
There is another state merging that is due to neither of the above cases. In fact,

π(a⋆3 + b4a
⋆
5) = π(a3)⊙ a⋆3 ∪ π(b4)⊙ a⋆5 = {ε} ⊙ a⋆3 ∪ {ε} ⊙ a⋆5.

Since the Apd(τ) is computed for the unmarked τ , there is also the merging of states 3 and
4. This is not the case for Apd(τ), as can be seen in the following diagrams:

0 1, 2

3, 4, 5

6

a, b
a, bb

a, b

b

a, b

b
0 1, 2

3

6

4, 5
a, b

b
a

b

b
ba

a, b

b

a

b
a

b

Apd(τ) Apd(τ)

As this example suggests, the lower bound for the number of mergings of states that
is computed in this paper is precisely the number of mergings that arise when obtaining
Apd(α) from Apos(α).

From now on, α will denote regular expressions given in (1), but without ∅, and its
generating function, Rk(z) is given by (2). As mentioned, the number of mergings for an
expression α depends on the number of subexpressions with ε in its support. We will estimate
this number first. The grammar

αε := σ ∈ Σ | αε + α | αε + αε | α · αε | αε · ε

generates the set of regular expressions for which ε ∈ π(αε), that is denoted by Rε. The
remaining regular expressions, that are not generated by this grammar, are denoted by αε.
The generating function for Rε, Rε,k(z), satisfies

Rε,k(z) = kz + zRε,k(z)Rk(z) + z (Rk(z)−Rε,k(z))Rε,k(z)

+zRk(z)Rε,k(z) + z2Rε,k(z),

which is equivalent to

zRε,k(z)
2 −

(

z2 + 3zRk(z) − 1
)

Rε,k(z)− kz = 0,

and from which one gets

Rε,k(z) =

(

z2 + 3zRk(z)− 1
)

+

√

(z2 + 3zRk(z) − 1)2 + 4kz2

2z
. (10)

10

One has

8zRε,k(z) = −b(z)− 3
√

∆k(z) +

√

ak(z) + 6b(z)
√

∆k(z) + 9∆k(z), (11)

with

ak(z) = 16z4 − 24z3 + (64k + 1)z2 + 6z + 1
b(z) = −4z2 + 3z + 1.

(12)

and ∆k(z) as in (2).

Now,

√

ak(z) + 6b(z)
√

∆k(z) + 9∆k(z) =
√

ak(z)
(

1 + 6 b(z)
ak(z)

√

∆k(z) +
9

ak(z)
∆k(z)

) 1

2

=
√

ak(z)

(

1 + 3 b(z)
ak(z)

√

∆k(z) +
9

2ak(z)
∆k(z)− 1

8

(

6 b(z)
ak(z)

√

∆k(z) +
9

ak(z)
∆k(z)

)2
)

+ o
(

∆k(z)
3

2

)

=
√

ak(z)
(

1 + 3 b(z)
ak(z)

√

∆k(z) +
9

2ak(z)
∆k(z)−

9
2

b(z)2

ak(z)
2∆k(z)

)

+ o
(

∆k(z)
3

2

)

=
√

ak(z) + 3 b(z)
√

ak(z)

√

∆k(z) +
9

2
√

ak(z)

(

1− b(z)2

ak(z)

)

∆k(z) + o

(

∆k(z)
3

2

)

,

one obtains that

8zRε,k(z) = −b(z) +
√

ak(z) + 3

(

b(z)
√

ak(z)
− 1

)

√

∆k(z) + o (∆k(z)) ,

and using again the fact that (see paragraph immediately before equation (4)),

√

∆k(z) =
√

(7 + 8k)ρk(z − ρ̄k)
√

1− z/ρk,

and that
√

(7 + 8k)ρk(ρk − ρ̄k) =
√

2− 2ρk,

together with Lemma 4.2 and Proposition 4.1, one gets

[zn]Rε,k(z) ∼
3

16
√
π

(

1− b(ρk)
√

ak(ρk)

)

√

2(1 − ρk) ρ
−(n+1)
k n−3/2. (13)

Therefore

[zn]Rε,k(z)

[zn]Rk(z)
∼ 3

2

(

1− b(ρk)
√

ak(ρk)

)

. (14)

Note that lim
k→∞

ρk = 0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, and so the asymptotic ratio of

regular expressions with ε on their derivatives approaches 1 as k → ∞.

5.2 The Generating Function of Mergings

Let i(α) be the number of non-disjoint unions appearing, due to (8) or (9), during the
computation of π(α), α ∈ R. These correspond to state mergings of Glushkov automata.

11

Splitting the regular expressions into the disjoint classes αε and αε, i(α) verifies

i(ε) = 0

i(σ) = 0

i(αε + αε) = i(αε) + i(αε) + 1

i(αε + αε) = i(αε) + i(αε)

i(αε + α) = i(αε) + i(α)

i(αε · α⋆
ε) = i(αε) + i(αε) + 1

i(αε · α⋆
ε) = i(αε) + i(α⋆

ε)

i(αε · α) = i(αε) + i(α)

i(α⋆) = i(α),

where α⋆
ε denotes regular expressions that are not of the form α⋆

ε. Clearly, the generating
function for these expressions is Rk(z)− zRε,k(z).

The cost generating function of the mergings, Ik(z), can now be obtained from these
equations by adding the contributions of each single one of them. These contributions can
be computed as here exemplified for the contribution of the regular expressions of the form
(αε + αε):

∑

(αε+αε)

i(αε + αε)z
|(αε+αε)| = z

∑

αε

∑

αε

(i(αε) + i(αε) + 1)z|αε|z|αε|

= z
∑

αε

∑

αε

(i(αε) + i(αε))z
|αε|z|αε|

+ z
∑

αε

∑

αε

z|αε|z|αε|

= 2zIε,k(z)Rε,k(z) + zRε,k(z)
2,

where Iε,k(z) is the generating function for the mergings coming from αε.
Applying this technique to the remaining cases, we have

Ik(z) = 2zRε,k(z)Iε,k(z) + zRε,k(z)
2

+zRε,k(z)Iε,k(z) + zRε,k(z)Iε,k(z)

+zRε,k(z)Ik(z) + zRk(z)Iε,k(z)

+z2(2Rε,k(z)Iε,k(z) +Rε,k(z)
2)

+zRε,k(z)Iε⋆,k(z) + zRε⋆,k(z)Iε,k(z)

+zRε,k(z)Ik(z) + zRk(z)Iε,k(z)

+zIk(z)

Using Rε⋆,k(z) = Rk(z)−zRε,k(z), Rε,k(z) = Rk(z)−Rε,k(z) and the same relation for Ik(z),
we further simplify to

Ik(z)(1 − z) = 4zRk(z)Ik(z) + zRε,k(z)
2 + z2Rε,k(z)

2.

From (2), we finally get

Ik(z) =
(z + z2)Rε,k(z)

2

√

∆k(z)
. (15)

12

The asymptotic value of the coefficients of this generating function can now be computed
using (11). Note that

64z2Rε,k(z)
2 =

(

b(z)+3
√

∆k(z)
)2

+ak(z)+6b(z)
√

∆k(z)+9∆k(z)

−2
(

b(z)+3
√

∆k(z)
)

√

ak(z)+6b(z)
√

∆k(z)+9∆k(z)

= ak(z)+b(z)2+12b(z)
√

∆k(z)+18∆k(z)

−2
(

b(z)+3
√

∆k(z)
)

(√
ak(z)+3 b(z)√

a
k
(z)

√
∆k(z)+

9

2
√

a
k
(z)

(

1− b(z)2

a
k
(z)

)

∆k(z)

)

+o(∆k(z))

= ak(z)+b(z)2−2b(z)
√

ak(z)+

(

12b(z)−6
√

ak(z)−6
b(z)2√
ak(z)

)√
∆k(z)

+9

(

2−2 b(z)√
a
k
(z)

− b(z)√
a
k
(z)

(

1− b(z)2

a
k
(z)

))

∆k(z)+o(∆k(z))

which yields, using once more 1√
∆k(z)

= 1√
2−2ρk

√
1−z/ρk

+ o

(

1√
1−z/ρk

)

, Lemma 4.2 and

Proposition 4.1,

[zn]Ik(z) ∼
1 + ρk
64

(

ak(ρk) + b(ρk)
2 − 2b(ρk)

√

ak(ρk)
)

√
π
√
2− 2ρk

ρ
−(n+1)
k n−1/2. (16)

Table 1 exhibits the ratio between the approximation given by this computation and the
actual coefficients of the power series of Ik(z), for several values of k and n.

n = 10 20 50 100 200 400

k = 2 1.34 1.14 1.05 1.03 1.01 1.01
k = 3 1.35 1.12 1.05 1.02 1.01 1.01
k = 5 1.38 1.12 1.04 1.02 1.01 1.01
k = 10 — 1.13 1.04 1.02 1.01 1.01
k = 20 — — 1.04 1.02 1.01 1.01
k = 50 — — — 1.02 1.01 1.01
k = 100 — — — — 1.01 1.04

Table 1: Accuracy of the approximation

From (3) and (16) one easily gets the following asymptotic estimate for the average
number of mergings

[zn]Ik(z)

[zn]Rk(z)
∼ λk n, (17)

where λk = (1+ρk)
16(1−ρk)

(

ak(ρk) + b(ρk)
2 − 2b(ρk)

√

ak(ρk)
)

. Using again the fact that lim
k→∞

ρk =

0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, one gets that

lim
k→∞

λk =
1

4
.

This means that, for a regular expression of size n, the average number of state mergings is,
asymptotically, about n

4 .
In order to obtain a lower bound for the reduction in the number of states of the Apd

automaton, as compared to the ones of the Apos automaton, it is enough to compare the

13

number of mergings for an expression α with the number of letters in α. From (5) and (17)
one gets

[zn]Ik(z)

[zn]Lk(z)
∼ 1− ρk

4kρ2k
λk = ιk. (18)

One has:

ι1 ≃ 0.238017205

ι2 ≃ 0.3035828714

ι3 ≃ 0.3367358440

ι4 ≃ 0.3574525514

ι5 ≃ 0.3719183914

ι10 ≃ 0.4086563618

ι20 ≃ 0.4351080490

ι30 ≃ 0.4469066947

ι50 ≃ 0.4587820882

ι100 ≃ 0.4707799700

ι1000 ≃ 0.4907110948

It is easy to see that

lim
k→∞

ιk =
1− ρk
4kρ2k

λk =
1

2
.

In other words, asymptotically, the average number of states of the Apd automaton is about
one half of the number of states of the Apos automaton, and about one quarter of the size
of the corresponding regular expression, by (7). As shown in Table 2 the actual values are
close to these limits already for small alphabets.

6 Comparison with Experimental Results

In order to compare our estimates with the actual number of states in a Apd automaton we
ran some experiments. We used the FAdo library [AAA+09, fad09], that includes algorithms
for computing the Glushkov automaton and the partial derivatives automaton corresponding
to a given regular expression. For the results to be statistically significant, regular expressions
must be uniformly random generated. The FAdo library implements the method described by
Mairson [Mai94] for the uniform random generation of context-free languages. The random
generator has as input a grammar and the size of the words to be generated. To obtain
regular expressions uniformly generated in the size of the syntactic tree (i.e. parentheses
not counted), a prefix notation version of the grammar (1) was used. For each size, n,
samples of 1000 regular expressions were generated. Table 2 presents the average values
obtained for n ∈ {1000, 2000} and k ∈ {2, 3, 5, 10, 20, 30, 50}, and the two last columns give
the asymptotic ratios obtained in (17) and (18) for the corresponding values of k.

As can be seen from the columns with bold entries, the asymptotic averages obtained
with the analytic methods are very close to the values obtained experimentally. In general,
even for small values of n, the ratio of the number of states of Apd to the number of states
of Apos coincide (within an error of less than 3%) with our (asymptotic) estimates. These
results indicate that occurrences of ε in the set of partial derivatives are the main reason for

14

k |α| |α|Σ |Pos0| |δpos| |PD| |δpd| |PD| |α|Σ−|PD|
|α|Σ

|α|Σ
|α|

[zn]I(z)
n×[zn]R(z)

[zn]I(z)
[zn]L(z)

2 1000 276 277 3345 187 1806 190 0.323 0.276
0.084 0.304

2 2000 553 554 7405 374 3951 380 0.324 0.277

3 1000 318 319 2997 206 1564 208 0.352 0.318
0.107 0.337

3 2000 638 639 6561 410 3380 416 0.357 0.319

5 1000 364 365 2663 223 1339 226 0.387 0.364
0.135 0.372

5 2000 728 729 5535 446 2768 451 0.387 0.364

10 1000 405 406 2203 236 1079 238 0.417 0.405
0.168 0.409

10 2000 809 810 4616 471 2235 475 0.418 0.405

20 1000 440 441 1842 245 875 246 0.443 0.44
0.192 0.435

20 2000 880 881 3735 489 1768 492 0.444 0.44

30 1000 453 454 1676 247 796 248 0.455 0.453
0.203 0.447

30 2000 906 907 3380 496 1603 498 0.453 0.453

50 1000 466 467 1516 250 718 251 0.464 0.466
0.214 0.459

50 2000 933 934 3065 499 1441 500 0.465 0.467

100 — — — — — — — — — 0.225 0.471

1000 — — — — — — — — — 0.242 0.491

Table 2: Experimental results for uniform random generated regular expressions

a smaller number of states in the Apd automaton, when compared with the one in the Apos

automaton. This is confirmed by comparing the column containing the number of states of
Apd (|PD|) with the one containing those of its marked version (|PD|).

7 Final remarks

In this paper we studied, using analytic methods, the average number of states of partial
derivative automata. We proved this number to be, on average, half the number of states
when considering the Glushkov automata case. An approach similar to the one applied here
can be used to estimate the average number of transitions of Apd. According to Table 2, this
number also seems to be half the number of transitions of Apos. At first sight, one would
expect that the use of alternative grammars for the generation of regular expressions, with
less redundancy, such as the ones presented by Lee and Shallit [LS05], would lead to different
results. However, experimental studies do not support this expectation, since they do not
show significant differences from the results here presented.

References

[AAA+09] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar:
tools for automata manipulation and visualization. In S. Maneth, editor, 14th
CIAA 2009, volume 5642 of LNCS, pages 65–74. Springer-Verlag, 2009.

[Ant96] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci., 155(2):291–319, 1996.

15

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[CZ01] J. M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[CZ02] J. M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and
finite automaton constructions. Theoret. Comput. Sci., 289:137–163, 2002.

[fad09] FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo, Access date:1.12.2009.

[FS08] P. Flajolet and R. Sedgewick. Analytic Combinatorics. CUP, 2008.

[IY03] L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140–162, 2003.

[Koz97] D. C. Kozen. Automata and Computability. Undergrad. Texts in Computer
Science. Springer-Verlag, 1997.

[LS05] J. Lee and J. Shallit. Enumerating regular expressions and their languages. In
M. Domaratzki, A. Okhotin, K. Salomaa, and S. Yu, editors, 9th CIAA 2004,
volume 3314 of LNCS, pages 2–22. Springer-Verlag, 2005.

[Mai94] H. G. Mairson. Generating words in a context-free language uniformly at random.
Information Processing Letters, 49:95–99, 1994.

[Mir66] B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

[Nic09a] C. Nicaud. On the average size of Glushkov’s automata. In A. Dediu, A.-M.i
Ionescu, and C. M. Vide, editors, 3rd LATA 2009, volume 5457 of LNCS, pages
626–637. Springer-Verlag, 2009.

[Nic09b] C. Nicaud. On the average size of Glushkov’s automata. In A. Dediu, A.-M.i
Ionescu, and C. M. Vide, editors, LATA 2009: 3rd International Conference
Language and Automata Theory and Applications, volume 5457 of LNCS, pages
626–637. Springer-Verlag, 2009.

[Sak09] J. Sakarovitch. Elements of Automata Theory. CUP, 2009.

A

In this appendix we give some details useful for deriving some of the results obtained by
Nicaud [Nic09b]. For that, the following lemma will be useful.

Lemma A.1 Let ρ ∈ R
+ and ∆(z) = h(z) (1− z/ρ), for some entire function h(z) such

that
√

h(z) is analytic at z = ρ. Given

N(z) = a(z) + b(z)
√

∆(z) + o
(

√

1− z/ρ
)

D(z) = c(z) + d(z)
√

∆(z) + o
(

√

1− z/ρ
)

,

16

where a(z), b(z), c(z), d(z) are entire functions such that the limits

α = lim
z→ρ

a(z) β = lim
z→ρ

b(z)

γ = lim
z→ρ

c(z) δ = lim
z→ρ

d(z)

exist and γ 6= 0, one then has:

N(z)

D(z)
=

α

γ
− αδ − βγ

γ2

√

∆(z) + o
(

√

1− z/ρ
)

,

provided that

a(z)γ − αc(z) = o
(

√

1− z/ρ
)

.

Proof. One has:

N(z)
D(z) −

(

α
γ − αδ−βγ

γ2

√

∆(z)
)

=

=

(

a(z)+b(z)
√

∆(z)
)

γ2−
(

αγ−(αδ−βγ)
√

∆(z)
)(

c(z)+d(z)
√

∆(z)
)

γ2
(

c(z)+d(z)
√

∆(z)
)

Since the denominator has non-zero limit as z → ρ, it is enough to see that the numerator

is o
(

√

1− z/ρ
)

. But that numerator is equal to:

(a(z)γ − αc(z)) γ + (γ(b(z)γ − αd(z)) + c(z)(αδ − βγ))
√

∆(z) + ∆(z),

and the result immediately follows from the hypothesis made. �

A.1 Asymptotics of Generating Functions for Regular Expressions

Nicaud shows that the generating function for the regular expressions over an alphabet with
k letters, Rk(z), is given by

Rk(z) =
1− z −

√

∆k(z)

4z
. (19)

Using Lemma A.1, with a(z) = 1 − z, b(z) = −1, c(z) = 4z, d(z) = 0, and ρ = ρk, so that
α = 1− ρk, β = −1, γ = 4ρk, δ = 0 and a(z)γ − αc(z) = 4(ρk − z), one immediately gets:

Rk(z) =
1− ρk
4ρk

− 1

4ρk

√

∆k(z) + o
(

√

1− z/ρk

)

. (20)

In order to somewhat simply notation, we put

ηk = 1 +
√
8k + 8 =

1

ρk
. (21)

Hence:

Rk(z) =
1

4
(ηk − 1)− 1

4
ηk
√

∆k(z) + o
(

√

1− z/ρk

)

. (22)

17

Next, for the generating function for the regular expressions whose associated languages
recognize the empty word, Rk,ǫ(z), it is shown that

Rk,ǫ(z) =
1 +Rk(z)

1/z − 2Rk(z)
.

Using (22), one sees that Lemma A.1 can be here applied, with:

a(z) = 1 +
1

4
(ηk − 1) =

1

4
(ηk + 3) = α

b(z) = −1

4
ηk = β

c(z) = 1/z − 2 · 1
4
(ηk − 1) = 1/z − 1

2
ηk +

1

2
 γ =

1

2
(ηk + 1)

d(z) =
1

2
ηk = δ,

since a(z)γ − αc(z) = α(γ − c(z)) = α
(

1
ρk

− 1
z

)

= o
(

√

1− z/ρk

)

.

As

α

γ
=

ηk + 3

2(ηk + 1)
=

4 + 2
√
2k + 2

2(2
√
2k + 2 + 2)

=
2k +

√
2k + 2

4k + 2
,

αδ − βγ

γ2
=

1
4(ηk + 3) · 1

2ηk +
1
4ηk · 1

2(ηk + 1)
1
4(ηk + 1)2

=
4(ηk + 2)

(ηk + 1)2
· 1

4ρk
,

and
4(ηk + 2)

(ηk + 1)2
=

4
(

3 +
√
8k + 8

)

(

2 +
√
8k + 8

)2 =
3 + 2

√
2k + 2

(

1 +
√
2k + 2

)2 =
1− 2k + 4k

√
2k + 2

(2k + 1)2
,

one does obtain:

Rk,ǫ(z) =
2k +

√
2k + 2

4k + 2
− 1− 2k + 4k

√
2k + 2

(2k + 1)2

√

∆k(z)

4ρk
+ o

(

√

1− z/ρk

)

.

For future reference, we write this in the following simpler form:

Rk,ǫ(z) =
ηk + 3

2(ηk + 1)
− ηk(ηk + 2)

(ηk + 1)2

√

∆k(z) + o
(

√

1− z/ρk

)

. (23)

A.2 Asymptotics of the Generating Function for the Number of Letters

The generating function for the number of letters in a regular expression over an alphabet
with k letters is:

Lk(z) =
kz

√

∆k(z)
.

Now, here we cannot apply Lemma A.1, since in this case γ = 0. One can however use
Lemma 4.2.

One applies this to Lk(z) using the fact that

∆k(z) = (7 + 8k)(ρk − z)(z − ρ̄k),

18

so that
kz

√

∆k(z)
=

kz/
√

(7+8k)ρk(z−ρ̄k)
√

1− z/ρk
.

Noticing (see (2)) that (7+8k)ρ2k = 1−2ρk and that ρkρ̄k = − 1
7+8k , one gets (7+8k)ρk(ρk−

ρ̄k) = (7 + 8k)ρ2k − (7 + 8k)ρk ρ̄k = 2− 2ρk, and therefore

Lk(z) =
kρk/

√
2(1−ρk)

√

1− z/ρk
+ o

(

1
√

1− z/ρk

)

. (24)

It now follows from Proposition 4.1:

[zn]Lk(z) ∼
k

√

2π(1− ρk)
ρ
−(n−1)
k n−1/2. (25)

We also note that, in the same way, equation (20) implies

[zn]Rk(z) ∼
√

2(1− ρk)

8
√
π

ρ
−(n+1)
k n−3/2. (26)

It is from these two asymptotic relations that Nicaud gets the asymptotic average of
letters in an element of size n in R:

[zn]Lk(z)

[zn]Rk(z)
∼ 4kρ2k

1− ρk
n (27)

A.3 Asymptotics of the Generating Function for first(α)

Nicaud showed that the cost generating function for first(α), α ∈ R, was given by:

Fk(z) =
k

1
z − 1− 3Rk(z)−Rk,ǫ(z)

.

The asymptotic value of the coefficients of this function can can be computed using again
Lemma A.1, with:

a(z) = k = α

b(z) = 0 = β

c(z) = 1/z − 1− 3

4
(ηk − 1)− ηk + 3

2(ηk + 1)
 γ =

1

4
(ηk − 1)− ηk + 3

2(ηk + 1)

d(z) =
3

4
ηk +

ηk(ηk + 2)

(ηk + 1)2
=

3

4
ηk + 1− 1

(ηk + 1)2
= δ,

which yields a(z)γ − αc(z) = k
(

1
ρk

− 1
z

)

. Now, using the fact that

η2k = 2ηk + (7 + 8k),

one gets

γ =
η2k − 1− 2ηk − 6

4(ηk + 1)
=

8k

4(ηk + 1)
=

2k

ηk + 1
=

k

1 +
√
2k + 2

,

δ = ηk ·
3(ηk + 1)2 + 4(ηk + 2)

4(ηk + 1)2
=

ηk
4(ηk + 1)2

(

3η2k + 10ηk + 11
)

=
ηk

4(ηk + 1)2
(16ηk + 24k + 32) =

ηk
(ηk + 1)2

(

12 + 6k + 8
√
2k + 2

)

.

19

Therefore,

α

γ
= 1 +

√
2k + 2,

αδ − βγ

γ2
=

kδ

γ2
=

ηk
4k

(

12 + 6k + 8
√
2k + 2

)

=
1

4ρk

(

12 + 6k + 8
√
2k + 2

)

.

20

