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Abstract— We address the problem of integrating real-time
fault-tolerance mechanisms into peer-to-peer systems, with spe-
cific architecture and deployment constraints. For this purpose
we implemented a prototype hierarchical peer-to-peer framework
in which the leaf peers are sensors that generate different kinds
of traffic such as mesh management, events, video and audio.
We evaluate the framework by measuring packet loss, response
time, jitter and mesh overhead for each type of traffic under
peer failure. We report significant gains in QoS for all types of
traffic, when using the fault-tolerance mechanisms, with minimal
response time and mesh management overhead.

Abstract— We address the problem of integrating real-time
fault-tolerance mechanisms into peer-to-peer systems, with spe-
cific architecture and deployment constraints. For this purpose
we implemented a prototype hierarchical peer-to-peer framework
in which the leaf peers are sensors that generate different kinds
of traffic such as mesh management, events, video and audio.
We evaluate the framework by measuring packet loss, response
time, jitter and mesh overhead for each type of traffic under
peer failure. We report significant gains in QoS for all types of
traffic, when using the fault-tolerance mechanisms, with minimal
response time and mesh management overhead.

I. INTRODUCTION AND MOTIVATION

Distributed computing systems are becoming larger, more
complex, more heterogeneous and more pervasive. In particu-
lar, the development and management of large-scale informa-
tion systems for application domains that require real-time and
fault-tolerant computing is pushing the limits of the current
state-of-the-art in middleware frameworks. Requirements for
faster development cycles, software reuse, greater scalability,
dependability and maintenance motivate the research and use
of decentralized middleware-based architectures to serve as
mediators between applications and the underlying operating
systems, network protocols stacks, and hardware.

”Whatever can go wrong will go wrong, and at the worst
possible time, in the worst possible way at a blink of an eye.

So imagine that in a train wreck!”, Adaptation of Murphy’s
Law. Every system is vulnerable to faults, as they could come
from natural disasters, hardware failures or software bugs, just
to name a few. The railroads systems are no exception, thus
our goal is to ensure that the information flows in the system
are delivered in deterministic time and always in a consistent
manner. For achieving those goals, a infrastructure must be
able to be resilient, in a way that is able to detect faults, recover
from them, while maintaining deterministic behavior.

Fault-tolerance support makes such systems capable of
detecting certain categories of failures (e.g. hardware failure,
network connectivity) and recover from these without, or with
minimal, disruption of services. Real-time support, on the
other hand, allows for the implementation of time critical
operations that must be completed with a high level of priority
or within a rigid time frame. To provide for such features
a system must be resource aware and capable of directly
controlling resource distribution at a very fundamental level
(e.g. network bandwidth, cpu reservation). Middleware sys-
tems that combine both of these features pose quite formidable
implementation problems given the difficulty in integrating,
into a single framework, all this level of control. The problem
that this paper addresses is the seamless integration of fault-
tolerance and real-time, and all the necessary mechanisms
needed to accomplished that.

Our approach is novel in that explores the networking layer
as a means to implement more lightweight fault-tolerance
support, and still accommodate the necessary resource reser-
vation mechanisms to provide real-time support. In this paper
we explore this idea by directly embedding fault-tolerance
mechanisms into peer-to-peer meshes, taking advantage of
their decentralized and resilient nature. For example, peer-to-
peer networks readily provide the infra-structure required to
maintain and locate redundant copies of resources. Given its
dynamic and adaptative nature, we think they are the most
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suitable candidate for this type of systems.
Research in fault-tolerance has focused mainly in providing

mechanisms that are able to couple with faults, normally, from
a high level perspective incurring in an excessive overhead
from cross-layering. Nevertheless, the principal obstacle for
the development of more efficient fault-tolerance mechanisms
lies in the architectural adoption of the client-server paradigm,
that limits the overall scalability of such systems. The amount
of resources needed by these fault-tolerance mechanisms and
the non-seamless integration of real-time, significantly limits
the introduction of real-time semantics, thus leaving the user
the choice of either having fault-tolerance or real-time. In
the P2P space, research has focused on providing real-time
streaming capabilities to video and audio systems, while a
parallel body of research addressed the use of fault-tolerance
in distributed file-sharing systems.

To the best of you knowledge no system, P2P or otherwise,
explores the networking layer as a means to implement more
lightweight fault-tolerance support with integrated support for
real-time by directly embedding fault-tolerance mechanisms
into peer-to-peer systems, taking advantage of their decentral-
ized and resilient nature, while enforcing QoS policies through
the use of resource reservation mechanisms.

This work is part of an effort for the development of
new middleware technologies at EFACEC1, to cope with
information systems used to manage public, high-speed,
transportation networks. Such systems typically transfer large
amounts of streaming data; have erratic periods of extreme
network activity; are subject to relatively common hardware
failures and for comparatively long periods, and; require low
jitter and fast response time for safety reasons (e.g. vehicle
coordination). Latest production system were deployed in
Dublin and Tenerife for public information management and
in-vehicle information.

II. PROBLEM STATEMENT

A. Goals
Our goal is to create a system that integrates fault-tolerance

mechanisms directly into the P2P network infrastructure in
order to allow transparent lightweight fault-tolerance. The
main goals are:

• to ensure that, in the fault-free case, the end-to-end
response time for a fault-tolerant version is as close as
possible to the response time for its non-fault-tolerant
counterpart;

• to support mixed traffic types with specific QoS parame-
ters;

• to ensure that QoS parameters for each type of traffic are
met.

B. Non-Goals/Scope
This work does not aim to provide video or audio streaming

capabilities through the use of P2P, but to be able to support

1EFACEC, the largest Portuguese Group in the field of electricity, with
a strong presence in systems engineering namely in public transportation
systems, employs around 3000 people and has a turnover of almost 500 million
euro; it is established in more than 50 countries and exports almost half of
its production (c.f. http://www.efacec.pt).

fault-tolerance for several types of traffic with different QoS
demands.

C. Challenges

The ultimate challenge is of combining fault-tolerance and
real-time support in a single system with a efficient use
of hosts and network resources. For that, a efficient fault-
tolerance mechanisms must be use, that takes advantage of the
properties of P2P networking, while maintaining the desired
QoS goals.

D. Validation Strategy

In order to validate our concepts, we implemented a simula-
tion bench for providing measurements to our prototype. This
bench is responsible for injecting faults during simulations,
and for retrieving the produced statistical data.

E. Assumptions/Study Model

We have implemented a prototype for a hierarchical peer-to-
peer framework, based on the P3 [15] architecture and in the
lines of systems like Gnutella [5] and P-Grid [1]. The peers
in the leafs of the hierarchy are sensors that stream data and
events to be delivered to clients. To evaluate the prototype we
use the following metrics: packet loss, response time, jitter
and mesh management overhead. These where evaluated in
scenarios that involved one or more peer failures. We aim
to show that even with all the fault-tolerance mechanisms
running, we are able to introduce only a small amount of
overhead while minimizing the latency and jitter in response
times.

The remainder of the paper is structured as follows. Sec-
tion III describes the our case study and the approach to
the problem. Section IV describes the metrics we use for
evaluation, the experimental setup, and finally the discusses
the results we have obtained (subsection IV-I). In section V
we do a reflection on our experience while implementing the
prototype, and from the results obtained, we speculate about
possible solutions to current problems. Section VII ends the
paper with the conclusions and references for future work.

III. APPROACH

A. Case Study

The railroads system are complex in nature due to the
multitude of subsystems present, namely public information,
in-vehicle information, SCADA and signalling. Our case study
focus on the public information subsystem, but in no way is
limited to it. This subsystem primarily objective is to manage
relevant data between stations and the control center, and
vive-versa. The managed data types includes video, audio
and events. Video and audio can be streamlined from the
control center to a station, or a set of stations, to provide
information, such as the next train arrival at a specific track,
advertisement and entertainment. But video and audio can also
be collected from stations through the use of the CCTV system
and streamed to the control center, as part of the security
screening processes. Events are triggered when some failure
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happens, such as hardware failure, network link failure, etc.
They can be originate from any point of the network, but their
destination is always the control center.

Each station has a computational node that is responsible
for managing its equipment, such as speakers, monitors, etc. In
turn, a set of stations is managed by a second-tier server, that
manages all the aggregation operations, such synchronizing
public information announcements. At the top of the infra-
structure, is the first-tier server that is controlled by the client
node present in the control center, thus fundamentally creating
a hierarchical tree based system.

B. Architecture

In this subsection we overview the architecture of the peer-
to-peer mesh. The architecture is based on the P3 frame-
work [15], a hierarchical P2P mesh.

1) Terminology: There are 3 types of peers: super-peer,
sensor-peer, and client-peer. A super-peer is respon-
sible for maintaining the organization of the mesh and for
providing access points to the mesh for external peers. A
sensor-peer is dedicated to data collection and its transmission
to the mesh. Client-peers act as sinks in the network. Requests
for data with given QoS parameters are issued from these peers
and the mesh routes the relevant data packets from the sensor
peers up to the client peers. P3 networks follow a tree like
mesh, in which all the nodes, except the leafs, represent cells.
A cell is a set of super-peers that collaborate to maintain a
portion of the mesh tree.

2) Key Architectural Decisions: P3 (Figure 1) was chosen
because of its natural mapping with our case study III-A,
following a tree based mesh network. Every type of traffic
has its own dedicated communications channels in order to
avoid multiplexing of data.

...

... ...

Super Cell Sensor Peer Super Peer Client

Cell 0 ...

Cell 0n ...Cell 01 ...

...

Fig. 1: P3 architecture.

3) Building Blocks: The prototype was built in Java using
TCP sockets for intra-cell communication. The discovery
service provided in the cell use UDP multicast sockets,
while the in-cell fault-tolerance mechanisms are supported by
JGroups [2], a reliable group communication framework.

4) Implementation: Each cell is uniquely identified by a
CellID, represented by a 32-byte string. Each byte represents
the order of the cell in a given tree level. For example, the
root cell is identified by ’0’. If k is the tree width, the
possible siblings of the root cell are {’01’, ..., ’0k’};

in turn the possible siblings of cell ’01’ are {’011’,
..., ’01k’} and so on. Each cell is composed of a set
of peers, with unique identifiers, up to a maximum number, a
parameter of the simulation. The cells are disjoint. Cell and
peer identifiers completely specify the position of a peer in
the network (Figure 1).

Each super-peer provides a set of services. The Mesh
service is the most fundamental service, in the sense that
it supports all the remaining services: Audio, Video
and Events, and has two sub-services: Membership
and Discovery. The membership service provides the
mechanisms for joining and leaving the mesh, and is
composed of two layers: the first layer is responsible for
the communications within the cell and is supported by
the use of a reliable group communication framework
(JGroups [2] in our case), while the second layer handles
the inter-cell communications, based on TCP/IP sockets.
The Discovery sub-service handles all the queries and
information dissemination in the mesh (including cell routing),
and is supported by a lightweight multicast implementation.
Both sub-services use the same addressing routine, that is
based on the following formulae:
tree pos(cellid[], span) =

∑depth−1
i=0 spani +∑depth

i=0 cellid[i] ∗ spandepth−i

tree pos address(ip, port, cellid[], span) = (ip, port+

tree pos(cellid[], span))

In the above formulae, cellid[] is the argument that
contains the string of the cell identifier, span is the argument
for specifying the mesh tree span, ip and port specifies
the base IP address and port. For example, if we use a
tree span of 2, ’011’ as the cell identifier, ’228.1.2.2’ and
1000 as the base IP address and port, then the result would be:

tree pos address(′228.1.2.2′, 1000,′ 011′, 2) =

(′228.1.2.2′, 1003)

The simulator uses (’228.1.2.2’,1000) as the base address
of Membership and (’228.1.2.3’,1000) for Discovery.

C. Algorithms

In this subsection we overview the basic algorithms used in
the construction, management, fault-detection and recovery of
the peer-to-peer mesh.

1) Organization: The mesh construction algorithm is de-
picted in Listing 1. To enter the mesh, a new peer calls the
JoinMesh procedure (line 1), which then requests a cell
to connect itself by making a call to the RequestCell
procedure (shown in Listing 2, lines 1-10). This procedure
multicasts a discovery message that tries to find the peer-
to-peer overlay. If it fails, if the root cell is empty and if
the joining peer is a super-peer then the returned CellID
is he root cell identifier. In this case, the BindToCell
procedure just creates a new cell (the root cell, actually a
JGroups group) and the peer becomes the first peer of the
overlay. The procedure also starts the network services: Mesh,
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Event, Audio and Video in the peer. If the peer-to-peer
overlay is detected, the active peers reply to the join request,
RequestCell returns an appropriate cell and the peer tries
to bind to it. In BindToCell, after the peer binds to the
cell (joins the corresponding JGroups group), it must request
a parent peer from the cell immediately above in the hierarchy
(lines 22-28). If this request fails then the join process also
fails, otherwise the parent peer is queried for its service
endpoints. The joining peer then starts each service using
the parent’s endpoint information to create connections to the
respective services in the parent peer.

Listing 1 Join mesh algorithm
1: procedure JOINMESH
2: cellId← RequestCell()
3: if cellId = ∅ then
4: return ∅
5: end if
6: cell← BindToCell(cellId)
7: if cell = ∅ then
8: return ∅
9: end if

10: return cell
11: end procedure

12: procedure REJOINMESH(cell)
13: cellId← cell.CellID()
14: cell← BindToCell(cellId)
15: if cell = ∅ then
16: return JoinMesh()
17: end if
18: return cell
19: end procedure

20: procedure BINDTOCELL(cellId)
21: serviceEndpoints← ∅
22: if cellId.isRoot() 6= True then
23: parentCellId← ParentCellId(cellId)
24: parentInfo← RequestParent(parenCellId)
25: if parentInfo = ∅ then
26: return ∅
27: end if
28: serviceEndpoints← parentInfo.GetEndpoints()
29: end if
30: for all service in [Mesh, V ideo,Audio, Event] do
31: service.Start(serviceEndpoints)
32: end for
33: if status 6= OK then
34: return ∅
35: end if
36: return cell
37: end procedure

Listing 2 Discovery algorithms
1: procedure REQUESTCELL(peerType)
2: discoveryRoot ← GetDiscovery(CellIDRoot)
3: requestMsg ← CreateRequestCellMessage()
4: request← discoveryRoot.SendRequest(requestMsg)
5: if request = ∅ then
6: if peerType = SuperPeer then
7: return CellIDRoot

8: else
9: return ∅

10: end if
11: end if
12: request.WaitForReply()
13: return request.GetReplyMessage()
14: end procedure

15: procedure HANDLEREQUESTCELL(cell,msg)
16: if cell.CellID().isRoot() 6= True then
17: return
18: end if
19: reply ← CreateReplyMessage(GetCell(msg.GetPeerType()))
20: cell.getDiscovery().SendMessage(reply)
21: return
22: end procedure

23: procedure REQUESTPARENT(cellDiscovery, peerType)
24: requestMsg ← CreateRequestParentMessage(peerType)
25: request← cellDiscovery.SendRequest(requestMsg)
26: if request = ∅ then
27: return ∅
28: end if
29: request.WaitForReply()
30: return request.GetReplyMessage()
31: end procedure

32: procedure HANDLEREQUESTPARENT(cell,msg)
33: if IsPeerAllowed(msg.getPeerType() then
34: reply ← CreateAcceptMessage(getServicesInfo())
35: cell.getDiscovery().SendMessage(reply)
36: end if
37: end procedure

If the binding cell is not the root cell, the joining pro-
cess will only be complete when the Mesh service startup
completes. The startup (and leave) algorithms are depicted
in Listing 3. The startup procedure begins with the peer
sending the join message to its cell (line 3); if the cell is
not the root, then the Mesh service creates a connection
to the parent’s service, while hashing a pending request in
the current cell, containing information about the original
message and peer (lines 4-8). This information is used to
match future acknowledgments to the request, insuring the
integrity of the mesh. Afterward, a new message containing the
join information is created to be sent to the parent cell (lines
9-10). Each cell must repeat this procedure until the root cell
is reached. When the root cell receives the join request and
updates its cell, it also replies downwards to the requesting
sibling cell. When a peer receives a reply message (line 26),
it looks at the pending request hash, retrieves the message and
peer information, and replies to the appropriate sibling. This
process is repeated recursively until the message reaches the
joining peer. The procedure for leaving the mesh follows the
same scheme, line 18, the only difference being the type of
message being sent.

The Discovery interface is depicted in Listing 2. When
a peer needs a new cell to bind to, it calls the procedure
RequestCell (lines 1-14) on the root cell, which in turn
sends a cell request message to the discoveryRoot multicast
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address. The call will be serviced by any of the super-
peers in the cell. If there are no peers in the root cell the
procedure returns the root cell identifier. Otherwise, it returns
an appropriate place on the mesh tree to position the requesting
peer (lines 19-20, procedure GetCell). The optimal position
for a new peer, depends on the strategy used, but given the tree
like architecture for the simulator, it is clear that we should
try to occupy the top of the tree first, in order to provide a
more resilient infra-structure (in Subsection IV-I we will see
that the consequences of a fault depend heavily on its location
on the tree mesh). The procedures RequestParent is used
to query the service endpoint information for the parent of the
requesting peer. HandleRequestParent is the call-back
on the parent side that processes such requests. For now, we
do not impose any restrictions on the number of clients each
parent has.

Listing 3 Mesh service membership algorithms
1: procedure MESHSERVICESTARTUP(cell, parentEndpoint)
2: joinMsg ←CreateJoinMsg()
3: cell.SendMessage(joinMsg)
4: if cell.IsRoot() 6= True then
5: parent←BindToParent(parentEndpoint)
6: if parent = ∅ then
7: return ∅
8: end if
9: request← CreateAndStoreRequest(joinMsg)

10: parent.SendMessage(joinMsg)
11: request.WaitForReply()
12: if request.Failed() then
13: return ∅
14: end if
15: return request.GetReplyMessage()
16: end if
17: end procedure

18: procedure MESHSERVICELEAVE(cell, parent)
19: leaveMsg ←CreateLeaveMsg()
20: cell.SendMessage(leaveMsg)
21: if cell.IsRoot() 6= True then
22: CreateAndStoreRequest(leaveMsg)
23: parent.SendMessage(leaveMsg)
24: end if
25: end procedure

26: procedure HANDLEMESHSVCMSG(cell, parent, peer,msg)
27: cell.SendMessage(msg)
28: if cell.IsRoot() 6= True then
29: if peer 6= parent then
30: CreateAndStoreRequest(msg)
31: parent.SendMessage(msg)
32: else
33: request← GetPendingRequest(msg.id)
34: if rRequest = ∅ then
35: return
36: end if
37: child← request.GetPeer()
38: child.SendMessage(msg)
39: end if
40: else
41: replyMsg ←ProcessMessage(msg)
42: peer.sendMessage(replyMsg)
43: end if
44: end procedure

Routing
The routing mechanism in the peer-to-peer mesh is rather
straightforward and is presented in figure 2.

The process is illustrated in Listing 4. When a peer receives

Cell 0

Cell 01

Cell 011

(a) Initial bindings

Cell 0

Cell 01

Cell 011

(b) Routing path

Fig. 2: Routing mechanisms.

a message it checks the target peer and cell identifiers. If a
direct connection exists to the target peer (lines 4-17) then
the message is relayed directly through that link (rather than
through the mesh). Otherwise, a check is made to detect
whether the message is going upwards or downwards in
the hierarchy. In the former case, the message is sent to
the parent cell of the current peer (line 8). Otherwise the
peer checks whether it is connected directly to the a peer
in the target cell (line 10). If so, it sends the message
directly through this peer (line 14) otherwise it routes the
message through its siblings in the current cell (line 12).
If a message is received from a child or from the parent
peer, the procedure HandlePeerMessage handles the re-
quest. If the message belongs to the current peer then the
ProcessMessage is called (line 21), otherwise the message
is re-routed using procedure SendMessage. If a message
is received via the JGroups framework then the procedure
HandleCellMessage is called, to check if the message
is addressed to the current peer, and if so, process it (line 28),
otherwise simply discard the message.

2) Fault-Tolerance: The fault-tolerance mechanisms are
illustrated in Figures 3 and 4.

Cell 0

Cell 01

Cell 011

(a) Initial setup

Cell 0

Cell 01

Cell 011

(b) Fault Tolerance spreading

Fig. 3: Fault-tolerance spreading.
Figure 3a illustrates the initial setup of the mesh, with the

representation of the bindings between peers. When a fault-
tolerance message is received by a super-peer in Figure 3b,
it starts the spreading process by first propagating the infor-
mation within its cell, followed with the propagation to the
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Listing 4 Routing algorithm
1: procedure SENDMESSAGE(cell, parent,msg)
2: peerId← msg.peerId
3: cellId← msg.cellId
4: peer ← GetDirectPeer(peerId, cellId)
5: if peer = ∅ then
6: direction←CheckDirection(peerId, cellId)
7: if direction = UP then
8: parent.SendMessage(msg)
9: else

10: peerChild←GetPeerChild(cellId)
11: if peerChild = ∅ then
12: cell.RouteMessage(msg)
13: end if
14: peerChild.SendMessage(msg)
15: end if
16: end if
17: peer.SendMessage(msg)
18: end procedure

19: procedure HANDLEPEERMESSAGE(msg)
20: if MessageIsOurs(msg) = True then
21: ProcessMessage(msg)
22: else
23: SendMessage(msg)
24: end if
25: end procedure

26: procedure HANDLECELLMESSAGE(msg)
27: if MessageIsOurs(msg) = True then
28: ProcessMessage(msg)
29: end if
30: end procedure

immediately upper tree level. This process is recursive and
stops when the root cell is reached. The peer that receives
the message at the root cell then sends an acknowledgment
message down the tree to the source peer.

Cell 0

Cell 01

Cell 011

(a) Failed peer in cell 011

Cell 0

Cell 01

Cell 011

(b) FT recovery

Fig. 4: FT recovery
Figure 4a shows a failure of a peer and consequent detection

by the peers in its cell and its parent peer (in the parent cell).
The recovery process is depicted in Figure 4b, and consists in
the implicit takeover of the pending fault-tolerance messages
that originated in the faulty peer. If there are more peers within
the faulty peer’s cell, then those peers compare their PeerID
to the faulty peer’s PeerID, using the Levenshtein distance.
The peer that has the minimum distance becomes the owner of
those pending messages. In the rare case that more than one
peer is at the minimum distance we will get duplicates, as
both peers retransmit those pending fault-tolerance messages.

This is not a problem as the duplicates are detected at a later
stage (c.f. failure recovery mechanisms).

The algorithms that implement these mechanisms are shown
in Listings 5, 6, 7, and 8.

Listing 5 Fault-Tolerance algorithms
1: procedure SENDFTMESSAGE(peerId, cell, service,msg)
2: if not msg.IsFaultTolerant() then
3: return
4: end if
5: ourMsg ← (peerId = msg.GetSourcePeerId())
6: sourcePeer ← msg.GetSourcePeerId())
7: ftRequest← service.GetPendingRequest(sourcePeer)
8: if ftRequest = ∅ then
9: if msg.type 6= FT then

10: msg ←CreateFTMsg(peerId,cell.GetCellId(),msg)
11: end if
12: ftRequest← service.CreateAndStoreRequest(msg)
13: end if
14: cellStatus← cell.SendMessage(msg)
15: if cellStatus 6= OK then
16: if ourMsg = True then
17: ftRequest.StartTimer()
18: end if
19: return
20: end if
21: if cell.IsRoot() 6= True then
22: parent← service.GetParent()
23: parentStatus← serviceParent.SendMessage(msg)
24: if ourMsg = True then
25: ftRequest.StartTimer()
26: return
27: end if
28: end if
29: return
30: end procedure

31: procedure HANDLEFTTIMEOUT(service, ftRequest)
32: service.SendFtMessage(ftRequest.GetFTMessage())
33: end procedure

The procedure SendFTMessage, in Listing 5, is respon-
sible for the upwards propagation of a message while actively
replicating it across the way. In line 2, the message is checked
to see if it is to be handled by the fault-tolerance mechanism,
returning immediately if this is not the case. If a request is
not stored to handle this message, then a new request must
be created to handle the message. If the message is of type
FT, then it is owned by another super-peer, otherwise we
encapsulate the original message in a FTMessage. At this
point, the request is created with the corresponding fault-
tolerance message (lines 6-13) and the later is sent to the
peer’s cell (line 14). If this operation fails (line 15), and if
the peer is the owner of the message then a timer is set to
repeat this process, with an associated timeout handler (lines
31-33). The message is propagated until it reaches the root
cell (lines 21-28). If the peer is not located in the root cell,
then the message is sent to its parent. If this message fails and
the peer is the owner of the message, a timer is set to repeat
the process.

The mechanism that manages all the incoming messages
for a peer (from the parent peer or child peers) is illustrated
in procedure HandleFTMsg in Listing 6. It receives as argu-
ments the connection that originated the message (service),
as well the message itself. Upon reception of a message
originating from a child (lines 2-7), the peer tries to propagate



8

Listing 6 Fault-Tolerance handler for neighbors messages
1: procedure HANDLEFTMSG(cell, peer, service, parent,msg)
2: if peer 6= parent then
3: parentStatus← parent.SendFTMessage(msg)
4: if parentStatus 6= OK then
5: replyMsg ← service.CreateFTFailureMessage()
6: peer.SendMessage(replyMsg)
7: end if
8: else
9: request← service.GetPendingRequest(msg.id)

10: if msg.GetReply() = OK then
11: service.RemoveStore(msg)
12: cell.SendMessage(msg)
13: if peer.GetPeerId()6= msg.GetSourcePeerId() then
14: child← request.GetPeer()
15: child.SendMessage(msg)
16: end if
17: else
18: if peer.GetPeerId() = msg.GetSourcePeerId() then
19: request.StartTimer()
20: end if
21: end if
22: end if
23: end procedure

it to the parent and, if the SendFTMsg procedure fails,
notifies the child. Next follows the code that handles messages
received from the parent (lines 9-22). If the respective request
is still pending and the propagation was successful, then the
peer removes the request and propagates the message to the
other peers in the cell (lines 9-12). If the peer is the not owner
of the message, then the message is sent to the child that
originated the request (lines 13-16). In case of an unsuccessful
reply and if the peer is the owner of the request, a timer is set
for request retransmission (lines 18-20).

Listing 7 Fault-Tolerance handler for incoming cell messages
1: procedure HANDLEFTCELLMSG(service,msg)
2: if msg.type = FT REPLY then
3: service.RemoveStore(msg)
4: else
5: service.Store(msg)
6: end if
7: end procedure

The intra-cell handler for the messages is
HandleFTCellMsg, shown in Listing 7, and it is
responsible for processing the messages originating from
any sibling on the current cell. These messages are sent
and received through the JGroup’s framework. In the fault-
tolerance context, this handler removes the pending request
if the received message is of the FT REPLY type; otherwise
we are in the presence of a new fault-tolerance message, and
the information is to be stored. These requests are stored to
be used in the recovery process in case of a peer failure.
Currently, this active replication is the only one implemented
in the simulator. This process is illustrated in Listing 8.

The procedure OnFail present in Listing 8 is called on
every peer in the faulty peer’s cell, and on its parent. If the
parent detects that the cell does have anymore peers, then it
assumes the ownership of the faulty peer’s pending requests
(requests received but for which no acknowledgement reply
has been received), otherwise it remains inactive. If there

Listing 8 Fault-Tolerance recovery algorithm
1: procedure ONFAIL(cell, peerID, faultyCellId, faultyPeerId)
2: if cell.GetCellId() = faultyCellId then
3: peerList←GetCellSuperPeers(cellId)
4: recoveryId←MinDistance(faultyPeerId,peerList)
5: if peerId = recoveryId then
6: depList← GetSubTree(faultyPeerId)
7: for all peer in depList do
8: msgList← StoredFTMessages(peer)
9: for all ftMsg in msgList do

10: SendFTMessage(ftMsg)
11: end for
12: end for
13: end if
14: else
15: cellId← cell.GetCellId()
16: if cellId = faultyCellId.getParentCellId() then
17: if IsCellEmpty(faultyCellId) = True then
18: depList← GetSubTree(faultyPeerId)
19: for all peer in depList do
20: msgList← StoredFTMessages(peer)
21: for all ftMsg in msgList do
22: SendFTMessage(ftMsg)
23: end for
24: end for
25: end if
26: end if
27: end if
28: end procedure

are other peers in the faulty peer’s cell, then all those peers
calculate the lexicographic distance between their PeerId
and the faulty peer’s PeerID. The peer that has the minimum
distance assumes ownership of the pending requests. If two or
more peers have the same minimum distance this will result
in duplicate messages being sent to the their parent cell. The
duplicates are then detected and discarded, thus preserving
correctness.

IV. VALIDATION

A. Simulator Bench

The simulator creates a network with n peers and m
sensor-peers. The super-peers are grouped in cells that are
created according to the rules of the underlying P3 framework.
Table I illustrates the most relevant simulation parameters.

Property Type Meaning Default
FT Boolean Turns on/off FT N/A
TREE SPAN DEPTH Integer Tree span per DEPTH N/A
SPS PER CELL DEPTH Integer Peers per cell and DEPTH N/A
SENSORS PER CELL Integer Max sensors per cell 2
AUDIO RATE Integer Audio frames per second 38
AUDIO FRAME Integer Audio frame size in bytes 418
AUDIO PACKETS Integer Audio packets sent in simulation 9790
VIDEO RATE Integer Video frames per second 24
VIDEO FRAME Integer Video frame size in bytes 4180
VIDEO PACKETS Integer Video packets sent in simulation 6120
EVENTS RATE Integer Events per second 25
EVENTS PAYLOAD Integer Events payload size in bytes 1024
EVENTS PACKETS Integer Event packets sent in simulation 6375

TABLE I: Simulator parameters.
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B. Experimental Setup

The simulations were run in a cluster composed of the
following nodes:

Name Processor Core Count Memory

N0 Intel Corei7 920@2.67Ghz 4 6Gb
N1 Intel Core2 Q9450@2.4Ghz 4 2Gb

N{2,3} AMD Athlon X2@1.0Ghz 2 2Gb

Total Cores 12

TABLE II: Simulation setup.

The physical infrastructure was based on a 100 Mbit/s
Ethernet network with a star topology. The sensor nodes were
allocated in the N2 node, the client was positioned on the N3

node, and the super-peers assigned to the nodes N0 and N1.

C. Metrics for Fault-Tolerance and Real-Time

The following metrics were used to evaluate the fault-
tolerance behavior: sensibility to fault location/data loss; fault-
detection latency; and availability. In order to assess the
behavior of real-time we evaluated the overhead introduced
by the fault-tolerance mechanisms. For that we measure the
latency and jitter for the packets sent by the sensors to the
client (one-way), and the amount of resources used, namely
cpu time and memory.

D. Building Blocks

The simulation bench was built using python scripting,
that is reponsible for: a) launching the simulations run; b)
collecting statistical data from all the nodes; and c) processing
all the statistical data.

E. Experiments & Fault-Injection Campaign

The experiments were designed to evaluate the performance
of all previously stated metrics.

F. Analysis of Fault-Tolerance Experimental Results

1) Sensibility to Fault Location & Data Loss:
2) Fault-Detection Latency:
3) Availability:

G. Analysis of Real-Time Experimental Results

1) Response Time & Jitter:
2) Resource Usage:
3) Nagle’s Algorithm Effects on Real-Time:

H. Analysis of Overall Scalability & Performance

1) Scalability:

2) Throughput: The experiments were designed to evaluate
the following scenario, in the presence of peer failures:

A client sends a request to a sensor-peer for data
with QoS constraints. Data, in the form of events or
video/audio frames is sent to the client. Eventually
some packets are lost. A packet is considered lost
if it does not meet the QoS requirements for the
particular type of traffic.

The type of QoS constraints we use in the simulator is very
simple: we just check the amount of packets that did not arrive
at the client in each simulation run. To test the impact of the
fault tolerance support described in Section III we use a P3

network consisting in a binary tree span with two super-peers
per cell, in all the levels of the tree.

We have created four distinct test scenarios to evaluate
the fault tolerance mechanisms. The only fault-tolerance
strategy used for these experiments was active replication.
The test scenarios are: FT ALL, uses fault-tolerance for
all type of traffic; FT EVENT only uses fault-tolerance for
events; FT EVENT+VIDEO uses fault-tolerance for events
and video, and; No FT has fault tolerance disabled. In order
to assess the impact of different types of faults and at different
locations of the tree, we designed the following tests:

Test I one fault per tree level.
Test II incremental faults until the total number of peers

present in each level is reached.

We used the following relative priorities for each traffic type:
video and audio – 1; events – 3; mesh – 10.

I. Analysis of Experimental Results

In all the results presented below, the following color
scheme was followed: video appears as yellow line or
bar; audio is shown as a blue bar or line; and events are
represented by a red bar or line.

Test I allows us to visualize the behavior of the system when
a peer failure happens at different levels of the tree.
NO FT: this is the control scenario, depicted in Fig. 5, for
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Fig. 5: Results for Test I without FT.
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Video latency (ms) 21 ± 2
Audio latency (ms) 39 ± 3
Event latency (ms) 21 ± 3
Slow rebind (ms) 1109 ± 896
Fast rebind (ms) 47 ± 4

TABLE III: Test I latency statistics without FT.

which no fault-tolerance mechanisms are active. The results
were as expected with losses increasing as the faults got
nearer of the root level. This is a result of the fact that peers
closer to the root handle larger loads of traffic, and therefore a
failure here causes more disruption. The video and audio traffic
behave consistently with this trend, while the event traffic does
not quite. The unusual behavior of event losses is due to the
fact that they are intrinsically random in nature, in contrast
to the time constant streams of video and audio. Table III
shows the statistical information about latency and jitter (for
client to sensor-peer communication), for all the traffic types,
as well the information for the rebind mechanisms. There
are two types of rebinding: slow rebind and fast rebind.
The slow rebind happens when a peer, in case of its parent
failure, must execute the full join procedure (described in
the previous chapter), while the fast rebind happens when a
peer successfully rebinds to another parent peer (in the same
cell of the failing peer), using previous retrieved discovery
information (from the time of the first join).
FT EVENT. Fig. 6 shows the results for the runs with
the fault-tolerance mechanisms active for events. This fact
completely avoids the losses of events when the failing peers
are in levels 0 and 1. Sensor-peers do not have any type of
memory to preserve packets until they are safely delivered.
This leads to packet losses when their parent peer fails, forcing
the sensor-peer to rebind to another parent. Until the rebind
process finishes, all the packets that should be sent to the mesh
are discarded because the sensor does not have a valid parent
to route the traffic.
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Fig. 6: Results for Test I with FT for events.

Table IV has the statistical information for this test. The
presence of fault-tolerance introduces an increase of latency
in all types of traffic, a consequence of the time spent in

Overhead over no-FT (%)
Video latency (ms) 24 ± 3 114
Audio latency (ms) 40 ± 2 103
Event latency (ms) 24 ± 2 114
Slow rebind (ms) 1090 ± 888 98
Fast rebind (ms) 52 ± 9 111

TABLE IV: Test I latency statistics with FT for events.

Overhead over no-FT (%)
Video latency (ms) 39 ± 8 186
Audio latency (ms) 49 ± 2 126
Event latency (ms) 39 ± 2 186
Slow rebind (ms) 1094 ± 893 99
Fast rebind (ms) 77 ± 8 164

TABLE V: Test I latency statistics with FT for events and
video.

executing the fault-tolerance semantics.
FT EVENT+VIDEO. Fig. 7 shows how the simulator copes
with two types of traffic being supported by the fault-tolerance
infrastructure. The increase in audio packet losses reflects the
cost of maintaining both event and video traffic with fault-
tolerance support, as more resources are needed, such CPU
time and network bandwidth. As in the above tests, in level
2, the fault-tolerance mechanisms are not able to avoid packet
loss because of the sensor’s rebind time. Table V shows that
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Fig. 7: Results for Test I with FT in event and video traffic.

all traffic types suffer an increase in their latency time, as
explained before, the competition for computational resources
and network traffic explains this behavior.
FT ALL. Fig. 8 shows the results for the runs with all
the traffic types (video, audio and events) being supported
by the fault-tolerance mechanisms. The simulator is able to
successfully support all the three traffic types without losses
when the failing peer is in levels 0 and 1. For level 2, the
behavior of the simulator is in line with the previous results,
where the rebind time of the sensor-peer dictates the amount
of packet loss for any given traffic type. Table VI shows that
the cost of maintaining all the three types of traffic with fault-
tolerance comes with the cost of increased latency.

Tables III to VI show the response time and jitter associated
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Fig. 8: Results for Test I with FT for all traffic types.

Overhead over no-FT (%)
Video latency (ms) 49 ± 4 233
Audio latency (ms) 64 ± 3 164
Event latency (ms) 49 ± 3 233
Slow rebind (ms) 1088 ± 885 98
Fast rebind (ms) 57 ± 16 121

TABLE VI: Test I latency statistics with FT for all traffic types.

with each type of traffic as the fault-tolerance mechanisms are
activated, as well as the overhead involved. The systematically
higher latencies observed for audio traffic is due to the fact
that it has a higher frame rate (c.f. Table I). The overhead
is largely dominated by active replication of data in the cells
that is accomplished using JGroups. The results show that the
overhead is small for traffic such as events but that it rises
in proportion to the total number of packets per second being
sent by the sensor-peers.
Test II allows us to analyze the behavior of the system with
the increasing number of failures while all the traffic types
are being supported by the fault-tolerance mechanisms. This
is in fact a worst case scenario, used to stress the system and
evaluate its performance. The faults can affect a single peer or
an entire cell, depending on the target faults, i.e. if we have
a cell with four peers, then the fourth run in the tests that
represent the failure of all the four peers in the cell, can be
either composed of four independent single peer failures or
from an entire cell crash (given that the cell has four peers).
Fig. 9 shows the results for running test II on the same P3

binary tree. When the root cell crashes it results in a large
increase of packet losses, even with FT active. This is because
the recovery time is dominated by the reconstruction of the
mesh tree. As the failures progress to the lower levels, the
FT mechanisms help minimize the packet loss. In level 1, the
packet losses remain fairly low due to the faster recovery time.
As mentioned earlier, the FT helps minimize the losses, that
rise modestly when faults extend to all of the cells in the level.
In level 2, the overall packet loss rise modestly up to 6 (out of
8 possible) failures of super-peers, and only then it experiences
a step rise. This is a simulation artifact due to the restriction
that there cannot be more than 2 sensor-peers per cell and
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Fig. 9: Results for Test II with FT for all traffic types.

the root cell does not accept connections from sensor-peers.
The number of sensor-peers per cell is a simulation parameter.
In the worst case scenario, when the 6th super-peer fails at
level 2 we may reach a situation in which the cells at level 1
and the remaining cells at level 2 are at their full capacity (2
sensor-peers per cell). After the 6th super-peer in level 2 fails,
the number of available cells is insufficient to support all the
sensor-peers and therefore part of the traffic generated by the
sensor-peers is lost.

Level 0
#Peer Faults 1 2
Video latency (ms) 55± 1 443 ± 18
Audio latency (ms) 72± 2 448 ± 17
Event latency (ms) 55± 2 443 ± 17
Level 1
#Peer Faults 1 2 3 4
Video latency (ms) 53 ± 3 89 ± 29 103 ± 1 116 ± 4
Audio latency (ms) 69 ± 3 105 ± 30 118 ± 1 144 ± 14
Event latency (ms) 53 ± 3 89 ± 30 103 ± 1 116 ± 14
Level 2
#Peer Faults 1 2 3 4
Video latency (ms) 47 ± 1 49 ± 2 46 ± 2 44 ± 2
Audio latency (ms) 63 ± 1 65 ± 2 59 ± 2 61 ± 2
Event latency (ms) 47 ± 1 49 ± 2 46 ± 2 44 ± 2
#Peer Faults 5 6 7 8
Video latency (ms) 45 ± 3 43 ± 3 48 ± 6 46± 4
Audio latency (ms) 59 ± 2 59 ± 2 62 ± 5 62± 7
Event latency (ms) 45 ± 2 43 ± 2 48 ± 5 46± 7

TABLE VII: Test II latency statistics with FT for all traffic
types.

Table VII shows the response time and jitter for each type
of traffic for each level and for increasing super-peer failures.
At level 0 the eightfold increase in response time from one
to two peer failures is due to the overhead of re-building the
P3 mesh after the root cell crashes. At level 1, the increase
in response time and jitter is more modest (only a twofold
increase for 4 peer failures). Finally, at level 2 the response
time remains fairly constant, and the jitter low, because we are
measuring only the traffic that gets up to the client and not
taking into account that some sensor-peers fail to send data at
all (c.f. Fig. 9).



12

V. INSIGHTS & LESSONS LEARNED

From the experience gained throughout the implementation
of our prototype, we seems clear the approach taken by all the
systems to date, including ours, of using group communica-
tion, seems a hurdle for the implementation of a fully fledge
real-time fault-tolerant system. We speculate that with the
implementation of low-levels resource reservation mechanisms
that are able to provide QoS guarantees, and by using strategic
point-to-point communications (TCP, UDP or RDS), we will
be able to provide a more strict real-time guarantees.

VI. RELATED WORK

Research in fault-tolerance and real-time spaces have fo-
cused mostly on CORBA and its siblings, for which specifi-
cations have been proposed for Fault-Tolerant [12], [13] and
Real-Time [7], [17], [14] support, but whose integration is
difficult. The idea behind FT-CORBA is to implement the
fault-tolerance mechanisms as a service or a set of services
within CORBA itself. The advantage of this approach is
that it provides transparent (i.e. network independent) fault-
tolerance mechanisms. The price however is high. It introduces
overhead due to cross-layer service protocols, long code paths
and resource consumption. The additional overhead makes
the integration of real-time support difficult or impossible.
MEAD [11] provides transparent fault-tolerance at a somewhat
lower-level using interceptors that capture IIOP messages
between the applications and the ORB, and redirect them to in-
ternal replication and logging-recovery managers that provide
fault-tolerance mechanisms. Another approach is followed by
TAO [18] that uses request redirection in a strict client-
server fashion to implement non-transparent fault-tolerance
mechanisms.

Research in P2P space has focused on architecture, protocols
and algorithms that addresses fault-tolerance, QoS and some
aspects of real-time, on distributed file-sharing systems [10],
[4], [3], [9]. Moreover, there are several frameworks that pro-
vide system developers with components and patterns to im-
plement custom peer-to-peer systems [8], [15], [20] and some
examples of peer-to-peer middleware infra-structures [16],
[19], [6].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of providing real-
time fault-tolerance for peer-to-peer networks. We presented a
simulation environment for hierarchical peer-to-peer networks
based on P3 [15] and used it to explore the trade-offs between
fault-tolerance mechanism overheads, mesh management over-
heads and QoS measures such as response time, jitter and
packet loss. The simulation environment was loaded with data
streaming from sensor peers and perturbed with random peer
crash failures.

The experiments show that fault-tolerance mechanisms can
be implemented directly over the peer-to-peer infra-structure,
taking advantage of the topological arrangement of the net-
work. The overhead in response time introduced is modest,
as is the jitter, except for the very extreme case where full
FT was specified for all the data streams and for all sensors.

This is so despite the less than ideal use of JGroups for
ensuring mesh consistency and for strong replica consistency
in the active fault-tolerance mechanism we used. JGroups is
clearly a bottleneck in the simulator (which is somewhat to be
expected since it was not developed with such extreme target
applications in mind), as is shown by the large overheads when
peers have to resort to the mesh to re-bind after all the peers in
their parent cell fail. The overhead in response time when FT
is activated is due to the distribution of packet copies between
the peers of a cell using JGroups. The active FT strategy used
is quite resource hungry and contributes also to the observed
overhead.

We are implementing different FT mechanisms such as
passive FT and hybrid passive/active FT to evaluate their
performance under similar load conditions. Our medium term
goal is to provide a proof of concept for real-time fault-tolerant
peer-to-peer networks that may be used as the networking layer
for high-performance middleware, allowing for transparent and
efficient support for fault-tolerant, QoS computing.
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