
Robust Programming
for Sensor Networks

Francisco Martins
LASIGE/DI-FCUL, Portugal

fmartins@di.fc.ul.pt

Luı́s Lopes, Miguel S. Silva
CRACS/DCC-FCUP, Portugal
{lblopes,mssilva}@dcc.fc.up.pt

João Barros
IT/DCC-FCUP, Portugal

barros@dcc.fc.up.pt

Technical Report Series: DCC-2008-01

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL
Tel: 220 402 900 Fax: 220 402 950

http://www.dcc.fc.up.pt/Pubs/



Robust Programming for Sensor Networks

Francisco Martins
LASIGE/DI-FCUL, Portugal

fmartins@di.fc.ul.pt

Luı́s Lopes, Miguel S. Silva
CRACS/DCC-FCUP, Portugal
{lblopes,mssilva}@dcc.fc.up.pt

João Barros
IT/DCC-FCUP, Portugal

barros@dcc.fc.up.pt

Abstract

Aiming at a sound formal basis for the design and im-
plementation of robust programming languages for sensor
networks, we present a process calculus that captures their
main characteristics in terms of computational resources
and communication abilities. The calculus, which has
straightforward semantics and is rather expressive, features
a static type system that allows premature detection of
application protocol errors. Our main results include
subject reduction and type safety proofs, as well as an initial
implementation of a modular interpreter.

keywords: Sensor Networks, Process-Calculi, Program-
ming Languages, Virtual Machines

1 Introduction

An ideal programming platform for sensor networks
would allow a software engineer to write a distributed
application in a high-level idiom, to debug the code on a
personal computer, and to deploy the program automatically
onto potentially large numbers of small sensing devices [2]
equipped with wireless transmission capabilities. In spite
of abundant and very active research on this class of dis-
tributed systems, the majority of available sensor network
programming tools [3] are still rather distant from the
aforementioned ideal platform, most notably the module-
based idiom nesC [8], which promotes a system level
programming style on top of small-scale operating systems
such as TinyOS [1] and Contiki [5]. In contrast, TinyScrip-
t/Maté [11] can be regarded as a step in the right direction,
providing programmers with a suitable abstraction layer for
the hardware. Other examples such as Deluge [10] and the
Agilla middleware platform [7] enable higher level control
for critical operations such as massive code deployment.

Deemed as a relevant step towards the definition of
higher-level languages for sensor networks, Regiment [17]
adopts a data-centric view of sensor networks and provides
the programmer with useful abstractions to manipulate
data streams and to manage network regions. Although

Regiment is a strongly typed language — a technical
characteristic widely recognized as an essential ingredient
towards scalable development of robust applications — its
construction is not based on a formal calculus and it is not
clear that the semantics is amenable to prove correctness
results for the system and applications.

Invariably, the state of the art in the design of sen-
sor network programming languages follows a top-down
approach, in which system engineers start by identifying
useful patterns and abstractions based on case studies of
applications and then attempt to provide the programmer
with language constructs and system features, which must
be written in nesC/TinyOS code or some other platform
similar to a low-level operating system. The problem with
such approaches is that the semantic gap between the orig-
inal language specification and the actual implementation
inevitably precludes a thorough analysis of the correctness
of the envisioned sensor networking application.

Seeking a fundamentally sound path towards the devel-
opment of programming languages for sensor networks,
we propose a somewhat disruptive bottom-up approach.
Inspired by process calculi theory [9, 16], our basic idea
is to start by constructing a fundamental programming
model, which (a) captures the specific computing and
communication aspects of sensor networks and (b) enables
us to reason about their fundamental operations. Previous
work on process calculi for wireless systems exist [14, 18,
20], however the results are scarce and do not address the
specificities of sensor networks. Seeking to close this gap,
we presented in [12] a preliminary version of our Calculus
for Sensor Networks (CSN).

In this paper, we go one step forward towards a robust
higher-level programming language by making the follow-
ing contributions:

• an improved model that extends the notion of applica-
tion module;

• a new type-system that allows us to check statically
the well-formedness of sensor network applications
and to diagnose potential would be run-time errors
prematurely;

2



• a subject reduction and a type safety result that to-
gether are fundamental in establishing the calculus as
a rigorous framework to reason about sensor network
applications;

• a prototype implementation for the system that enables
us to simulate the behavior of CSN networks and
applications.

After establishing the basic theoretical properties for
the calculus, we propose using it as a specification for an
intermediate-level language upon which other high-level
programming abstractions may be implemented as derived
constructs, thus preserving the semantics of the underlying
calculus.

The remainder of the paper is organized as follows.
Section 2 provides a formal description of our calculus,
followed by a set of examples in Section 3. First steps
towards a high-level language are outlined in Section 4,
whereas Section 5 describes our new type system. Section 6
is devoted to a first implementation of an interpreter and
Section 7 concludes the paper.

2 The Calculus

This section presents the syntax and the semantics of
the Calculus for Sensor Networks. For simplicity, in the
remainder of the paper we refer to a sensor node or a sensor
device in a network as a sensor. The syntax is provided by
the grammar in Figure 1, and the operational semantics is
given by the congruence and reduction relations depicted in
Figures 2 and 3.

Syntax. Let ~α denote a possibly empty sequence α1 . . . αn

of elements of the syntactic category α. We assume a
countable set of labels, ranged over by letter l, used to
name functions within modules, a countable set of module
names, ranged over by letter X , and a countable set of
variables ranged over by letter x. The sets of labels, module
names, and variables are pairwise disjoint. Variables stand
for communicated values (e.g. basic values and anonymous
modules) in a given program context.

A network is a flat, unstructured collection of sensors S
combined using the parallel composition operator. The
empty network is represented by symbol 0. We assume
the sensors to be immersed in a (scalar or vector) field
representing some physical quantity we want to monitor
(e.g. temperature, pressure, humidity) in space. The sensors
are able to measure field’s intensity by calling appropriate
functions in their code modules. They are also parametric in
their position, p, and in their battery charge, e. The position
is given in some coordinate system and may vary with time.
As a first approach we use the sensor battery just to control
whether the sensor can perform an operation. It is possible

S ::= Sensors

0 empty network

| S |S composition

| [~P . ~C]pe sensor

P ::= Processes

v value

| v.l(~v) function call

| transmitX.l(~v) transmission

| install (v) install module

| letx = P in P new variable

| post {P} defer execution

C ::= Modules

X :: M module

M ::= Anonymous Modules

{li = (~xi)Pi}i∈I anonymous module

v ::= Values

b built-in value

| x variable

| X module name

| C module

| M anonymous module

Figure 1. The syntax of sensors.

to refine the semantics to provide a finer grained control of
resource usage in the sensors, namely, battery, memory, and
cpu usage.

A sensor [~P . ~C]pe represents an abstraction of a physical
sensing device running a sequence of processes ~P and
with a collection ~C of code modules. Each code module
in ~C consists of an independent name space, providing
a collection of functions that implement sensor behavior.
The code l = (~x)P represents a function with name l,
parameters (~x) and body P . Intuitively, the collection ~C
of modules of a sensor may be interpreted as the modules
of a tiny operating system installed in the sensor at boot
time plus the modules that are dynamically uploaded to the
sensor.

Processes are ranged over by P . A function call, v.l(~v),
calls function l (with arguments ~v) in some value v. Value v
must always evaluate to a code module. Calls to functions
in other sensors in the network are written with the process
transmitX.l(~v), which broadcast a calls to function l in a
moduleX , with arguments (~v). Installing or replacing mod-
ules in a sensor can be done with the construct install (v),
which adds the module v to the local collection ~C. The let
construct allows programs to create local variables to hold

3



intermediate values in computations. In particular, it allows
the construction of arbitrarily complex data structures when
combined with the appropriate functions in the sensor’s
code modules.

We do not have a primitive sequential composition
construct for programs. Such a construct can be easily
obtained as syntactic sugar for: let x = P in P ′ ≡ P ;P ′

where x 6∈ fv(P ′). The semantics of the calculus forces the
evaluation of P first and then P ′ exactly, since x does not
occur free in P ′. We make frequent use of this construct to
impose a more imperative style of programming.

Values are the data exchanged between sensors and
comprise basic values that can intuitively be seen as the
primitive data types supported by the sensor’s hardware,
and anonymous modules.

A Simple Example. We start with a very simple ping
program. We implement two Ping modules: one for the
anonymous sensors in the network and another for the sink.
The interface of the modules are the same but the imple-
mentation of the functions differs, reflecting the distinct
behavior of each type of node. As for anonymous sensors
function ping, when called with a time stamp, transmits a
forward call to the network with its MAC address mac and
the original time stamp. The function also re-transmits
another ping call to model propagation in the network. The
function forward just forwards the call. The sink has a
distinct implementation of function forward. Any incoming
call gets another time stamp and logs the MAC address
with the round trip time. The sink does not require a ping
function, and so it implements it as the default function that
just returns an empty module. For simplicity we omit such
functions in our programming examples.

[ i n s t a l l ( Ping : : / / sink
{ forward = ( then ,mac)

l e t now = System . getTime ( ) in
System . log (now−then ,mac) } ) ;

transmit System . deploy ( Ping : :
{ ping = ( t )

l e t mac = System . getMacAddress ( ) in
transmit Ping . forward ( t ,mac ) ;
transmit Ping . ping ( t )

forward = ( t ,m)
transmit Ping . forward ( t ,m) } ) ;

l e t now = System . getTime ( ) in
transmit Ping . ping (now) ]

|
[ i n s t a l l ( System : : / / sensor

{ deploy = ( x )
i n s t a l l ( x ) ;
transmit System . deploy ( x ) } ) ]

| . . . |
[ i n s t a l l ( System : : / / sensor

{ deploy = ( x )
i n s t a l l ( x ) ;
transmit System . deploy ( x ) } ) ]

Each anonymous sensor starts by installing a system

module. We may think this operation is part the booting
process of the sensors. Function deploy takes the module
given as argument and installs it locally, while propagating
the call to the network. In the sink the process is more
involving. It first installs its local version of the Ping module
and then deploys the Ping module for the sensors. The code
in the Ping module of the sensors is activated by the call
to Ping.ping from the sink node. So, the overall result of
the call let now = System.getTime() in transmit Ping.ping(now)
in the sink is that all reachable sensors in the network will,
in principle, receive this call and will transmit their MAC
addresses to the network in forward messages. These values
eventually reach the sink and get logged with the associated
round trip times.

Semantics. The calculus has two variable bindings: the
let construct and function definitions. The displayed oc-
currence of variable x is a binding with scope P both in
let x = P ′ in P and in l = (. . . , x, . . . )P . An occurrence
of a variable is free if it is not in the scope of a binding.
Otherwise, the occurrence of the variable is bound. The set
of free variables of a sensor S is referred as fv(S).

S1 |S2 ≡ S2 |S1, S | 0 ≡ S, S1 | (S2 |S3) ≡ (S1 |S2) |S3

(S-MONOID-SENSOR)

[~P . ~C]pe ≡ [~P . ~C]pe{0}
(S-INIT-TRANSMIT)

Figure 2. Structural congruence for sensors.

Following Milner [15] we present the reduction relation
with the help of a structural congruence relation. The
structural congruence relation ≡, depicted in Figure 2,
allows for the manipulation of the syntactic structure of
terms, making it possible for sub-terms to reduce. The
relation is defined as the smallest congruence relation on
sensors closed under the rules given in Figure 2.

The parallel composition of sensors is commutative and
associative with 0 as the neutral element (vide Rule S-
MONOID-SENSOR). When a sensor transmits a message it uses
a conceptual membrane to engulf the sensors as they be-
come engaged in communication. This abstraction prevents
sensors from receiving duplicate copies of the message
during transmission. The Rule S-INIT-TRANSMIT prepares a
sensor for a transmission by creating such a membrane.

The reduction relation on networks, notation S → S′,
describes how a sensor S can evolve (reduce) to sensor S′.
Reduction in a sensor occurs at the head of the sequence
~P . In other words, in a sequence P, ~P , program P is
running while those in ~P are waiting in a queue. Since
processes evaluate to values in the calculus, we must allow
for reduction within the let construct. In other words, the P
in the example above can be of the form let x = P ′ in P ′′

4



and we allow the reduction in situ of P ′. Naturally, we may
have multiple levels of let constructs involved. For this
reason we present our reduction relation using reduction
contexts, or places where reduction may occur. These
contexts, denoted C[[]], are defined as follows:

C[[]] ::= [ ] | let x = [ ] in P

Thus, C[[P ]] denotes the process P inserted in the [ ] hole of
any of the above contexts.

The reduction relation is inductively defined by the rules
in Figure 3, is parametric on two constants ein and eout that
represent the amount of energy consumed when perform-
ing internal computation steps (ein) and when transmitting
messages (eout). This is a very basic power checking
mechanism, which can be significantly refined to simulate
power management schemes, such as powering-off sensors
or putting them off-line temporarily. However this is not the
focus of this paper.

i ∈ I e ≥ ein

[C[[Xi.l(~v)]], ~P . ~C]pe → [C[[Mi.l(~v)]], ~P . ~C]pe′

(R-MODULE)

i 6∈ I e ≥ ein

[C[[Xi.l(~v)]], ~P . ~C]pe → [post {C[[Xi.l(~v)]]}, ~P . ~C]pe′

(R-NO-MODULE)

M(l) = (~x)P e ≥ ein

[C[[M.l(~v)]], ~P . ~C]pe → [C[[P [~v/~x]]], ~P . ~C]pe′

(R-FUNCTION)

inRange(p1, e1, p2) e1 ≥ eout

[C[[transmitX.l(~v)]], ~P . ~C]p1
e1{S} | [~P

′ . ~C′]p2
e2 →

[C[[transmitX.l(~v)]], ~P . ~C]p1
e′
1
{S | [post {X.l(~v)}, ~P ′ . ~C′]p2

e′
2
}

(R-TRANSMIT)

[C[[transmitX.l(~v)]], ~P . ~C]pe{S} → [C[[{}]], ~P . ~C]pe |S
(R-RELEASE)

e ≥ ein

[C[[install (C)]], ~P . ~C′]pe → [C[[{}]], ~P . C + ~C′]pe′

(R-INSTALL)
e ≥ ein

[C[[letx = v in P ]], ~P . ~C]pe → [C[[P [v/x]]], ~P . ~C]pe′

(R-LET)
e ≥ ein

[C[[post {P}]], ~P . ~C]pe → [C[[{}]], ~P , P . ~C]pe′

(R-POST)

[v, P, ~P . ~C]pe → [P, ~P . ~C]pe′ [~P . ~C]pe → [~P . ~C]p
′

e′

(R-NEXT,R-MOVE)

S → S′

S |S′′ → S′ |S′′
S1 ≡ S2 S2 → S3 S3 ≡ S4

S1 → S4

(R-NETWORK, R-CONGR)

Where ~C stands for the sequence of modules Xi :: Mi, i ∈ I .

Figure 3. Reduction semantics for sensors.

A process P in a sensor [~P . ~C]pe may: (a) call a

function in one of the modules in ~C (Rules R-MODULE and
R-NO-MODULE), in anonymous modules (Rule R-FUNCTION),
and in remote modules (Rules R-TRANSMIT and R-RELEASE);
(b) install new modules in the sensor (Rule R-INSTALL);
(c) compute intermediate values and assign them to new
variables (Rule R-LET), and (d) schedule a process for
execution at the end of the queue (Rule R-POST).

A call to a function l with arguments ~v in a module
named X or in an anonymous module M , such that l =
(~x)P , results in the process P where the variables in
~x are replaced with the values ~v. Traditionally, typed
programming languages use a type system to ensure that
there are no calls to undefined functions, ruling out all other
programs at compile time. We also adhere to this principle.
However, here we introduce an extra degree of flexibility.
When a module X containing the function l being called is
not installed in the sensor, we keep the call active waiting
for the module to be installed (see Rule R-NO-FUNCTION).
At run-time, another possible choice would be to simply
discard invocations to functions on un-installed modules.
Our choice to make function calls wait for the module to
be installed aims to provide a more flexible programming
model when coupled with the procedures for deploying
code in a sensor network. We envision that if we call a
function in the network on a module that has been deployed
(vide the Ping example), some sensors may receive the
function call before the code is actually installed locally.
With the semantics we propose, the call actively waits for
the code to be installed. Calling an undefined function in an
anonymous module causes the process to get stuck.

Sensors communicate with the network by transmitting
messages. A message consists of a remote function call
on unspecified sensors in the neighborhood of the emitting
sensor. In other words, the messages are not targeted to
a particular sensor (there is no peer-to-peer communica-
tion). Several metrics may be used to define the network
neighborhood of a sensor, e.g. based on the geometric
distance between the sensors or on the received power at the
destination node. Here, we use some abstract metric based
on the positions of the sensors and on the battery power
of the transmitting sensor. A message transmitted from a
sensor may not reach all the sensors in its neighborhood.
There might be, for instance, landscape obstacles that pre-
vent two sensors, otherwise in range, from communicating
with each other. Also, during a transmission operation
the message must reach each neighborhood sensor at most
once. Notice that we are not saying that the same message
can not reach the same sensor multiple times. In fact it
might, but as the result of the echoing of the message in
subsequent transmissions. A transmission starts with the
application of Rule S-INIT-TRANSMIT, proceeds with multiple
(eventually none) applications of Rule R-TRANSMIT (one for
each target sensor), and terminates with the application of

5



Rule R-RELEASE. Rule R-TRANSMIT calls a function X.l in the
remote sensor, provided that the emitting and the receiving
sensors are in range. Each sensor that receives the call is
put in the membrane associated with the emitting sensor,
thus preventing multiple deliveries of the same message
during the transmission. Observe that the rule does not
enforce the interaction with all sensors in the neighborhood
of the emitting sensor. Rule R-RELEASE consumes the
operation (transmitX.l(~v)) and dissolves the membrane,
thus finishing the transmission.

Installing a moduleX :: M in a sensor [~P . ~C]pe amounts
to adding the module to ~C. If the module already exists
in ~C, X :: M ′, then the new code replaces the previous
version such that: C(X) = M +M ′ = (M \M ′) ∪M ′.

A process post {P} schedules the process P for execu-
tion at the end of the run-queue and allows the next process
in the run-queue to execute. This feature is essential to
ensure that sensors eventually process incoming network
communication and that no application takes control of the
sensor. This, however, must be taken into consideration by
the programmer.

3 Programming Examples

The following examples assume that the network layer of
the sensor network manages the distribution of messages in
an energy-efficient way and filters out redundant messages
using, for example, multicast protocols. The network layer
can be programmed with CSN but here we concentrate on
higher level abstractions.

Sampling the Network. In this example the sensors are
requested to take field readings and report them to a sink
for processing purposes.

[ i n s t a l l ( Sample : : / / sink
{ sample = ( )

transmit Sample . sample ( ) ;
post { Sample . sample ( t ) }

forward = ( v ,m, t )
System . log ( v ,m, t ) } ) ;

transmit System . deploy ( Sample : :
{ sample = ( )

l e t value = System . getReading ( ) in
l e t t ime = System . getTime ( ) in
l e t mac = System . getMacAddress ( ) in
transmit Sample . forward ( value , mac , t ime ) ;
transmit Sample . sample ( ) ;

forward = ( v ,m, t )
transmit Sample . forward ( v ,m, t ) } ) ;

Sample . sample ( )
]
|
[ i n s t a l l ( System : : {deploy = . . . } ) ] / / sensor
| . . . |
[ i n s t a l l ( System : : {deploy = . . . } ) ] / / sensor

We program the application from the bootstrap point.
After the Sample module has been uploaded to the sensors,

the sink just calls the function Sample.sample to begin the
sampling cycle. The call to Sample.sample in any sensor
propagates the call to the network neighborhood; then it
calls sends to the network a call to the function forward with
the values of the reading taken, the sensor’s MAC address
and the local time. The last two items are important since
they allow the sink to identify the streams associated with
each sensor.

Roaming Sensors in a Museum. This example illustrates
the use of several sinks in a sensor network coupled with
roaming sensor nodes. Each sink is imagined as a device
that stores information about an item of a museum col-
lection in a module Provider and that is physically located
near that item. Sinks can be connected to a Museum-wide
network (e.g. via WiFi) for easy centralized information
update. Visitors carry small devices (e.g., BlueTooth based)
that when within range of a sink and when the user presses
the key ”G” (an event handled by function GUI.buttonG in
the user interface), read the data provided by the sink and
present it to the user.

[ i n s t a l l ( Prov ider : : / / sink
{ g e t I n f o = ( )

transmit I n f o . g e t I n f o ( I n f o : :
{ p r i n t I n f o = ( )

GUI . d i sp lay ( ” T i t l e . . . ” ) ; } ) ; } ) ; ]
| . . . |
[ i n s t a l l ( Prov ider : : / / sink

{ g e t I n f o = ( )
transmit I n f o . g e t I n f o ( I n f o : :
{ p r i n t I n f o = ( )

GUI . d i sp lay ( ” T i t l e . . . ” ) ; } ) ; } ) ; ]
|
[ i n s t a l l ( I n f o : : / / sensor

{ g e t I n f o = ( x )
i n s t a l l ( x ) ; I n f o . p r i n t I n f o ( ) } ) ;

i n s t a l l ( GUI : :
{ buttonG = ( )

transmit Prov ider . g e t I n f o ( ) ;
d i sp lay = ( x ) . . .
main = ( ) . . . } ) ;

GUI . main ( ) ; ]

The call to Provider.getInfo deploys the module Info, that
encapsulates the data for the Museum item, to the mobile
device. Once the module arrives at the device, it is installed
and the call Info . printInfo displays the retrieved information.

Secure Code Deployment. In the previous examples the
code deployment is inherently insecure. In fact, any sensor
in the network or even external entities might send deploy
calls to the network and install modules, unchecked. Here
we show how we can prevent this problem assuming that
the sink and the remainder of the sensors share a secret key.
The distribution of the keys is assumed to be done using
some currently available secure scheme for wireless sensor
networks, e.g. trusted third party [19], public key [13] or
key pre-distribution [4, 6, 21].

6



We implement a secure deploy function, secureDeploy,
that receives one argument, assumed to be a module issued
from the sink and encrypted using the shared secret key, key.

[ i n s t a l l ( Ping : : / / sink
{ forward = ( t ,m) . . . } ) ;

l e t key = System . secretKey ( ) in
l e t emod = System . encrypt ( k , Ping : : { . . . } ) in
transmit System . secureDeploy (emod ) ;
transmit Ping . ping ( ) ]

|
[ i n s t a l l ( System : : / / sensor

{ secureDeploy = ( x )
l e t key = System . secretKey ( ) in
i n s t a l l System . decrypt ( k , x ) ;
transmit System . secureDeploy ( x ) } ) ; ]

| . . . |
[ i n s t a l l ( System : : / / sensor

{ secureDeploy = ( x )
l e t key = System . secretKey ( ) in
i n s t a l l System . decrypt ( key , x ) ;
transmit System . secureDeploy ( x ) } ) ; ]

The function attempts to decrypt the argument using the
key and the resulting module is installed locally. However,
if the sender is not the sink, decrypt returns an empty module
which, although installed, does not alter the code in the
sensor. The sink simply encrypts the Ping module (in
this example), deploys it to the network and triggers its
execution.

4 Towards a Higher-Level Language

The examples presented in the previous sections are
quite low-level, in the sense that the programmer must to
some extent be aware of the communication and routing
requirements of the applications. Take the Ping example
for instance, each call to the function Ping.ping() must
explicitly propagate itself to the remainder of the network
by repeating the call transmit Ping.ping() in the body of the
call. As we mentioned in Section 1, more data-centric
programming model for sensor networks, one that abstracts
away from the communication details is a very desirable
feature. In this section we describe how we can hide
the network communication in CSN programs and create
a higher level idiom for programming sensor networks.
We do this by resorting to derived constructs that are pre-
processed to CSN programs, and thus keep the original
semantics of the calculus.

First we introduce a new data sending primitive,
sendX.l(~v), that is used instead of our transmit primitive.
The new primitive is a higher-level remote call that can be
customized for each type of sensor in the network. We
implement sendX.l(~v) as:

transmit System . send ({ execute = ( ) X . l (~v )} )

So, the new primitive simply calls a system level function,
System.send(). In a sink node, this function would simply

take its argument, an anonymous module that encapsulates
the original remote call, and execute it. No re-transmission
is required:

send = ( x ) x . execute ( )

In a sensing node however, re-transmitting the call is
required and so the definition would be:

send = ( x ) x . execute ( ) ; transmit System . send ( x )

In view of these adjustments, the Ping example would now
be written as follows:

Sink [
i n s t a l l ( Ping : :
{ forward = ( then ,mac)

l e t now = System . getTime ( ) in
System . log (now−then ,mac) } ) ;

send System . deploy ( Ping : :
{ ping = ( t )

l e t mac = System . getMacAddress ( ) in
send Ping . forward ( t ,mac)

forward = ( t ,m) {} } ) ;
l e t now = System . getTime ( ) in
send Ping . ping (now) ]
|
Sensing [

i n s t a l l ( System : : { deploy =( x ) i n s t a l l ( x )} ) ]
| . . . |
Sensing [

i n s t a l l ( System : : { deploy =( x ) i n s t a l l ( x )} ) ]

The keywords Sink and Sensing are there to signal the
pre-processor which implementation of send() should be
attached to the System module for each sensor. Note that the
deploy is also simplified by this procedure. As in the Ping
example we could further simplify the code by omitting
the forward function from the Ping module of the sensing
devices, since it just returns an empty module.

Further customization of the System.send() function al-
lows all sorts of operations to be performed on the data sent
in the call (e.g., encryption) and even the implementation
of more complex routing protocols. Using this approach
we could re-write the secure deployment example from
the previous section without the need for a secureDeploy
function, by just customizing the communication function
send to encrypt the data. The code would be written as
follows:

Sink [
i n s t a l l ( Ping : : { forward = ( t ,m) . . . } ) ;
send System . deploy ( Ping : : { . . . } ) ;
send Ping . ping ( ) ]
|
Sensing [

i n s t a l l ( System : : { deploy =( x ) i n s t a l l ( x )} ) ]
| . . . |
Sensing [

i n s t a l l ( System : : { deploy =( x ) i n s t a l l ( x )} ) ]

The assumed implementation for sendX.l(~v) hides the
encryption/decryption of the communicated data as follows:

7



send (X , l ,~v ) ≡
l e t key = System . secretKey ( ) in
l e t mod = {execute = ( ) X . l (~v )} in
l e t emod = System . encrypt ( key , mod) in
transmit System . send (emod)

At the receiving end, the implementation of the
System.send function handles the decryption of the data and
calls the local function X.l encapsulated in the received
module:

System : : {
send = (emod)

l e t key = System . secretKey ( ) in
l e t mod = System . decrypt ( key , emod) in
mod. execute ( ) ;
transmit System . send (emod)

}

5 The Type System

In this section we present a simple type system for
CSN, discuss run-time errors, and prove a type safety result
guaranteeing that a well-typed sensor network does not get
“stucked” while computing.

Type checking. The syntax for types is depicted in Fig-
ure 4. Types τ are built from the built-in type β using the
constructors for the type of anonymous modules {li : ~τi →
τi}i∈I and for the type of modules X :: {li : ~τi → τi}i∈I .
A type {li : ~τi → τi}i∈I describes an anonymous module
represented as a collection of (distinctly named) functions.
Each function li has type ~τi → τi, where ~τi is the type of
the parameters of the function and τi is its return type. A
module’s type X :: {li : ~τi → τi}i∈I records the name of
the module (X) together with the type of the anonymous
module that constitutes it. For instance, type Ping ::
{ping : β → {}, forward : ββ → {}} is the type of
module Ping presented in Section 2. It represents a module
named Ping with two functions named ping and forward .
Function ping has a parameters (a timestamp) and returns
an empty module (the result from the final Ping .ping()
operation). Function forward accepts two built-in values
and returns {}, like ping .

τ ::= Types

β built-ins

| {li : ~τi → τi}i∈I anonymous modules

| X :: {li : ~τi → τi}i∈I modules

Figure 4. The syntax of types.

The type system is defined in Figures 5, 6, and 7. A
typing Γ is a partial function of finite domain from variables
and modules’ names to types. We write dom(Γ) for the

Γ ` b : β Γ , x : τ ` x : τ
∀i.Γ ` vi : τi

Γ ` ~v : ~τ
(T-BUILT-IN, T-VAR, T-SEQ)

∀i ∈ I.Γ , ~xi : ~τi ` Pi : τi

Γ ` {li = (~xi)Pi}i∈I : {li : ~τi → τi}i∈I
(T-AMOD)

Γ , X : τ ` X : τ
Γ `M : τ Γ ` X : τ

Γ ` X :: M : X :: τ
(T-MNAME, T-MOD)

Figure 5. Typing rules for values.

Γ ` v : {li : ~τi → τi}i∈I Γ ` ~v : ~τj j ∈ I
Γ ` v.lj(~v) : τj

(T-CALL)

Γ ` X.l(~v) :

Γ ` transmitX.l(~v) : {}
Γ ` v : X :: τ

Γ ` install (v) : {}
(T-TRANS,T-INST)

Γ ` P1 : τ1 Γ , x : τ1 ` P2 : τ2
Γ ` letx = P1 in P2 : τ2

Γ ` P :

Γ ` post {P} : {}
(T-LET, T-POST)

Figure 6. Typing rules for processes.

domain of Γ. Let χ range over x andX . When χ 6∈ dom(Γ)
we write Γ, χ : T for the typing Γ′ such that dom(Γ′) =
dom(Γ)∪{χ}, Γ′(χ) = T , and Γ′(χ′) = Γ(χ′) for χ′ 6= χ.

Type judgments are of three forms: Γ ` v : τ means
that value v has type τ , under the assumptions in typing
Γ; Γ ` P : τ asserts that program P has type τ , under the
assumptions in Γ; and Γ ` S means that sensor network S
is well typed, assuming the typing Γ.

The rules for typing values (Figure 5) are straightfor-
ward. As for processes, function calls are separated into
local calls (rule T-CALL) and remote calls (rule T-TRANS). In a
local call, function lj must be part of the target module (j ∈
I), either named or anonymous, the type of the arguments
must agree with the type of the parameters (~v : ~Tj), and the
type of the invocation (Tj) is the return type of the function.
A remote call, using transmit , is type checked as a local
call, apart from its return type that is always the empty
module ({}), meaning that the return value of a remote call
is ignored. This means that the interface of the sensors is
identical and is fixed by the application programmer, before
type checking takes place. When installing a module X
(rule T-INST) its type must coincide with the type fixed for
the interface of the sensor. Therefore, value v must contain
a full implementation of the module being installed. The
result of an install operation is the empty module.

Regarding the typing rules for sensors, we focus on rule
T-SENSOR, as the remainder of the rules should be simple
to follow. When typing a sensor we make sure that the
modules available in the sensor’s interface conform with the
global, network-wide set interface (Γ ` ~C : ). Notice that

8



Γ ` 0
Γ ` ~P : Γ ` ~C : Γ ` pe : ~β

Γ ` [~P . ~C]pe
(T-OFF, T-SENSOR)

Γ ` [~P . ~C]pe Γ ` S
Γ ` [~P . ~C]pe{S}

Γ ` S1 Γ ` S2

Γ ` S1 |S2

(T-BSENSOR, T-PAR)

Γ ` P : Γ ` ~P :

Γ ` P, ~P :
(T-SEQP)

Figure 7. Typing rules for sensors.

a sensor may offer just a subset of the interface modules,
since some of them may not yet be available (installed)
in the sensor. Nevertheless, the installed modules must be
fully available.

The following result ensures that types are preserved
during reduction.

Theorem 1 (Subject Reduction). If Γ ` S, S → S′, then
Γ ` S′.

The proof proceeds by induction on the derivation tree
for the reduction S → S′ and is a straightforward case
analysis.

Type safety. Our claim is that well-typed processes are free
from run-time errors. The unary relation S err7−→, defined
as the least relation on networks closed under the rules
in Figure 8, identifies processes that would get “stucked”
during computation (reduction). We write S

errX7−→ for
¬(S err7−→).

Our Sensor Networks may exhibit two kinds of failures
upon computing: when calling a function or when installing
a module. In the former, the call may result in a run-time
error when the target of the call is neither a module name,
nor an anonymous module (Rule E-CALL); or when the func-
tion name is unknown or there is a mismatch between the
number of arguments (v1 . . . vn) and the number parameters
(x1 . . . xm) (Rule E-CFUNCTION). In the latter, an error may
occurs if we are installing some value that is not a module
(Rule E-INSTALL).

As an example, recall module Ping sketched below.

Ping : : {
ping = ( t ) . . .
forward = ( t ,m) . . .

}

The sensor network

[ l e t t = System . getTime ( ) in
transmit Ping . forward ( t ) ]

exhibits a run-time error, since function forward is being
called with one argument instead of two. In fact, the above

network may reduce using Rule R-MODULE, but then we
can not apply Rule R-FUNCTION since the substitution is not
defined. Run-time error Rule E-CFUNCTION captures this
kind of failures.

[C[[v.l(~v)]], ~P . ~C]pe
err7−→ if v is not X , nor M

(E-CALL)

[C[[M.l(v1 . . . vn)]], ~P . ~C]pe
err7−→ if l 6∈ dom(M) or

(M(l) = (x1 . . . xm)P and

n 6= m) (E-CFUNCTION)

[C[[install (v)]], ~P . ~C]pe
err7−→ if v is not C (E-INSTALL)

S
err7−→

S |S′ err7−→
S ≡ S′ S

err7−→
S′

err7−→
(E-PAR, E-STR)

Figure 8. Run-time errors for sensors.

The Type Safety result states that well-typed networks
do not incur in run-time errors.

Theorem 2 (Type Safety). If Γ ` S, then S errX7−→.

We prove the contrapositive result, namely S err7−→ im-
plies that Γ 6` S, proceeding by induction on the definition
of S err7−→ relation.

Finally, a well-typed network is free of security flaws, at
any time during reduction.

Corollary 3. If Γ ` S and S →∗ S′, then S′ errX7−→.

The proof follows from Theorems 1 and 2.

6 The CSN Interpreter

We have implemented an interpreter for CSN in Java and
use it both for debugging applications and as a testbed sim-
ulator for analyzing the behavior and performance metrics
of CSN applications. The interpreter is divided in several
modules for parsing, type-checking, and interpreting the
applications directly from the abstract syntax tree.

A CSN network is implemented as a set of Java threads,
each representing a sensor, running concurrently and com-
municating via shared-memory (Figure 9). Each thread
manages two run-time data structures: a map that keeps
track of the modules currently installed and, a queue for
the processes currently scheduled for execution.

The map assigns module names to modules. Each
module is itself a map that assigns function names to
code blocks, which in this case are just sub-trees of the
abstract syntax tree. Sensors transfer modules between
them by passing a reference for the map that implements
the module. A module is installed in a sensor by adding

9



the map implementing the module to the map of installed
modules. The queue is a queue of references for sub-trees of
the abstract syntax tree that are scheduled to be interpreted.

Figure 9. Run-time snapshot.

We aim to produce a machine independent, low over-
head, byte code representation for CSN programs. To
execute this byte-code we are designing a virtual machine
based on the operational semantics of the calculus.

7 Conclusions and Future Work
Building on our previous calculus [12], CSN, we pro-

vided a strongly typed programming discipline for sensor
networks. The type system provides a static verification
tool, which allows for premature detection of application
protocol errors. In addition, we proved two fundamental
properties of the operational semantics and of the type
system, namely, subject reduction and type safety. Together,
these results establish the calculus as a sound framework for
developing programming languages for sensor networks.

As part of our ongoing work, we are pursuing two differ-
ent lines of research. First, we are exploring the theoretical
properties of the calculus. By applying techniques from
process calculi theory we hope to be able to prove a set of
fundamental laws about sensor networking applications and
protocols. Secondly, we are targeting an implementation of
the model for actual systems. So far, we have a working
simulator that allows us to experiment with programming
virtual networks.

Acknowledgements. This work has been partially
funded by project CALLAS of the Fundação para a Ciência
e Tecnologia (contract PTDC/EIA/71462/2006).

References

[1] The TinyOS Documentation Project. Available at
http://www.tinyos.org.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
A Survey on Sensor Networks. IEEE Communications
Magazine, 40(8):102–114, 2002.

[3] D. E. Culler and H. Mulder. Smart Sensors to Network the
World. Scientific American, 2004.

[4] W. Du, J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili.
A Pairwise Key Predistribution Scheme for Wireless Sensor
Networks. ACM Transactions on Information and System
Security, 8(2):228–258, 2005.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny Net-
worked Sensors. In EmNets’04, 2004.

[6] L. Eschenauer and V. Gligor. A Key-Management Scheme
for Distributed Sensor Networks. In CCS’02, pages 41–47.
ACM Press, 2002.

[7] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid Development and
Flexible Deployment of Adaptive Wireless Sensor Network
Applications. In ICDCS’05, pages 653–662. IEEE Press,
2005.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC Language: A Holistic Approach
to Network Embedded Systems. In PLDI’03, pages 1–11.
ACM Press, 2003.

[9] K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. In ECOOP’91, number 512 in
LNCS, pages 133–147. Springer-Verlag, 1991.

[10] J. W. Hui and D. Culler. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale.
In ENSS’04, pages 81–94. ACM Press, 2004.

[11] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for
Sensor Networks. In ASPLOS X, pages 85–95. ACM Press,
2002.

[12] L. Lopes, F. Martins, M. S. Silva, and J. Barros. A Process
Calculus Approach to Sensor Network Programming. In
SENSORCOMM’07. IEEE Press, 2007.

[13] D. Malan, M. Welsh, and M. Smith. A public-key infrastruc-
ture for key distribution in TinyOS based on elliptic curve
cryptography. In SECON’04. IEEE Press, 2004.

[14] N. Mezzetti and D. Sangiorgi. Towards a Calculus for
Wireless Systems. In MFPS’06, volume 158 of ENTCS,
pages 331–354. Elsevier Science, 2006.

[15] R. Milner. A Calculus of Communicating Systems. Num-
ber 92 in LNCS. Springer-Verlag, 1980.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, (Parts I and II). Information and Computation,
100:1–77, 1992.

[17] R. Newton and M. Welsh. Region Streams: Functional
Macroprogramming for Sensor Networks. In DMSN’04
Workshop, 2004.

[18] K. Ostrovský, K. V. S. Prasad, and W. Taha. Towards a
Primitive Higher Order Calculus of Broadcasting Systems.
In PPDP’02, pages 2–13. ACM Press, 2002.

[19] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler.
SPINS: Security protocols for sensor networks. Wireless
Networks, 8(5):521–534, 2002.

[20] K. V. S. Prasad. A Calculus of Broadcasting Systems.
In TAPSOFT’91, number 493 in LNCS, pages 338–358.
Springer-Verlag, 1991.

[21] S. Zhu, S. Setia, and S. Jajodia. LEAP: efficient security
mechanisms for large-scale distributed sensor networks. In
CCS’03, pages 62–72. ACM Press, 2003.

10


