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Abstract

The minimal deterministic finite automaton is generally used to determine regular
languages equality. Antimirov and Mosses proposed a rewrite system for deciding reg-
ular expressions equivalence of which Almeida et al. presented an improved variant.
Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of
two deterministic finite automata that avoids minimisation.

In this paper we improve the best-case running time, present an extension of this
algorithm to non-deterministic finite automaton, and establish a relationship between
this algorithm and the one proposed in Almeida et al. We also present some experimental
comparative results. All these algorithms are closely related with the recent coalgebraic
approach to automata proposed by Rutten.

1 Introduction

The uniqueness of the minimal deterministic finite automaton for each regular language is
in general used for determining regular languages equality. Whether the languages are rep-
resented by deterministic finite automata (DFA), non deterministic finite automata (NFA),
or regular expressions (r.e.), the usual procedure uses the equivalent minimal DFA to decide
equivalence. The best known algorithm, in terms of worst-case analysis, for DFA minimisa-
tion is loglinear [Hop71], and the equivalence problem is PSPACE-complete for both NFA
and r.e. Based on the algebraic properties of regular expressions, Antimirov and Mosses
proposed a terminating and complete rewrite system for deciding their equivalence [AM94].
In a paper about testing the equivalence of regular expressions, Almeida et al. [AMR08a]
presented an improved variant of this rewrite system. As suggested by Antimirov and Mosses,
and corroborated by further experimental results, a better average-case performance may be
obtained.

Hopcroft and Karp [HK71] presented, in 1971, an almost linear algorithm for testing
the equivalence of two DFAs that avoids their minimisation. Considering the merge of the
two DFAs as a single one, the algorithm computes the finest right-invariant relation which
identifies the initial states. The state equivalence relation that determines the minimal DFA
is the coarsest relation in that condition.

We present some variants of Hopcroft and Karp’s algorithm (HK) (Section 3), and
establish a relationship with the one proposed in Almeida et al. (Section 4). In particular,
we extend HK algorithm to NFAs and present some experimental comparative results
(Section 5).

All these algorithms are also closely related with the recent coalgebraic approach to
automata developed by Rutten [Rut03], where the notion of bisimulation corresponds to a
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right-invariance. Two automata are bisimilar if there exists a bisimulation between them. For
deterministic (finite) automata, the coinduction proof principle is effective for equivalence,
i.e., two automata are bisimilar if and only if they are equivalent. Both Hopcropt and Karp
algorithm and Antimirov and Mosses method can be seen as instances of this more general
approach (c.f. Corollary 1). This means that these methods may be easily extended to
other Kleene Algebras, namely the ones that model program properties, and that have been
successfully applied in formal program verification [Koz08].

2 Preliminaries

We recall here the basic definitions needed throughout the paper. For further details we
refer the reader to the works of Hopcroft et al. [HMU00] and Kozen [Koz97].

An alphabet Σ is a nonempty set of symbols. A word over an alphabet Σ is a finite
sequence of symbols of Σ. The empty word is denoted by ǫ and the length of a word w is
denoted by |w|. The set Σ⋆ is the set of words over Σ. A language L is a subset of Σ⋆. If
L1 and L2 are two languages, then L1 · L2 = {xy | x ∈ L1 and y ∈ L2}. The operator ·
is often omitted. A regular expression α over Σ represents a regular language L(α) ⊆ Σ⋆

and is inductively defined by: ∅ is a r.e. and L(∅) = ∅; ǫ is a r.e. and L(ǫ) = {ǫ}; a ∈ Σ
is a r.e. and L(a) = {a}; if α and β are regular expressions, (α + β), (αβ) and (α)⋆ are
regular expressions, respectively with L((α + β)) = L(α) ∪ L(β), L((αβ)) = L(α)L(β) and
L((α)⋆) = L(α)⋆. We adopt the usual convention that ⋆ has precedence over ·, which has
higher precedence than +, and omit outer parentheses. The size of α is denoted by |α| and
represents the number of symbols, operators, and parentheses in α. We denote by |α|Σ the
number of symbols in α. We define the constant part of α as ε(α) = ǫ if ǫ ∈ L(α), and
ε(α) = ∅ otherwise. Two regular expressions α and β are equivalent, and we write α ∼ β, if
L(α) = L(β).

The algebraic structure (RE,+, ·, ∅, ǫ), where RE denotes the set of r.e. over Σ, consti-
tutes an idempotent semiring, and, with the unary operator ⋆, a Kleene algebra. There are
several well-known complete axiomatizations of Kleene algebras [Sal66, Koz94]. Let ACI
denote the associativity, commutativity and idempotence of +.

A nondeterministic finite automaton (NFA) A is a tuple (Q,Σ, δ, I, F ) where Q is finite
set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q the transition relation, I ⊆ Q the set of
initial states, and F ⊆ Q the set of final states. An NFA is deterministic (DFA) if for each
pair (q, a) ∈ Q × Σ there exists at most one q′ such that (q, a, q′) ∈ δ. The size of a NFA is
|Q|. For s ∈ Q and a ∈ Σ, we denote by δ(q, a) = {p | (q, a, p) ∈ δ}, and we can extend this
notation to x ∈ Σ⋆, and to R ⊆ Q. For a DFA, we consider δ : Q × Σ⋆ → Q. The language
accepted by A is L(A) = {x ∈ Σ⋆ | δ(I, x) ∩ F 6= ∅}. Two NFAs A and B are equivalent,
denoted by A ∼ B if they accept the same language. Given an NFA A = (QN ,Σ, δN , I, FN ),
we can use the powerset construction to obtain a DFA D = (QD,Σ, δD, q0, FD) equivalent
to A, where QD = 2QN , q0 = I, for all R ∈ QD, R ∈ FD if and only R ∩ FN 6= ∅, and for
all a ∈ Σ, δD(R, a) =

⋃

q∈R δN (q, a). This construction can be optimised by omitting states
R ∈ QD that are unreachable from the initial state.

Given a finite automaton (Q,Σ, δ, q0, F ), let ε(q) = 1 if q ∈ F and ε(q) = 0 otherwise.
We call a set of states R ⊆ Q homogeneous if for every p, q ∈ R, ε(p) = ε(q). A DFA is
minimal if there is no equivalent DFA with fewer states. Two states q1, q2 ∈ Q are said
to be equivalent, denoted q1 ∼ q2, if for every w ∈ Σ⋆, ε(δ(q1, w)) = ε(δ(q2, w)). Minimal
DFAs are unique up to isomorphism. Given an DFA D, the equivalent minimal DFA D/∼
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is called the quotient automaton of D by the equivalence relation ∼. The state equivalence
relation ∼, is a special case of a right-invariant equivalence relation w.r.t. D, i.e., a relation
≡ ⊆ Q×Q such that all classes of ≡ are homogeneous, and for any p, q ∈ Q, a ∈ Σ if p ≡ q,
then δ(p, a)/≡ = δ(q, a)/≡, where for any set S, S/≡ = {[s] | s ∈ S}. Finally, we recall that
every equivalence relation ≡ over a set S is efficiently represented by the partition of S given
by S/≡. Given two equivalence relations over a set S, ≡R and ≡T , we say that ≡R is finer
then ≡T (and ≡T coarser then ≡R) if and only if ≡R⊆≡T .

3 Testing finite automata equivalence

The classical approach to the comparison of DFAs relies on the construction of the minimal
equivalent DFA. The best known algorithm for this procedure runs in O(kn log n) time
[Hop71], for a DFA with n states over an alphabet of k symbols.

Hopcroft and Karp [HK71] proposed an algorithm for testing the equivalence of two
DFAs that makes use of an almost O(n) set merging method. This set merging algorithm
assumes disjoint sets and is based on three functions: MAKE, FIND, and UNION.

Later, however, both the original authors and Tarjan [HU73, Tar75] showed that running-
time of this algorithm is actually O(m log⋆ n) for m ≥ n FIND operations intermixed with
n − 1 UNION1 operations, where

log⋆ n = min{i | log log · · · log
︸ ︷︷ ︸

i times

(n) ≤ 1}.

As we assume disjoint sets, it is possible to use both the union by rank and the path
compression heuristics [CLRS03], thus achieving a running time complexity O(mα(n)) for
any sequence of m MAKE, UNION, or FIND operations of which n are MAKE operations.
As α(n) relates to a functional inverse of the Ackermann function, it grows very slowly and
we can consider it a constant.

3.1 The original Hopcroft and Karp algorithm

Let A = (Q1,Σ, p0, δ1, F1) and B = (Q2,Σ, q0, δ2, F2) be two DFAs, with |Q1| = n, |Q2| = m,
and such that Q1 and Q2 are disjoint, i.e., Q1 ∩ Q2 = ∅. In order to simplify notation, we
assume Q = Q1 ∪ Q2, F = F1 ∪ F2, and δ(p, a) = δi(p, a) for p ∈ Qi.

We begin by presenting the original algorithm by Hopcroft and Karp [AHU74] for testing
the equivalence of two DFAs as Algorithm 1. It does not involve any minimisation process
and can be made almost linear in the worst-case.

If A and B are equivalent DFAs, the algorithm computes the finest right-invariant
equivalence relation over Q that identifies the initial states, p0 and q0. The associated
set partition is built using the UNION-FIND method. This algorithm assumes disjoint sets
and defines the three functions which follow.

• MAKE(i): creates a new set (singleton) for one element i (the identifier);

• FIND(i): returns the identifier Si of the set which contains i;

• UNION(i, j, k): combines the sets identified by i and j in a new set Sk = Si ∪ Sj; Si

and Sj are destroyed.

1Referred to as MERGE by Hopcroft and Ullman.
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A very important subtlety of the UNION operation is that the two combined sets are
destroyed in the end.

This means that a function call such as UNION(p, q, q′) makes Sq′ = Sp ∪ Sq, destroying
Sp and Sq, which assures that |Sq′ | = |Sp|+|Sq| and that, in the lines 12–13 of the Algorithm 1

|
⋃

i

Si| = |Q|.

It is clear that, disregarding the set operations, the worst-case time of the algorithm is
O(k(n+m)), where k = |Σ|. Line 2 is executed exactly n+m times. Because of the previously
pointed out behaviour of the UNION procedure, lines 12–13 are executed a number of times
which is bounded by n + m. The number of times that the while loop in the lines 5–11
is executed is limited by the total number of elements pushed to the stack S. Each time a
pair of states is pushed onto the stack, two sets are merged (lines 9–11), and thus the total
number of sets is decreased by one. As initially there are only n+m sets (and again, because
of the previously pointed out behaviour of the UNION procedure), at most n + m − 1 pairs
are placed in the stack during the execution of the loop. Because this is executed for each
symbol in the alphabet, the total execution time of the algorithm — not considering the set
operations — is O(k(n + m)).

An arbitrary sequence of i MAKE, UNION, and FIND operations, j of which are MAKE
operations in order to create the required sets, can be performed in worst-case time O(iα(j)),
where α(j) is related to a functional inverse of the Ackermann function, and, as such, grows

very slowly. In fact, for every practical values of j (up to 222
16

), α(j) ≤ 4.

1 def HK(A,B ) :
2 for q ∈ Q : MAKE(q )
3 S = ∅
4 UNION(p0, q0, q0 ) ; PUSH(S , (p0, q0))
5 while (p, q) = POP(S ) :
6 for a ∈ Σ :
7 p′ = FIND(δ(p, a))
8 q′ = FIND(δ(q, a))
9 i f p′ 6= q′ :

10 UNION(p′ ,q′ ,q′ )
11 PUSH(S , (p′, q′))
12 i f ∀Si∀p, q ∈ Si ε(p) = ε(q) : return True
13 else : return False

Algorithm 1: The original HK algorithm.

When applied to Algorithm 1, this set union algorithm allows for a worst-case time
complexity of O(k(n + m) + 3iα(j)) = O(k(n + m) + 3(n + m)α(n + m)). Considering
α(n + m) constant, the asymptotic running-time of the algorithm is O(k(n + m)). The
correctness of this algorithm is proved in Section 4, Theorem 2.

3.2 Improved best-case running time

By altering the FIND function in order to create the set being looked for if it does not exist,
i.e., whenever FIND(i) fails, MAKE(i) is called and the set Si = {i} is created, we may add
a refutation procedure earlier in the algorithm. This allows the algorithm to return as soon
as it finds a pair of states such that one is final and the other is not, as there exists a word

6



recognized by one of the automata but not by the other, and thus, they are not equivalent.
This alteration to the FIND procedure avoids the initialization of m + n sets which may
never actually be used. These modifications to Algorithm 1 are presented in Algorithm 2.

Although it does not change the worst-case complexity, the best-case analysis is consid-
erably better, as it goes from Ω(k(n + m)) to Ω(1). Not only it is possible to distinguish the
automata by the first pair of states, but it is also possible to avoid the linear check in the
lines 12–13.

The observed asymptotic behaviour of minimality of initially connected DFAs (ICDFAs)
[AMR07], suggests that, when dealing with random DFAs, the probability of having two
equivalent automata is very low, and a refutation method will be very useful (see Section 5).

We present a proof that the refutation method preserves the correctness of the algorithm
in Lemma 1.

We also show in Section 3.3 that minor changes to this version of the algorithm allow it
to be used with NFAs.

Lemma 1. In line 5 of Algorithm 1, all the sets Si are homogeneous if and only if all the
pairs of states (p, q) pushed into the stack are such that ε(p) = ε(q).

Proof. Let us proceed by induction on the number l of times line 5 is executed. If l = 1, it is
trivial. Suppose that lemma is true for the lth time the algorithm executes line 5. If for all
a ∈ Σ, the condition in line 9 is false, for the (l+1)th time the homogeneous character of the
sets remains unaltered. Otherwise, it is clear that in lines 10–11, Sp′ ∪Sq′ is homogeneous if
and only if ε(p′) = ε(q′). Thus the lemma is true.

1 def HKi(A,B ) :
2 MAKE(p0 ) ; MAKE(q0 )
3 S = ∅
4 UNION(p0, q0, q0 ) ; PUSH(S , (p0, q0))
5 while (p, q) = POP(S ) :
6 i f ε(p) 6= ε(q) : return False
7 for a ∈ Σ :
8 p′ = FIND(δ(p, a))
9 q′ = FIND(δ(q, a))

10 i f p′ 6= q′ :
11 UNION(p′, q′, q′ )
12 PUSH(S , (p′, q′))
13 return True

Algorithm 2: HK algorithm with an early refutation step (HKi).

Theorem 1. Algorithms 1 (HK) and 2 (HKi) are equivalent.

Proof. By Lemma 1, if there is a pair of states (p, q) pushed into the stack such that ε(p) 6=
ε(q), then the algorithm can terminate and return False. That is exactly what Algorithm 2
does.

3.3 Testing NFA equivalence

It is possible to extend Algorithm 2 to test the equivalence of NFAs. The basic idea is
to embed the powerset construction into the algorithm, although this must be done with
some caution. We call this algorithm HKe. As any DFA is a particular case of an NFA,
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all the experimental results presented on Section 5 use Algorithm HKe, whether the finite
automata being tested are deterministic or not.

Let N1 = (Q1,Σ, δ1, I1, F1) and N2 = (Q2,Σ, δ2, I2, F2) be two NFAs. We assume that
Q1 and Q2 disjoint, and, we make QN = Q1 ∪ Q2, FN = F1 ∪ F2, and δN (p, a) = δi(p, a) for
p ∈ Qi.

The function ε must be extended to sets of states in the following way:

ε(p) = 1 ⇔ ∃p′ ∈ p : ε(p′) = 1

where p ⊆ Q, and we need a new transition function

∆ : 2Q × Σ → 2Q

∆(p, a) =
⋃

p′∈p

δ(p′, a).

Notice that when dealing with NFAs it is essential to use the idea described in Subsection
3.2 and adjust the FIND operation so that FIND(i) will create the set Si if it does not yet
exist. This way we avoid calling MAKE for each of the 2|Q| sets, which would lead directly to
the worst-case of the powerset construction. This extended version is presented in Algorithm
3.

1 MAKE(I1 )
2 MAKE(I2 )
3 S = ∅
4 UNION(I1 ,I2 ,I2 )
5 PUSH(S , (I1, I2))
6 while (p, q) = POP(S ) :
7 i f ε(p) = ε(q) :
8 return False
9 for a ∈ Σ :

10 p′ = FIND(∆(p, a))
11 q′ = FIND(∆(q, a))
12 i f p′ 6= q′ :
13 UNION(p′ ,q′ ,q′ )
14 PUSH(S , (p′, q′))
15 return True

Algorithm 3: Hopcroft and Karp’s algorithm extended to NFAs (HKe).

Lemma 2. Algorithm 3 is an extension of Algorithm 2 which may be applied to NFAs as it
embeds the powerset construction method.

Proof. As the correction of the algorithm for testing the equivalence of DFAs is already done
by Hopcroft et. al [AHU74], it suffices to show that the elements p and q (popped from the
stack S) are the subsets of 2Q which correspond to a single state in the associated DFA, just
like in the powerset construction method. The proof follows by induction on the number of
operations on the stack S.

Base: The sets I1 and I2 are pushed onto the stack. These correspond to the initial
state of the DFAs equivalent to N1 and N2, respectively.

Induction: By induction hypothesis, we have that at the nth call to POP(S) each of p
and q are subsets of Q which correspond to a single state in the deterministic automaton
equivalent to N1 or N2 (denoted by D1 and D2, respectively). Without loss of generality,
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let us consider only p. Notice that, by definition, ∆ corresponds to the transition function
for the deterministic automaton in the powerset construction method. Thus the call ∆(p, a)
returns the subset of 2Q reachable from p by consuming the symbol a. This corresponds to
the next “deterministic” state of either D1 or D2, and so we are embedding the powerset
construction method in Algorithm 2.

4 Relationship with Antimirov and Mosses’ method

We present in this Section an algorithm to test the equivalence of regular expressions without
converting them to the equivalent minimal automata and establish a relationship with the
algorithms presented in the previous section.

4.1 Antimirov and Mosses’ algorithm

The derivative [Brz64] of a r.e. α with respect to a symbol a ∈ Σ, denoted a−1(α), is defined
recursively on the structure of α as follows:

a−1(∅) = ∅; a−1(α + β) = a−1(α) + a−1(β);

a−1(ǫ) = ∅; a−1(αβ) = a−1(α)β + ε(α)a−1(β);

a−1(b) =

{

ǫ, if b = a;

∅, otherwise;
a−1(α⋆) = a−1(α)α⋆.

This notion can be trivially extended to words, and considering r.e. modulo the ACI
axioms, Brzozowski [Brz64] proved that, the set of derivatives of a r.e. α, D(α), is finite.
This result leads to the definition of Brzozowski’s automaton which is equivalent to a given
r.e. α: Dα = (D(α),Σ, δα, α, Fα) where Fα = {d ∈ D(α) | ε(d) = ǫ}, and δα(d, a) = a−1(d),
for all d ∈ D(α), a ∈ Σ.

Antimirov and Mosses [AM94] proposed a rewrite system for deciding the equivalence
of two extended r.e. (with intersection), based on a complete axiomatization. This is a
refutation method such that testing the equivalence of two r.e. corresponds to an iterated
process of testing the equivalence of their derivatives. In the process, a Brzozowski’s au-
tomaton is computed for each r.e. Not considering extended r.e., Algorithm 4 is a version
of AM’s method, which was, essentially, the one proposed by Almeida et al. [AMR08a].
Further details about the notation, implementation, and comparison with the original rewrite
system may be found in the cited article.

1 def AM(α, β ) :
2 S = {(α, β)}
3 H = ∅
4 while (α, β) = POP(S ) :
5 i f ε(α) 6= ε(β) : return False
6 PUSH(H, (α, β))
7 for a ∈ Σ :
8 α′ = a−1(α)
9 β′ = a−1(β)

10 i f (α′, β′) /∈ H : PUSH(S , (α′, β′))
11 return True

Algorithm 4: A simplified version of algorithm AM.
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4.2 A näıve HK algorithm

We now present a näıve version of the Algorithm 1. It will be useful to prove its correctness
and to establish a relationship to the Antimirov and Mosses’ method (AM). Let A =
(Q1,Σ, p0, δ1, F1) and B = (Q2,Σ, q0, δ2, F2) be two DFAs, with |Q1| = n and |Q2| = m,
and Q1 and Q2 disjoint. Consider Algorithm 5. To prove the correctness we show that in H
we collect the pairs of states of the relation R, defined below.

1 def HKn(A,B) :
2 S = {(p0, q0)}
3 H = ∅
4 while (p, q) = POP(S ) :
5 PUSH(H, (p, q))
6 for a ∈ Σ :
7 p′ = δ1(p, a)
8 q′ = δ2(q, a)
9 i f (p′, q′) /∈ H: PUSH(S , (p′, q′))

10 for (p, q) in H:
11 i f ε(p) 6= ε(q) : return False
12 return True

Algorithm 5: The algorithm HKn, a näıve version of HK.

Lemma 3. In line 5, (p, q) /∈ H and no pair of states is ever removed from H.

Proof. It is obvious that no pair of states is ever removed from H, as only PUSH operations
are performed on H throughout the algorithm.

It is also easy to see that on line 5 (p, q) /∈ H, as it suffices to notice that S and H are
disjoint. The elements pushed into H on line 5 are popped from S immediately before. Only
on line 9 are any elements, say (p′, q′), pushed into S, and this only happens if (p′, q′) /∈ H.

Lemma 4. The Algorithm 5 is terminating with time complexity O(knm).

Proof. The elements of S are are pairs of states (p, q), such that p ∈ Q1 and q ∈ Q2. This
results in, at most, nm elements being pushed into S. The only PUSH operation on H —
line 5 — is performed with elements popped from S and thus, H will also have at most nm
elements. This assures termination.

For each element in S, lines 6–9 are executed once for each element of Σ. As the loop
in lines 10–11 is executed at most nm times, this results in a running time complexity of
O(knm).

Lemma 5. In Algorithm 5, for all (p, q) ∈ Q1 × Q2, (p, q) ∈ S in a step k > 0 if and only
if (p, q) ∈ H for some step k′ > k.

Proof. We start by recalling, as shown on Lemma 3, that S and H are disjoint. It is obvious
that if (p, q) ∈ S in a step k of Algorithm 5, then (p, q) ∈ H for any k′ > k. Simply observe
that elements are only pushed into H after being popped from S — lines 4–5. For the same
reason, if some element (p, q) ∈ H at step k′, it had to be in S at some step k < k′.

Definition 1. Let R be defined as follows:

R = {(p, q) ∈ Q1 × Q2 | ∃x ∈ Σ⋆ : δ1(p0, x) = p ∧ δ2(q0, x) = q}.
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Lemma 6. For all (p, q) ∈ Q1 × Q2, (p, q) ∈ S at some step of Algorithm 5, if and only
if (p, q) ∈ R.

Proof. Let (p, q) ∈ R, i.e., ∃w : δ1(p0, w) = p ∧ δ2(q0, w) = q. The proof will follow by
induction on the size of the word w.

Base: δ1(p0, ǫ) = p0, δ2(q0, ǫ) = q0, and (p0, q0) ∈ S already on line 2.

Induction: Let w = ua such that δ1(p0, u) = p and δ2(q0, u) = q. By induction
hypothesis, we know that (p, q) ∈ S. On lines 7–9, p′ = δ1(p, a) and q′ = δ2(q0, a) will be
calculated and added to S unless (p′, q′) ∈ H. In this case, however, by Lemma 5 (p′, q′) ∈ S
at some previous step of the algorithm.

Conversely, and because new elements are only added to S on line 9, (p, q) ∈ S only if
some word w is such that δ1(p0, w) = p ∧ δ2(q0, w) = q.

Lemma 7. In line 10, for all (p, q) ∈ Q1 × Q2, (p, q) ∈ R if and only if (p, q) ∈ H.

Proof. Suppose that (p, q) ∈ R. Then there exists a w ∈ Σ⋆, such that δ1(p0, w) = p and
δ2(q0, w) = q. The proof proceeds by induction on the length of the word w. If |w| = 0, then
w = ǫ, δ1(p0, ǫ) = p0, δ2(q0, ǫ) = q0, and (p0, q0) ∈ H. Let w = ya with a ∈ Σ and y ∈ Σ⋆.
Then δ1(p0, w) = δ1(δ1(p0, y), a) = δ1(p

′, a) and δ1(q0, w) = δ1(δ1(q0, y), a) = δ1(q
′, a), for

some p′ ∈ Q1 and q′ ∈ Q2. By the induction hypothesis, (p′, q′) ∈ H and, by Lemma 5 there
exists a step k such that (p′, q′) ∈ S. Thus (p, q) ∈ H from a step k′ > k on. Reciprocally, if
(p, q) ∈ H, by Lemma 5 and Lemma 6 (p, q) ∈ R.

Considering Lemma 6 and Lemma 7, the following theorem ensures the correctness of
Algorithm 5.

Theorem 2. A ∼ B if and only if for all (p, q) ∈ R, ε(p) = ε(q).

Proof. Suppose, by absurd, that A and B are not equivalent and that the condition holds.
Then, there exists w ∈ Σ⋆ such that ε(δ(p0, w)) 6= ε(δ(q0, w)). But in that case there is a
contradiction because (δ(p0, w), δ(q0, w)) ∈ R. On the other hand, if there exists a (p, q) ∈ R
such that ε(p) 6= ε(q), obviously A and B are not equivalent.

The relation R can be seen as a relation on (Q1 ∪Q2)
2 which is reflexive and symmetric.

Its transitive closure R⋆ is an equivalence relation.

Lemma 8. ∀(p, q) ∈ R, ε(p) = ε(q) if and only if ∀(p, q) ∈ R⋆, ε(p) = ε(q).

Proof. Let (p, q), (q, r) ∈ R. Since R⋆ is the transitive closure of R, (p, r) ∈ R⋆ and if
ε(p) = ε(q), then ε(p) = ε(r). On the other hand, as R ⊆ R⋆, if ε(p) = ε(q) ∀(p, q) ∈ R⋆,
the same will be true for every (p, q) ∈ R.

Corollary 1. A ∼ B if and only if ∀(p, q) ∈ R⋆, ε(p) = ε(q).

The Algorithm HK computes R⋆ by starting with the finest partition in Q1 ∪ Q2 (the
identity). And if A ∼ B, R⋆ is a right-invariance.

Corollary 2. Algorithm 5 and Algorithm 1 are equivalent.
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4.3 Equivalence of the two methods

The Algorithm 5 can be modified to a earlier refutation version, as in Algorithm 2. In
order to do so, we remove lines 10–11, and we insert a line equal to line 7 of Algorithm 2,
before line 4. It is then obvious that Algorithm 4 corresponds to Algorithm 5 applied to
Brzozowski’s automata of two r.e., where these DFAs are incrementally constructed during
the algorithm’s execution. In particular, the halting conditions are the same considering the
definition of final states in a Brzozowski’s automaton.

It is possible to use Algorithm 4 to get a DFA from each of the regular expressions α
and β in the following way. Let Dα = (Qα,Σ, δα, qα, Fα) and Dβ = (Qβ,Σ, δβ , qβ, Fβ) the
equivalent DFAs to α e β, respectively. They are constructed in the following way:

• initialize Qα = {α}, Qβ = {β};

• qα = α, qβ = β;

• for each instruction α′ = a−1(α), add the transition δα(α, a) = α′ and make Qα =
Qα ∪ {α′} (same for β and β′);

• whenever ε(α) = 1, make Fα = Fα ∪ {α} (same for β).

To prove the equivalence of the Algorithms 1 and 4, we will first apply Theorem 1 to
Algorithm 5 in order to transform it in a refutation procedure. This modified version is
presented as Algorithm 6. We will then show that Algorithm 4 actually embeds Hopcroft
and Karp’s method while constructing the equivalent DFAs.

1 S = {(p0, q0)}
2 H = ∅
3 while (p, q) = POP(S ) :
4 i f ε(p) 6= ε(q) : return False
5 PUSH(H, (p, q))
6 for a ∈ Σ :
7 p′ = δ1(p, a)
8 q′ = δ2(q, a)
9 i f (p′, q′) /∈ H:

10 PUSH(S , (p′, q′))
11 return True

Algorithm 6: A naive version of Hopcroft and Karp’s algorithm with refutation.

To verify the equivalence of Algorithms 6 and 4, the following observations should be enough.
The instructions

α′ = a−1(α); β′ = a−1(β)

from Algorithm 4 are trivially equivalent to

p′ = δ1(p, a); q′ = δ2(q, a)

in Algorithm 6, by the very definition of the method which constructs the equivalent DFAs.
The halting conditions are also the same. As p ∈ Fα if and only if ε(α) = 1, we know

that ε(α′) 6= ε(β′) if and only if ε(p′) 6= ε(q′) when we consider the DFAs associated to each
of the regular expressions, such that p′ ∈ Qα, q′ ∈ Qβ.

Theorem 3. Algorithm 4 (AM) corresponds to Algorithm 5 (HKn) applied to Brzozowski’s
automata of two r.e.
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4.4 Improving Algorithm AM with Union-Find

Considering the Theorem 3 and the Corollary 2, we can improve the Algorithm 4 (AM)
for testing the equivalence of two r.e. α and β, by considering Algorithm 1 applied to the
Brzozowski’s automata correspondent to the two r.e. Instead of using a stack (H) in order
to keep an history of the pairs of regular expressions which have already been tested, we
can build the correspondent equivalence relation R⋆ (as defined for Lemma 8). Two main
changes must be considered:

• One must ensure that the sets of derivatives of each regular expression are disjoint. For
that we consider their disjoint sum, where derivatives w.r.t. a word u are represented
by tuples (u−1(α), 1) and (u−1(β), 2), respectively.

• In the UNION-FIND method, the FIND operation needs an equality test on the
elements of the set. Testing the equality of two r.e.— even syntactic equality — is
already a computationally expensive operation, and tuple comparison will be even
slower. On the other hand, integer comparison, can be considered to be O(1). As
we know that each element of the set is unique, we may consider some hash function
which assures that the probability of collision for these elements is extremely low. This
allows us to safely use the hash values as the elements of the set, and thus, arguments
to the FIND operation, instead of the r.e. themselves. This is also a natural procedure
in the implementations of conversions from r.e. to automata.

We call equivUF to the resulting algorithm. The experimental results are presented on
Table 3, Section 5.

4.5 Worst-case complexity analysis

In Almeida et al. [AMR08a] the algorithm AM was improved by considering partial deriva-
tives [Ant96]. The resulting algorithm (equivP) can be seen as the algorithm HKe applied
to the partial derivatives NFA of a r.e. We present a lower bound for the worst-case
complexity of this algorithm by exhibiting a family of r.e. for which the comparison method
can be exponential on the number of alphabetical symbols |α|Σ of a r.e. α. We will proceed
by showing that the partial derivatives NFA N of a r.e. α is such that |N | ∈ O(|α|Σ) and
the number of states of the smallest equivalent DFA is exponential on |N |.

Figure 1 presents a classical example of a bad behaved case of the powerset construction,
by Hopcroft et al. [HMU00]. Although this example does not reach the 2n states bound, the
smallest equivalent DFA has exactly 2n−1 states.

q0 q1 q2 qn−1 qn

a, b

a a, b a, b

Figure 1: NFA which has no equivalent DFA with less than 2n states.

Consider the r.e. family αℓ = (a + b)⋆a(a + b)ℓ, where |αℓ|Σ = 3 + 2ℓ = m. It is easy to
see that the NFA in Figure 1 is obtained directly from the application of the AM method
to αℓ, with the corresponding partial derivatives presented on Figure 2. The set of the
partial derivatives PD(αℓ) = {αℓ, (a + b)ℓ, . . . , (a + b), ǫ} has ℓ + 2 = m+1

2
elements, which

corresponds to the size of the obtained NFA. The equivalent minimal DFA has 2ℓ+1 = 2
m−1

2

states.
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αℓ (a + b)ℓ (a + b)ℓ−1 (a + b) ǫ

a, b

a a, b a, b

Figure 2: NFA obtained from the r.e. α using the AM method.

5 Experimental results

In this section we present some experimental results of the previously discussed algorithms
applied to DFAs, NFAs, and r.e. We also include the same results of the tests using
Hopcroft’s (Hop) and Brzozowski’s (Brz) [Brz63] automata minimization algorithms. The
random DFAs were generated using publicly available tools2[AMR07]. The NFAs dataset
was obtained with a set of tools described by Almeida et al. [AMR08b].

All the algorithms were implemented in the Python programming language. The tests
were executed in the same computer, an Intel R© Xeon R© 5140 at 2.33GHz with 4GB of RAM.

n = 5 n = 50

k = 2 k = 50 k = 2 k = 50

Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.

Eff. Total Avg. Eff. Total Avg. Eff. Total Avg. Eff. Total Avg.

Hop 5.3 7.3 - 85.2 91.0 - 566.8 572 - 17749.7 17787.5 -
Brz 25.5 28.0 - 1393.6 1398.9 - - - - - - -
HK 2.3 4.0 8.9 25.3 28.9 9.0 23.2 28.9 98.9 317.5 341.6 99.0
HKe 0.9 2.1 2.4 5.4 10.5 2.4 1.4 5.9 2.6 14.3 34.9 3.4
HKs 0.6 1.3 2.4 2.8 4.6 2.4 0.8 2.0 2.7 9.1 21.3 3.4
HKn 0.7 2.2 3.0 51.5 56.2 29.7 1.3 6.8 3.7 29.4 51.7 15.4

Table 1: Running times for tests with complete accessible DFAs.

Table 1 shows the results of experimental tests with 10.000 pairs of complete ICDFAs.
Due to space constraints, we only present the results for automata with n ∈ {5, 50} states over
an alphabet of k ∈ {2, 50} symbols. Clearly, the methods which do not rely in minimisation
processes are a lot faster. Below (Eff.) appears the effective time spent by the algorithm
itself while below (Total) we show the total time spent, including overheads, such as making a
DFA complete, initializing auxiliary data structures, etc. All times are expressed in seconds,
and the algorithms that were not finished after 10 hours are accordingly signaled. The
algorithm Brz is by far the slowest. The algorithm Hop, although faster, is still several
orders of magnitude slower than any of the algorithms of the previous sections. We also
present the average number of iterations (Iter.) used by each of the versions of algorithm
HK, per pair of automata. Clearly, the refutation process is an advantage. HKn running
times show that a linear set merging algorithm (such as UNION-FIND) is by far a better
choice than a simple history (set) with pairs of states. HKs is a version of HKe which
uses the automata string representation proposed by Almeida et al. [AMR07, RMA05]. The
simplicity of the representation seemed to be quite suitable for this algorithm, and actually
cut down both running times to roughly half. This is an example of the impact that a good
data structure may have on the overall performance of this algorithm.

Table 2 shows the results of applying the same set of algorithms to NFAs. The testing
conditions and notation are as before, adding only the transition density d as a new variable,
which we define as the ratio of the number of transitions over the total number of possible

2http://www.ncc.up.pt/FAdo/node1.html
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n = 5 n = 50

k = 2 k = 20 k = 2 k = 20

Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.

Eff. Total Avg. Eff. Total Avg. Eff. Total Avg. Eff. Total Avg.

Transition Density d = 0.1

Hop 10.3 12.5 - 1994.7 2003.2 - 660.1 672.9 - - - -
Brz 8.4 10.6 - 866.6 876.2 - 264.5 278.4 - - - -
HKe 0.8 2.9 2.2 8.4 19 4 24.4 37.8 10.2 - - -

Transition Density d = 0.5

Hop 17.9 19.8 - 2759.4 2767.5 - 538.7 572.6 - - - -
Brz 14.4 16 - 2189.3 2191.6 - 614.9 655.7 - - - -
HKe 2.6 4.3 4.9 36.3 47.3 10.3 6.8 48.9 2.5 294.6 702.3 11.5

Transition Density d = 0.8

Hop 12.5 14.3 - 376.9 385.5 - 1087.3 1134.2 - - - -
Brz 14 15.8 - 177 179.6 - 957.5 1014.3 - - - -
HKe 1.4 3.2 2.7 39 49.9 10.7 7.3 64.8 2.5 440.5 986.6 11.5

Table 2: Running times for tests with 10.000 random NFAs.

transitions (kn2). Although it is clear that HKe is faster, by at least one order of magnitude,
than any of the other algorithms, the peculiar behaviour of this algorithm with different
transition densities is not easy to explain. Considering the simplest example of 5 states and
2 symbols, the dataset with a transition density d = 0.5 took roughly twice as long as those
with d ∈ {0.1, 0.8}. On the other extreme, making n = 50 and k = 2, the hardest instance
was d = 0.1, with the cases where d ∈ {0.5, 0.8} present similar running times almost five
times faster. In our largest test, with n = 50 and k = 20, neither Hop nor Brz finished
within the imposed time limit. Again, d = 0.1 was the hardest instance for HKe, which also
did not finish within the time limit, although the cases where d ∈ {0.5, 0.8} present similar
running times.

Size/Alg. Hop Brz AM Equiv EquivP HKe EquivUF

k = 2 10 21.025 19.06 26.27 7.78 5.512 7.27 5.10
50 319.56 217.54 297.23 36.13 28.05 64.12 28.69
75 1043.13 600.14 434.89 35.79 23.46 139.12 60.09
100 7019.61 1729.05 970.36 60.76 48.29 183.55 124.00

k = 5 10 42.06 25.99 32.73 9.96 7.25 8.69 6.48
50 518.16 156.28 205.41 33.75 26.84 67.7 21.53
75 943.65 267.12 292.78 35.09 25.17 161.84 28.61
100 1974.01 386.72 567.39 54.79 45.41 196.13 37.02

k = 10 10 61.60 31.04 38.27 10.87 8.39 9.26 7.47
50 1138.28 198.97 184.93 34.93 28.95 72.95 22.60
75 2012.43 320.37 271.14 35.77 26.92 195.88 30.61
100 4689.38 460.84 424.67 52.97 44.58 194.01 39.23

Table 3: Running times (seconds) for tests with 10.000 random r.e.

Table 3 presents the running times of the application of HKe to r.e. and their comparison
with the algorithms presented by Almeida et al. [AMR08a], where equiv and equivP are the
functional variants of the original AM algorithm. equivUF is the UNION-FIND improved
version of equivP. Although the results indicate that HKe is not as fast as the direct
comparison methods presented in the cited paper, it is clearly faster than any minimisation
process. The improvements of equivUF over equivP are not significant (it is actually
considerably slower for r.e. of length 100 with 2 symbols). We suspect that this is related to
some optimizations applied by the Python interpreter. We state this based on the fact that
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when both algorithms are executed using a profiler, equivUF is almost twice faster than
equivP on most tests.

We have no reason to believe that similar tests with different implementations of these
algorithms would produce significantly different ordering of its running times from the one
here presented. However, it is important to keep in mind, that these are experimental tests
that greatly depend on the hardware, data structures, and several implementation details
(some of which, such as compiler optimizations, we do not utterly control).

6 Conclusions

As minimality or equivalence for (finite) transition systems is in general intractable, right-
invariant relations (bisimulations) have been extensively studied for nondeterministic vari-
ants of these systems. When considering deterministic systems, however, those relations
provide non-trivial improvements. We presented several variants of a method by Hopcroft
and Karp for the comparison of DFAs which does not use automata minimization. By
placing a refutation condition earlier in the algorithm we may achieve better running times
in the average case. This is sustained by the experimental results presented in the paper.
We extended this algorithm to handle NFAs. Using Brzozowski’s automata, we showed that
a modified version of Antimirov and Mosses’ method translates directly to Hopcroft and
Karp’s algorithm.
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