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Abstract

Production planning with lot-sizing and scheduling in industries where the cleaning times
depend on the sequence of the products can be modelled as a mixed integer problem. However,
this problem is very hard, and even small instances cannot be solved exactly in a reasonable
time. We propose a division of the whole production planning problem into its two subproblems,
and to solve each them independently: first the lot-sizing, then schedule the operations that
were determined for each machine, for each period. In this strategy, the lot-sizing part does not
take into consideration the changeover times. After scheduling the operations, if the cleaning
times make a solution infeasible, a constraint cutting this solution must be added. The lot-sizing
problem must be resolved, and its solution rescheduled, until obtaining feasibility. We propose
an algorithm for integrating lot-sizing and scheduling, and analyse the results obtained.

1 Introduction

The problem that we deal with in this paper concerns industries with a number of machines, where
several products can be manufactured in each machine. The objective is to minimise costs, which
include setup costs, inventory, and backlog costs; besides, as machine cleaning depends on the
sequence of production, changeover costs must also be considered.

Each machine has a limit on its operating time, which is used for setup and production. The
time required for cleaning and setting up a machine depends on its previous state. These changeover
times make the scheduling an important decision for maximising machine usage.

We present a MIP model for the whole problem, which includes lot-sizing and scheduling (for
related models see, for instance, [1, 7]). This is a small bucket model, i.e., it allows one setup per
period, and computes changeover costs and times when the setups is successive productions concern
different items. It is not practical, though; scheduling is rather difficult to solve as a mixed-integer
problem. Even for small instances of this complete model, the best solution found by state-of-the-art
MIP solvers in a reasonable time has large gaps with respect to the lower bounds.

If the lot-sizing part is formulated as a big bucket model, i.e., it allows more than one setup
per period as long as the machine capacities are respected, it does not include scheduling decisions
anymore. On the other hand, its solution is not nearly as difficult, and can be determined by MIP
solvers in a much shorter time.

For including both the lot-sizing and the scheduling decisions in the same solution process, an
alternative is to use lot-sizing and scheduling in separated modules.

If a big-bucket lot-sizing model determines the setups that should be done in each machine for
each period, determining the optimal order of the productions for a given period in this machine
corresponds to minimising the changeover costs and/or times. This problem is equivalent to deter-
mining a shortest Hamiltonian path, in an asymmetric graph; even though this is also an NP-complete
problem, there is a vast set of algorithms for tackling it, exactly or approximately, even for large size
instances. Notice that this scheduling strategy does not discretise time, and hence cannot be precisely
described as a MIP.

1



After solving the subproblem of scheduling the operations, one must check if the makespan of
every machine, for all periods, is less than the available working time: as the MIP for the lot-sizing
problem did not take into consideration the changeover times, the scheduling solution may exceed
the available production time. If this occurs, additional constraints must incorporated into the MIP,
for preventing the same solution (i.e., the same setups and the same quantities) of being obtained
again on the concerned machines.

The lot-sizing problem must then be resolved, and its solution rescheduled; this is repeated until
obtaining feasibility. We analyse the shape of the constraints, and how to iteratively use the lot-sizing
and the scheduling modules. The aim is to obtain a feasible, good quality solution in a reasonable
time.

2 A MIP model for lot-sizing

2.1 Variables

The models for production planning allow the managers to determine what quantity should be
produced in each period, and in which machine. For a given item, the quantity produced and the
demand determine the quantity that remains in inventory, or the quantity that could not be supplied
and is backlogged.

Therefore, the decision variables concern the manufacture or not of a product in each period, as
well as the amount to produce. Let y be the setup, binary variables: yi

pt is 1 if item i is manufactured
in the machine/production centre p during period t, and 0 otherwise. The continuous variable xi

pt is
the corresponding manufactured amount. The quantity that is held in inventory at the end of the
period t is hi

t. If the demand for this item could not be satisfied in this period, there is a quantity
backlogged, represented by gi

t. All these continuous variables must be non-negative.

2.2 The objective

The costs that are to be taken into account are setup, inventory, and backlog costs.
Let T be the number of periods and T = {1, . . . , T}. Let I be the set of products and P be

the set of production centres, or machines. Let furthermore Pi be the subset of machines that are
compatible with the production of i. The setup costs are then determined by:∑

i∈I

∑
p∈Pi

∑
t∈T

f i
p y

i
pt,

where f i
p is the cost of setting up machine p for producing i. If hi

t is the amount of product i that is
kept in inventory at the end of period t, the holding costs can be determined by∑

i∈I

∑
t∈T

ri hi
t,

where ri is the unit inventory cost for product i. Analogously, if gi
t is the amount of product i that

failed to meet demand at the end of period t, the backlog costs can be determined by∑
i∈I

∑
t∈T

bi gi
t,

where bi is the unit backlog cost for product i. The lot-sizing objective can thus be written as

minimise z =
∑
i∈I

∑
t∈T

ri hi
t + bi gi

t +
∑
p∈P

f i
p y

i
pt

 . (1)
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2.3 Constraints

If the demand of a product i in period t is Di
t, the flow conservation constraints can be written as

hi
t−1 − gi

t−1 +
∑
p∈Pi

xi
pt = Di

t + hi
t − gi

t ∀ i ∈ I, t ∈ T . (2)

The initial inventory and backlog for each product i should be assigned to hi
0 and gi

0, respectively
(and possibly equivalent assignments might be made for hi

T and gi
T ).

There is a limit on the time that each machine is available on each period; this implies that

∑
i∈I:p∈Pi

(
xi

pt

γi
p

+ τ i
pt y

i
pt

)
≤ Apt ∀ p ∈ P, t ∈ T . (3)

In this equation, γi
p is the rate of production of product i on machine p per time unit, τ i

pt is the setup
time required if there is production of i on machine p during period t, and Apt is the number of time
units available for production on machine p during period t.

Manufacturing of a given product can only occur on machines which have been setup for that
product:

xi
pt ≤ γi

p Apt y
i
pt ∀ i ∈ I, p ∈ Pi, t ∈ T . (4)

This completes a MIP model for the big-bucket lot-sizing problem, which we will call Model 1.

3 Modeling changeovers in a MIP

If changeovers are to be taken into account on the MIP, the production periods should be subdivided,
in order to allow a finer control on the scheduling details. Let us call the number of subperiods into
which each period is divided S, and let S = {1, . . . , S}. The total number of subperiods is then S T ;
in the remainder of this section, we will use t′ as an index for the subperiods:

t′ = S (t− 1) + s, ∀t ∈ T , s ∈ S.

In a machine p, a changeover from product i into product j occurs in period t′ when yi
p,t′−1 = 1

and yj
pt′ = 1. In this case, the changeover variable, wij

pt′ must be set to one; this is assured by:

wij
pt′ ≥ y

i
p,t′−1 + yj

pt′ − 1 ∀ i, j ∈ I, p ∈ Pi, t′ ∈ T × S. (5)

As this is a small-bucket model, at most one setup can occur in each subperiod:∑
i∈I

yi
pt′ ≤ 1 ∀ p ∈ P, t′ ∈ T × S. (6)

The constraints of section 2.3 must be adapted to include all the productions on a subperiod. If
we denote the cost of a changeover from i to j by eij

p and the corresponding time by δij
p , the complete

model can be summarised as the following MIP, which we will call Model 2 :

minimise z =
∑
i∈I

∑
t∈T

ri hi
t + bi gi

t +
∑
p∈P

∑
s∈S

f i
p y

i
pt′ +

∑
j 6=i∈I

eij
p wij

pt′


subject to:

hi
t−1 − gi

t−1 +
∑
p∈Pi

∑
s∈S

xi
pt′ = Di

t + hi
t − gi

t, ∀ i ∈ I, t ∈ T

∑
i∈I:p∈Pi

∑
s∈S

xi
pt′

γi
p

+ τ i
pt y

i
pt′ +

∑
j 6=i∈I

δij
p wij

pt′

 ≤ Apt, ∀ p ∈ P, t ∈ T
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xi
pt′ ≤ γi

p Apt y
i
pt′ ∀ i ∈ I, p ∈ Pi, t ∈ T , s ∈ S

hi
t, g

i
t ∈ IR+, ∀ i ∈ I, t ∈ T

xi
pt ∈ IR+, yi

pt ∈ {0, 1}, ∀ i ∈ I, p ∈ P, t ∈ T . (7)

As will be seen in the computational results (Section 6), this problem is very hard, and no useful
results can be obtained on a reasonable time, even for small instances.

4 Scheduling as a separate subproblem

As a heuristic for obtaining feasible solutions in a short time, we propose to keep lot sizing and
scheduling as separate procedures, and integrate them for producing a solution to the complete
problem. In this context, we will use Model 1 for determining the quantities of each item to be
produced in each machine, for each of the periods. After this, there remains to be determined the
order of these operations inside each machine. For this scheduling problem, the first goal is to reduce
the machine makespan up to the point where the schedule is feasible; after this, a second goal is to
minimise costs, subject to keeping makespan feasibility. For the sake of simplicity, let us assume that
the only goal is to minimise makespan.

Let us reserve the symbol 0 for no production. We denote by npt the last item produced in machine
p on period t − 1 (for t = 0, this is a datum). If the machine was not occupied at the end of t − 1,
then npt = 0. For a machine p, period t, the graph consists of nodes Npt = {n0

pt} ∪ {i ∈ I : ȳi
pt = 1},

where ȳ is the solution of Model 1.
This scheduling subproblem is a variant of the of the shortest Hamiltonian path, in a possibly

asymmetric graph. The path must start from the last item produced in that period, n0
pt, and may

finish on any node. The distances from node i to j are the changeover times δij
p if i 6= 0, 0 otherwise.

We denote by δ̄pt the length of the optimal path (i.e., the minimum makespan), given the current
solution ȳ.

After the minimal path is found, the corresponding minimal makespan is determined by adding,
to each node i of the path, the duration of the operation in the machine, x̄i

pt/γ
i
p + τ i

pt.
There is a number of algorithms that can be used for this scheduling problem. As the number of

nodes is typically small, the exact solution is a possibility. In our implementation we used a greedy,
nearest neighbour construction followed by local search based on arc-exchange [2]. For real-world
problems, the scheduling part is likely to be a more complex problem, and more elaborate strategies,
as those proposed on [4, 5], might be necessary for its solution.

4.1 Additional constraints

After solving the subproblem of scheduling the operations, one must check if the makespan is less
than the available working time, for every machine and period. Indeed, as the MIP for the lot-sizing
problem did not take into consideration the changeover times, the scheduling solution may exceed
the available production time. If this occurs, additional constraints must incorporated into the MIP,
for preventing the same solution (i.e., the same setups and the same quantities) of being obtained
again on the concerned machines.

One possibility for preventing an infeasible scheduling solution on the lot-sizing problem is to
tentatively reduce the available time on the machines whose makespan was too large (see e.g. [3, 6]),
for example by the amount that was spent on the changeovers as determined by the scheduling
process. However, this leads to suboptimal solutions, as different combinations of products could
potentially be produced on that machine with shorter changeover times.

Another possibility is to reduce the available time on those machines, but only for the setups of
the current solution. Practically, this is done by creating a new variable apt in Model 1, representing
the available time on machine p, period t. The following constraints are added initially to Model 1 :

apt ≤ Apt, ∀ p ∈ P, t ∈ T ,

and A in Equation 3 is replaced by a.
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Let us now consider the constraints that cut infeasible schedules from the lot-sizing problem. As
an illustration, let us suppose that a machine p had setups ȳi

pt = 1 and ȳj
pt = 1, for a given period t,

and let δ̄pt be the changeover times on the optimal schedule for this machine. The following constraint
cuts this solution from the feasible region:

apt ≤ (Apt − δ̄pt) (3− yi
pt − y

j
pt)

More generally, if card(Npt) denotes the cardinality of the set of operations in machine p (including
the node representing the previous setup), the constraint can be written as:

apt ≤ (Apt − δ̄pt)

card(Npt)−
∑

i∈Npt\{npt}

yi
pt

 (8)

Lemma 1 If there are no changeovers on the machine p at the begin of period t, and the sum of the
changeovers on the optimal scheduling solution for t is δ̄pt ≤ Apm/2, the constraints of Equation 8
are valid inequalities.

Proof: as long as the schedule is optimal, any quantities produced for this set of items in this
machine must spend at least δ̄pt time for changeovers. If one of the products of the set is not
manufactured, the right-hand side of Equation 8 is 2 (Apt − δ̄pt); this is larger than Apt for all
δ̄pt ≤ Apm/2. Therefore, on this condition the constraint does cut feasible solutions.

Lemma 2 If there are changeovers on the machine at the begin of the period, the constraints of
Equation 8 are not valid inequalities.

Proof: a feasible solution with a different setup for the machine at the previous period, such that
the first setup is smaller, is cut by the constraint of Equation 8.

As we have seen, whenever the scheduling solution is not feasible, a constraint must be added to
Model 1, and the the lot-sizing problem must then be resolved. Then, its solution must be rescheduled;
this is repeated until obtaining feasibility, i.e., until all the machines have a schedule that does not
exceed the maximum makespan.

5 Iterative solution procedure

The global solution procedure iteratively solves the lot-sizing and the scheduling models, until reaching
a feasible solution, as depicted in Algorithm 1. The algorithm starts by solving the Model 1 lot-sizing,
initially with no additional constraints. Given the solution of this problem, it determines the set of
operations that should be produced in each of the machines. With this, the optimal schedule for each
machine is determined. If the schedules are feasible (i.e., they do not exceed the allowed production
time) for all machines, then the current solution is feasible, and it is returned. Otherwise, a cutting
constraint is generated using Equation 8 and included in the next lot-sizing instance.

The most intricate aspect of this algorithm concerns its step 8: removing redundant constraints. If
this step is not included, after a certain number of iterations too many invalid inequalities are added,
resulting in a solution that is generally far from the optimal. Thus, removal of invalid inequalities is
essential for the efficacy of the algorithm. The method used for this is the following:

• After scheduling a machine, verify if its makespan is less that the maximum allowed.

• If not, then no constraints are removed for this machine and period.

• Otherwise, check if there were constraints added for this machine and period. For each of them,
obtain the set of items being produced and recalculate the time necessary for changeovers.

• If this time is zero, then remove the constraint; if it is smaller than the existing cut, then update
its value; otherwise, leave the constraint as it is.
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Algorithm 1: Main solution procedure: alternate lot-sizing and scheduling until reaching a
feasible solution.

Main()
(1) repeat
(2) solve the Model 1 lot-sizing MIP
(3) generate a scheduling instance based on the MIP solution
(4) solve the scheduling problem
(5) if scheduling instance is not feasible
(6) generate constraints that exclude previous MIP solution
(7) incorporate constraints in the MIP
(8) possibly update/remove invalid constraints
(9) until the scheduling solution is feasible
(10) return solution of lot-sizing and scheduling

Processing the constraint pool this way leads to improved solutions. There is a problem, however: for
some instances, there can be cycles adding and removing constraints in successive iterations, and the
algorithm would not stop. For preventing this, we keep, for each constraint, a list of the values that
it had assumed in the past. If it has been changed too many times, then only changes that increase
the size of the cut are accepted (for ensuring convergence). The number of times that a constraint
(not incrementing the cut size) can be updated is a parameter of the algorithm. In our experiments,
cycles were only observed for relatively large instances.

5.1 An example

For illustrating the solution process for the different models and algorithms, we selected a toy instance
of the series p4i6, presented in Section 6. In this instance there are two production periods, and two
machines, each able to produce two of three items. The capacity of production is 200 units in each
period, but changeover times must be deducted.

5.1.1 Small-bucket models

We firstly show the solution using the small bucket Model 2, with a division of each period into two
subperiods (S = 2). The solution is:

Machine Period 1 Period 2
s = 1 s = 2 s = 1 s = 2

1 x1=100 x1=100 x1=80 x2=70
2 x2=100 x3=80 x3=70 x3=100

On this solution, inventory variables are 0 except for h1
1 = 75. Backlogs are 0 except for g2

1 = 25, g3
1 =

45, g1
2 = 50. The total cost is z = 1201.875, of which the setup cost is 0.8, the changeover cost is 1.0,

the inventory cost is 0.075, and the backlog cost 1200.
We now show the solution using the same model, with a division of each period into ten subperiods

(S = 10). The solution is now:

Machine Period 1
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

1 x1=20 x1=20 x1=20 x1=20 x1=20 x1=20 — x2=20 x2=20 x2=20
2 x3=20 x3=20 x3=20 x3=20 x3=20 x3=20 — x2=20 x2=20 x2=20

Machine Period 2
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

1 x2=20 x2=20 x2=20 — x1=20 x1=20 x1=20 x1=20 x1=20 x1=20
2 x2=20 x2=20 x2=20 — x3=20 x3=20 x3=20 x3=20 x3=20 x3=20
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On this solution, all the inventory variables are all 0. Backlogs are 0 except for g1
1 = 5, g2

1 = 5, g3
1 =

5, g1
2 = 10, g2

2 = 10, g2
2 = 10. The total cost is z = 453.6, of which the setup cost is 2.6, the changeover

and inventory costs are 0, and the backlog cost is 450.
As the main costs in these instances are backlog costs, the flexibility given by a finer division of

the periods leads to a better usage of the machines, and hence a superior solution. Unfortunately,
this subdivision is very costly in terms of the hardness of the problem, and cannot be afforded but
for very small instances. As we will see, if scheduling is a separate procedure this flexibility is even
greater.

5.1.2 Iterative lot-sizing and scheduling

Let us now see the solution obtained using the iterative procedure presented in Algorithm 1.

Iteration 1
The first solution of the lot-sizing Model 1 and scheduling is:

Machine Period 1 Period 2
1 x1=125 x2=50 x1=125 x2=50
2 x3=125 x2=75 x2=75 x3=125

This solution is not feasible: the makespan on machine 2, period 1 exceeds the available time A21 = 1.
The changeover this for this machine is δ̄ = 0.1, and hence the following cut is added:

a21 ≤ (1− 0.1) (3− y2
21 − y3

21)

Similarly, for machine 2 and period 2:

a22 ≤ (1− 0.1) (3− y2
22 − y3

22)

Iteration 2
On iteration, 2 the lot-sizing and scheduling solution is:

Machine Period 1 Period 2
1 x1=125 x2=70 x2=75 x1=125
2 x3=125 x2=55 x2=50 x3=125

In this solution, it is machine 1, in periods 1 and 2, that is exceeding the available time. The
constraints added are:

a11 ≤ (1− 0.1) (3− y1
11 − y2

11)

a12 ≤ (1− 0.1) (3− y1
12 − y2

12)

Iteration 3
The next lot-sizing and scheduling solution is:

Machine Period 1 Period 2
1 x1=110 x2=70 x2=40 x1=140
2 x3=125 x2=55 x2=50 x3=125

This solution is feasible; makespans are 1 for both the machines, in both periods. There is no
inventory, and the non-zero backlogs are g1

1 = 15, g2
2 = 30. The total cost is 453.6, including a

backlog cost of 450, a fixed, setup cost of 0.8, and changeover costs of 2.8.
This solution is equivalent to the obtained by Model 2 with 10 periods, but its schedule is more

flexible, as the time at which changeovers occur are not discretised.
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Instance prefixes
Parameter p2i3 p4i6
Di

t 125 50
γi

p × S 200 200
f i

p 0.1 0.1
ri 0.001 0.001
bi 10. 10.
τ i
pt 0 0
Apt 1. 1.
δij
p 0.1 0.1
eij
p 0.5 0.5

Table 1: Data for the two series of instances used for benchmarking (S is the number of subperiods
in Model 2, or 1 for instances of Model 1 ).

6 Results

6.1 Computational Environment

The computer environment used in this experiment is the following: a machine with an AMD
Athlon(tm) XP 2800+ at 2 GHz, with 512 KB of cache and 1GB of RAM, with the Linux Debian
operating system.

The MIP solver used is the commercial Xpress-MP Optimizer, Release 17.10.04.
The scheduling algorithm and the iterative solution procedure of Algorithm 1 were implemented

in the Python language. Profiling showed that the CPU time spent on the Python part is negligible,
as virtually all the CPU was used on the solution of the lot-sizing MIP.

The instances used are artificial problems. In instances p2i3 there are 2 machines producing 3
items, and in p4i6 there are 4 machines producing 6 items. The machine-item compatibilities for
instances p2i3 are the following:

Machine 1 can produce items 1, 2
Machine 2 can produce items 2, 3

For instances p4i6, the machine-item compatibilities are:

Machine 1 and 2 can produce items 1, 2, 3, 4
Machine 3 and 4 can produce items 3, 4, 5, 6

The remaining data are presented in table 1.
The data for each of these instances will be used for several time horizons; for example we will call

p2i3t4 an instance with the data of p2i3, for a four-period (T = 4) planning, with the big-bucket
model. Instance p2i3t4s2 is the equivalent for a small-bucket model with two subperiods per period
(S = 2). On these instances, the demand for each period is slightly smaller than the production
capacity, but nevertheless backlog is necessary for most of them. As the costs of backlogging are
much higher than the others, minimising costs reverts to minimising backlogs, for most of the cases.

Results obtained by the MIP solution of the small-bucket Model 2 are presented in table 2.
Results obtained by iterative lot-sizing and scheduling are presented in table 3. For Algorithm 1,

we limited the time for each MIP lot-sizing solution to 15 seconds, and accepted the heuristic solution
it found in that time as an input for scheduling. For avoiding cycles, we limited to three the number
times a cut is relaxed or removed, for any cuts concerning a given set of items, machine, and period;
after that, only larger (possibly invalid) cuts are accepted.

The results show a clear superiority of the iterative lot-sizing and scheduling solution of Algo-
rithm 1 with respect to that of the small-bucket MIP, both in terms of quality and time required
for reaching it. There is a tendency for the quality of the solution to degrade for a larger number
of planning periods. One explanation for this is that the limit imposed to the solution time of the
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Instance name Solution Lower bound CPU time (s)
p2i3t4s2 1954.745 <1
p2i3t8s2 4008.680 71
p2i3t16s2 7616.680 3151.921 3600
p2i3t32s2 16686.425 2507.764 3600
p2i3t4s10 1157.505 787.717 3600
p2i3t8s10 3769.275 158.347 3600
p2i3t16s10 13588.695 101.518 3600
p2i3t32s10 39426.175 116.700 3600
p4i6t4s2 1805.860 1582.742 3600
p4i6t8s2 1811.930 1291.175 3600
p4i6t16s2 1827.200 1009.716 3600
p4i6t32s2 2153.990 1015.081 3600
p4i6t4s10 307.330 6.120 3600
p4i6t8s10 1812.520 12.240 3600
p4i6t16s10 3825.780 24.480 3600
p4i6t32s10 13750.750 48.960 3600

Table 2: Results obtained by the MIP solver Xpress-MP Optimizer for the lot-sizing and scheduling
with the small bucket Model 2, with CPU time limited to 3600 seconds.

Instance name Solution found CPU time (s)
p2i3t4 955.885 <1
p2i3t8 3712.265 3.5
p2i3t16 6022.32 43.
p2i3t32 19936.15 367.
p4i6t4 12.8 4.1
p4i6t8 22.36 303.
p4i6t16 36.01 729.
p4i6t32 796.87 1389.

Table 3: Results obtained by the hybrid lot-sizing + scheduling of Algorithm 1. The MIP solver used
for the lot-sizing subproblem is Xpress-MP Optimizer, with CPU time limited to 15 seconds for each
solution.

lot-sizing (15 seconds) is quite short the larger problems; actually, analysis of the log of the process
has shown that in some cases the gaps for the MIP solution were close to 100%. As could be expected,
there is a trade-off between the the time allowed and the solution quality.

It is important to notice that the quality of the MIP solver is essential for obtaining good results
by Algorithm 1. Actually, for easy instances, with large capacity excesses, the MIP solver could often
find the optimal solution for Model 2, probably due to the quality of its presolver and cut generator.
We have made some tests with open source solvers, but no solution could be obtained in useful time,
except for tiny instances.

7 Conclusion

Production planning with lot-sizing has recently become more common in many industries, partly due
to the enormous progress that has been observed in MIP solvers. For situations where the cleaning
times and/or costs are important, lot-sizing decisions should also take into account the sequence of
operations in each machine. However, this makes the problem much more difficult, and even with
state-of-the-art solvers the exact solution is possible only for very small instances.

The strategy described in this paper separates lot-sizing decisions from scheduling, for being able
to solve the lot-sizing problem more efficiently. Scheduling of the operations in each machine is dealt
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with in a different module; if its solution is not feasible, constraints are derived for avoiding the same
solution in the lot-sizing. This process is repeated until the solution for the whole problem is feasible.

As the constraints that are included in the lot-sizing are not always valid, we present a method
for removing some of the invalid ones. Constraint removal is a sensitive process, as it is easy to
enter cycles of addition/removal of the same set of inequalities. For avoiding cycling, we propose a
method based on the analysis of the history of each constraint, which from a certain point only allows
increases on the cut size. This guarantees that, from that point on, no cycle can occur, and hence
the method converges to a feasible solution.

Typically, the solution of the method proposed for iterated lot-sizing and scheduling is of better
quality, and obtained in a shorter time, than the time-limited solution provided by a MIP solver for
an equivalent problem.

A better control of the pool of constraints, and a more elaborated decision concerning those that
are added and removed, is one of the most interesting research directions. This could be exploited,
for example, using concepts from tabu search as a framework for avoiding cycles.
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