An evolutionary solver for mixed
integer programming

Joao Pedro Pedroso

Technical Report Series: DCC-2007-8

[PORTO

‘F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Departamento de Ciéncia de Computadores

Faculdade de Ciéncias da Universidade do Porto
Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

An evolutionary solver for mixed integer programming

Joao Pedro Pedroso
DCC — FC, Universidade do Porto, Portugal
and
INESC Porto, Portugal

jpp@fc.up.pt
October 2007

Abstract

In this paper we introduce an evolutionary algorithm for the solution of mixed integer
programs. The strategy is based on the separation of the set of variables into the integer
subset and the continuous subset. The main idea is that if the integer variables are
fixed by the evolutionary system, the continuous ones can be determined in function
of them by a linear program, which simultaneously provides an evaluation of those
variables. We extend this idea to the case were some of the integer variables are fixed
by the evolutionary system and the remaining ones, as well as the continuous ones, are
determined in function of them. Branch-and-bound and a specialised version of the
relax-and-fixed heuristic are used to solve the mixed-integer subproblems.

When a particular assignment of the integer variables set by the evolutionary system
leads to a feasible solution, its evaluation is determined directly by the objective function.
If the variables correspond to an infeasible solution, the evaluation is measured by the
number of variables that could not be fixed, due to infeasibility in the subproblem:;
solutions with more variables fixed are preferred.

We report results obtained for some standard benchmark instances, and compare
them with those obtained by time limited branch-and-bound. For a set of difficult
instances, the evolutionary algorithm could almost always improve the solution obtained
by branch-and-bound on the same amount of CPU time.

1 Introduction

Integer linear programming problems are widely described in the combinatorial optimisation
literature, and include many well-known and important applications. Typical problems of
this type include lot sizing, scheduling, facility location, vehicle routing, and more; see, for
example, [14]. The problem consists of optimising a linear function subject to a set of linear
constraints, in the presence of integer and, possibly, continuous variables. If the subset of
continuous variables is empty, the problem is called pure integer (IP). In the more general
case, where there are also continuous variables, the problem is usually called mixed integer
(MIP); this work will focus on this general problem.

1.1 The evolutionary structure

Evolutionary algorithm (EA) is a term broadly used to classify problem solving techniques
which use the evolution of a set of solutions (the population), with the aim of adapting

them, in such a way that, as the iterative process pursues, the algorithm provides more and
more adapted answers to the formulated problem. New solutions are produced based on
operations that somehow mimic genetics in natural evolution.

The main idea for the conception of the algorithm described in this paper is that if the
integer variables of a MIP are fixed by an evolutionary system, the problem that remains
to be solved is a standard linear program (LP); this can be done exactly and efficiently, for
example by means of the simplex algorithm or by interior point methods. We are therefore
able to make the integer variables evolve through an evolutionary algorithm; after they are
fixed by the EA, we can determine the continuous variables and the value of the objective
in function of them, by solving a subproblem that is a linear program on the continuous
variables.

This idea is extended to the case were the subproblem also determines some integer
variables, in addition to the continuous ones. In this case, the subproblem is also a MIP, but
with a smaller number of variables, and hence easier to solve than the original problem. The
EA fixes most of the integer variables, and the remaining integer variables and the continuous
ones are determined in function of them, using branch-and-bound and a specialised version
of the relax-and-fixed heuristic.

Notice that this algorithm, as opposed to branch-and-bound, does not work with the
solution of continuous relaxations of the initial problem. The solution of MIP subproblems
is used for determining the value of a small subset of the integer variables and that of
the continuous ones (if some). Additionally, it determines the value of the objective that
corresponds to that particular instantiation of the integer variables.

1.2 Background

The most well known algorithm for solving MIPs is branch-and-bound (B&B) (for a detailed
description see, for example, [7]). This algorithm starts with a continuous relaxation of the
MIP, and proceeds with a systematic division of the domain of the relaxed problem, until
the optimal solution is found. In cases where the exploration tree of B&B is small, due to
a small number of variables or to a structure of the problem which allows many branches
to be pruned, the time that B&B requires to solve a problem may be reasonable for most
of the applications. However, for difficult problems the exploration of the tree may take an
unacceptable amount of time. In this case, B&B may still provide a solution, the best one
found in the time allowed to perform the search.

In cases where B&B fails to find a good feasible solution one can try alternative heuristic
procedures. A well-known heuristic for some kinds of problems is relax-and-fix, which fixes
only a part of the integer variables on each B&B solution. The EA here proposed makes use
of an extended version of this heuristic.

Notice that EAs cannot prove that the solution found is optimal. Moreover, in what
concerns convergence, the best that can be proved is that for elitist EAs we obtain a sequence
of evaluations that converges to the optimal objective value as the number of generations
tends to infinity. Nevertheless, as for many applications the proof of optimality is not
required and good feasible solutions are sufficient for practical implementation, the EAs
that we propose in this paper may have many suitable uses.

Initial work on random search methods for integer optimisation was presented in [6],
where the values of the fractional solutions obtained in the solution of the LP relaxation
are randomly rounded up or down, for tentatively obtaining a good feasible solution. An
evolution strategy for non linear, unconstrained optimisation in integer variables is described

n [11]. Another heuristic method for solving linear integer problems, where tabu search is
associated to a branch-and-cut framework, is proposed in [4]. Local search methods for
integer programming based on constraint satisfaction representations are provided in [13],
where a problem is represented by a set of variables with finite domains, and a set of
linear equality constraints. These are grouped into hard constraints and soft constraints;
the former must be verified, whereas the latter may be violated, and the objective is to
minimise soft constraint violation. General purpose heuristics for combinatorial problems,
exploiting features coming from constraint programming, are presented in [9]. In this work,
a tabu search framework is employed as a general purpose approximate solver for problems
formulated in a constraint satisfaction setting; a specialisation of the solver for the efficient
solution of scheduling problems is also presented. Another approach is that used in local
branching [3], where some constraints are added to the initial formulation in order to drive
the search of the solution to more promising areas.

In this contribution, our main aim is to provide an approach which is usable for any
problem that can be formulated as a mathematical program—ultimately, an MPS file. Hence
in this approach the formulation given through a mathematical program is accepted as is,
without any modification required. Thus, it can be used as a direct replacement for branch-
and-bound when its solution time is not affordable.

1.3 Overview of the paper

In section 2 we present a variant of the relax-and-fix heuristic for MIP, which will be used
for solution initialisation and improvement on the subsequent sections.

Section 3 provides a description of the operators required for the evolutionary solver.
The initialisation operator fixes the initial values of the integer variables for all the solutions
of the population, using the relax-and-fix variant. The strategy used for the evaluation
and comparison of solutions is also presented in this section, as well as the reproduction
operators, which allow creating new solutions from existing ones.

We then present evolutionary algorithms that make a population of solutions evolve; we
provide a simple one, as well as an improved version, in section 4.

We have tested the EA with a subset of the benchmark instances that are available in
the MIPLIB [1]. We have focused on instances which could not be solved to optimality in
one hour of CPU time by branch-and-bound, using the publicly available LP/MIP solver
provided in the GLPK [8] software. The results are presented in section 5.

We finish with conclusions and some perspectives on future research.

2 Background algorithms
The mathematical programming formulation of a mixed integer linear program is

z=min{cz + hy : Az + Gy > b,z € Z} ,y € R } (1)
x?y

where Z'} is the set of nonnegative, integral n-dimensional vectors and Rﬁ is the set of
nonnegative, real p-dimensional vectors. A and G are m xn and m X p matrices, respectively,
where m is the number of constraints. The integer variables are x, and the continuous
variables are y. In this paper we assume that there are additional bound restrictions on the
integer variables: [; < x; <wy, fori=1,...,n.

2.1 Relax-and-fix

The relax-and-fix heuristic was originally proposed for the lot-sizing problem in [14]. For
lot-sizing, the initial problem is divided in periods, each period being treated independently:
variables of the current period are determined by B&B (or other more sophisticated ap-
proach), variables of the preceding periods are fixed at values found on previous B&B
solutions, and integrity of variables corresponding to the subsequent periods is relaxed.

In this work, we extend this idea to a more general case, where there are several stages
(playing the role of periods in lot-sizing). In each stage some selected variables are determined
by B&B. As in the original relax-and-fix, integer variables concerning previous stages are
fixed, and the remaining integer variables are relaxed, as in equation (2).

z=min{cx+hy: Az +Gy > br;=z;Vie Fox; € ZVi€ I,x; e RVie R} (2)
xT

In this equation the set of indices of fixed variables, determined on previous stages, is F;
the set of variables currently being determined by B&B is Z; the set of the remaining vari-
ables, whose integrality is relaxed, is R. The base procedure used for solution construction
is depicted in Algorithm 1.

Algorithm 1: Extended relax-and-fix heuristic.
RELAXANDFIX()
1) R=A{1,...,n}
) F={}
) while R # {}
) fix z; = 7;,V i € F, at previously determined values
) select a set of variables 7 C R to determine in this stage
) set x;,V i € Z, as integer variables
7) R=R\Z
) relax x;,V i € R as continuous variables
) solve equation (2), determining z;, Vi € 7
10) F=FUl
11) return z

One can consider a variant of this algorithm where the set Z is chosen randomly on each
stage. This provides a complete, simple construction method, which is formalised in the next
section.

2.1.1 Number of variables to fix

One of the main questions that has to be addressed in order to use the relax-and-fix heuristic
when there is not a natural subdivision of the variables, concerns the number K of variables
that are to be fixed in each stage (or, in other words, the cardinality of the set Z in
Algorithm 1).

Some preliminary tests have shown that the time required for obtaining a complete
solution with relax-and-fix is not monotonic on the number of variables fixed per stage: if
this number is too small or too large, the construction of a solution requires more time than
if an intermediate number is appropriately chosen. For a particular problem, it is easy to
choose a good value for the number of variables to fix per stage. However, the optimal value
for this parameter is rather problem-dependent.

Preliminary data also shows that, as expected, the quality of the solution generally
improves when the number of variables fixed per stage increases. However, if this number is
too large, the improvement costs too much in terms of CPU usage.

We have left the number of variables to fix per stage, K, as a parameter of Algorithm 2,
described in the next section, which can be used for solution construction by setting the
argument F = {} (notice that the parameter Z is not used for solution construction).

2.1.2 Solution completion

The relax-and-fix construction mechanism can be used in a different context: that of com-
pleting a solution that has been partially destructed. For this purpose, all that is required
is to send an incomplete solution Z as a parameter to the algorithm, as well as the set F of
indices that are fixed. All the other variables are either made integer, if they are selected
during the construction of the set Z, or otherwise relaxed. These ideas are described in
Algorithm 2, where parameter K determines the number of variables that are to be made
integer on each stage of relax-and-fix. The actual values of the sets Z and R are constructed
on steps (5) to (10). On step (13) the sets F,Z and R, built up on this algorithm, are used
for the construction of a MIP subproblem. Then, B&B is used for solving equation (2), and
the resulting solution is stored in the indices F of variable Z. At the end of this process the
set R is empty, and all the integer variables of the initial problem are fixed.

Algorithm 2: Randomised solution construction or completion by relax-and-fix. For
solution construction, F = {} and Z is not used. For solution completion, F holds the set
of indices of variables that are fixed, and Z their corresponding values.

RANDOMRELAXANDFIX(Z, F, K)

1) R=A{1,....n}\F

(

(2) while R # {}

@) 1={)

(4) fix x; = x;,V i € F, at previously determined values
(5) for k=1 to K

(6) randomly select 1 € R

(7) I=1TU({i}

(8) R =R\{i}

9) if R = {}

(10) break

(11) set x;,V i € T, as integer variables

(12) relax z;,V i € R as continuous variables
(13) solve equation (2), determining z;, Vi € Z
(14) F=FUT

(15) return z

3 The evolutionary operators

Evolutionary algorithms function by maintaining a set of solutions, generally called a popula-
tion, and making these solutions evolve through operations that mimic the natural evolution:
reproduction, and selection of the fittest. These operators were customised for the concrete
type of problems that we are dealing with; we focus on each of them in the following sections.

3.1 Initialisation and representation of the solutions

The population that is used at the beginning of an evolutionary process is usually determined
randomly, in such a way that the initial diversity is very large. In the case of MIP, it is
appealing to bias the initial solutions, so that they are distributed in regions of the search
space that are likely to be more interesting. A way to provide this bias is to use the random
relax-and-fix heuristic of Algorithm 1 as the initialisation operator.

The part of the solution that is important to keep in the EA is the subset of integer
variables, x in equation (1); a particular solution kept in the EA is represented by an n-
dimensional vector of integers = = (Z1,...,Tn).

Some integer variables are fixed by the EA, leading to a MIP subproblem with the
remaining integer variables, and the continuous variables y, free; these are expected to be
determined afterwards, by the relax-and-fix heuristic for solution completion presented in
Algorithm 2.

3.2 Evaluation of solutions

The solutions that are kept by the algorithm—or, in other words, the individuals that com-
pose the population—may be feasible or not. For the algorithm to function appropriately it
has to be able to deal with both feasible and infeasible solutions coexisting in the population.
We will thus assign to each solution a value z corresponding to its objective, and another
value (corresponding to a measure of its infeasibility (which is zero if the solution is feasible).

Solution evaluation is done throughout the process of relax-and-fix. If all the variables
could be fixed, then ¢ = 0 and the evaluation is done through the objective function defined
in equation (3). This corresponds to the last problem solved by the relax-and-fix procedure,
in line (13) of Algorithm 2.

z =max{cZ + hy : Gy <b— Az,y € RY } (3)
y

It might also happen that during the relax-and-fix process the problem becomes infeasible,
and thus not all the integer variables could be fixed. In this case, (is made equal to the
number of variables that were not yet fixed when the subproblem became infeasible (i.e., it
is made equal to the sum of the cardinalities of sets Z and R, on line (13) of Algorithm 2).

3.2.1 Comparison and selection of solutions

For the selection of solutions for reproduction, we propose to rank the solutions according
to two criteria: the first criterion is the infeasibility value (, and the second is the objective
value z. By doing so, feasible solutions are always ranked better than infeasible ones; feasible
solutions are ranked according to the objective of the MIP problem, and infeasible solutions
are ranked according to their infeasibility measure.

Therefore, for minimisation problems, we say that a solution structure ¢ is better than
another structure j if ¢* < ¢/ (i is closer to a complete solution than j), or ¢* = ¢/ and
2t < 27 (completion of the solutions is identical, and i has a better objective).

The selection is based on each solution’s ranking in the population, which can be deter-
mined through the comparison operator defined above (see also section 4.1.1).

3.3 Solution reproduction
3.3.1 Genetic operators

The generation of a new solution from two parent solutions is composed of three steps:
recombination, mutation, and local search. The detailed process of reproduction for creating
a new genome 7 from two parents z' and z? is presented in Algorithm 3, where a continuous
random variable with uniform distribution on [0, 1] is denoted by Z, and a discrete random
variable with uniform distribution on (a,b) is denoted by % (a,b). In a glance, what
recombination does is to alternately pick parts of the vectors from each of the parents (lines
(1) to (5) of Algorithm 3). Mutation adds a random perturbation in an index ¢ of the solution
thus obtained; the perturbation consists of assigning to the corresponding variable a random
value, drawn with uniform distribution from its lower bound I; to its upper bound w; (lines
(6) and (7)). Neither recombination nor mutation have parameters.

Local search tries to improve the newly created solution’s quality by hill climbing in its
neighbourhood, as described below.

Algorithm 3: Generation of a new solution.
GENERATE(Z!, 72, K)

(1) fori=1lton

(2) if #<1/2

(3) T =T

(4) else

(5) T; = T}

(6) i=%(1,n)

(7) Ty = U (L, u;)

(8) return LOCALSEARCH(Z, K)

3.3.2 Local search

To complement the genetic operators we propose a local search method, for hill climbing in
the integer variables space. It tries to find better values for a subset of variables, keeping
all the others fixed at their current values. These steps are described in Algorithm 4, which
takes as parameter a solution z. In lines (4) to (6), indices are randomly chosen from the
set of fixed variables F (which initially contains all the indices), and included in the set of
integer ones Z (initially empty).

Hence, local search operates by instantiating the sets F and Z. For the current instantia-
tion, we check if the linear relaxation of the problem defined in equation (2) (where variables
with indices in F are fixed, and all the other relaxed) is feasible. If not, additional variables
are released, until the relaxation is feasible.

On the solution of the next MIP subproblem (in the function call of line (7)) variables
with indices in Z will be treated as integer variables; for indices in F, variables will be kept
fixed at their values in . Thus, F and Z are used for creating a MIP subproblem, and
the solution is tentatively completed through relax-and-fix, by means of Algorithm 2. The
solution obtained (which may be feasible or not) is returned.

The minimum number of variables to be released in this algorithm is controlled by the
parameter K, which also sets the number of simultaneous variables to fix on each step of
relax-and-fix.

Algorithm 4: The local search procedure.
LOCALSEARCH(Z, K)

(1) F=A{1,...,n}

2 =1}

(2)

(3) while card(Z) < K or linear relaxation of eq. (2) infeasible
(4) randomly select ¢ € F

(5) I=T1TU{i}

EG% F =F\{i}

J

return RANDOMRELAXANDFIX(Z, F, K)

3.4 LP/MIP solver-dependent features

The operators defined in the preceding sections are all virtually independent of the actual
solver used for the LPs and MIPs. However, the optimal number of variables to fix per
stage in the relax-and-fix procedure is likely to be dependent of the solver (as well as of the
instance being solved).

In many cases, the subproblems passed to the branch-and-bound solver can be rather
difficult, since fixing some variables at particular values may create a strange structure for
the remaining MIP. As it is not essential to solve these subproblems to optimality, we propose
to limit this search; in our implementation, we set a limit to the number of simplex iterations
to a predefined value S, which is respected on every solution of equation (2) when it is being
used by the genetic operators described in this section.

As when some variables are fixed the LP solution remains dual-feasible, the dual simplex
method is likely to be the most appropriate solver to use on LP relaxations.

4 The evolutionary algorithm

The operators described in the previous section can be used in a broad range of evolutionary
algorithms. We start this section with a simple algorithm, and then complement it with
some improvements.

4.1 A simple algorithm

A simple algorithm, which drives the population operations making use of the solution
representation, genetic operators and local search described in the preceding section, is
described in Algorithm 5.

The parameters of this algorithm are the number P of solutions to keep in the population,
the total CPU time T allowed to the search, the maximum number of simplex iterations for
the solution of subproblems in the form of equation (2) (S, described in section 3.4, which
is hidden in the algorithms, as it is not required for their explanation) and the number K
of simultaneous variables on each relax-and-fix stage. Solutions are initialised in line (2)
through the relax-and-fix heuristic defined in section 2.1, and kept in an array of solutions
p. The best element of the population (which, after sorting, is p1) is returned in line (8).

Algorithm 5: A simple evolutionary algorithm for MIP solution.
SIMPLEEA (P, T, K)

) fori=1to P

(2) Z =RANDOMRELAXANDF1X(Z,{}, K)
(3) Pi=1T

(4) Sorr(p)

(5) while CPU() < T
(6) p = REPRODUCEELITIST (p, K)
(7) SORT(p)

(8) return p;

Algorithm 6: The main reproduction scheme. Elements of the population p are
sorted, p; being the best element. (For elitist reproduction, p; is not changed; for non-elitist
reproduction, line (1) is suppressed, and the cycle on line (2) starts for i = 1.)

REPRODUCEELITIST(p, K)

(1) pi=pn

(2) fori=2toP

(3) e1 =SELECT(p)

(4) e =SELECT(p)

(5) & =GENERATE(ey, €2, K)
(6) pi=7

(7) return p/

4.1.1 Selection: rank-based fitness

As explained in section 3.2, the solution process is divided into two goals: obtaining feasibility
and optimisation. This has motivated the implementation of an order-based scheme, rank-
fitness, that evaluates solutions on the basis of their ranking, according to the comparison
operator defined in section 3.2.1.

One generally wants to normalise the fitnesses, so that their sum for all the elements of
the population equals one, and fitnesses can be thought of as probabilities of selection. In
this case, the scaled fitness f; to attribute to the element ranked i (for i = 1,...,n) can be

determined as)]
fi = n—1t+1 _on—i+1
" nt+n—1)+...+1 nn+1)/2
The selection of solutions for reproducing, with this probability, is then performed
through roulette wheel selection. (See for example [5] for a detailed description of roulette

wheel selection.)

4.2 An improved evolutionary algorithm: niche search

In this section we propose some improvements on the evolutionary algorithm, which aim at
making a better usage of the elements kept in the population. The main idea, borrowed
from [10], is to divide the population, keeping some groups (niches) isolated from the others
in terms of reproduction, with a simple migration scheme. The claim is that this way, as the
global evolutionary search pursues, more localised searches are done inside each of the niches.
The algorithm is therefore expected to keep a good compromise between intensification of the

search (inside each niche) and diversification of the population (as there are several niches
running simultaneously, each of them possibly searching in disparate regions of the search
space). This method has some similarities with that described in [12], where competing
subpopulations play a role comparable to that of the niches.

The parameters that must be set by the user for a run of niche search are: the number
of niches IV, the number of elements on each niche P, the number of simultaneous variables
to be used on each stage of relax-and-fix (K), the maximum number of simplex iterations
allowed to solve equation (2) (S, again hidden in the algorithms), and the stopping criterion
(the allowed CPU time T').

Algorithm 7: An improved evolutionary algorithm for MIP solution. Niches are
sorted by the fitness of their best element. The population is kept in an array of arrays p,
where p;; is the jth element in niche 7. When every p;, and p, are sorted, pi; is the best
element in the population.

NicHE(N, P, T, K)

(1) fori=1to N

(2) for j=1to P

(3) Z =RANDOMRELAXANDFIX(Z, {}, K)
(4) Pij =T

(5) SORT(p;)

(6) Sorr(p)

(7) while CPU() < T

(8) for i=1to N

(9) if i =1 or pj1 # pi—1,1

(10) pi = REPRODUCEELITIST(p;, K)
(11) else

(12) pi = REPRODUCENONELITIST(p;, K)
(13) SORT(p;)

(14) SORT(p)

(15) if p11 is not present on other niches

(16) PMN = P11

(17) SORT pjs

(18) SORT p

(19) return py;

4.2.1 Migration and elitism

Migration of elements between niches is based on a very simple scheme: the best element
of the population is copied from the first niche into the last niche (lines (15) and (16) in
Algorithm 7), but only in case it does not exist on any other niche. This allows propagation
of the best known solution, but avoids over-propagation.

Elitism determines whether the best solution found so far by the algorithm is kept in
the population or not. Elitism generally intensifies the search in the region of the best
solution. As mentioned before, niche search keeps several groups, or niches, evolving with
some independence. Each of these groups may be elitist (keeping its best element in its
population) or not.

10

Our objectives are twofold: we want the search to be as deep as possible around good
regions, but do not want to neglect other possible regions. For this purpose, niches whose
best solution is different of the best solution of other niches are elitist, but when several
niches have an identical best solution, only one of them is elitist. This also provides a
good interconnection of elitism and migration. With this strategy we hope to have an
intensified search in regions with good solutions, and at the same time enforce a good degree
of diversification.

5 Numerical results

5.1 Benchmark instances

The instances of MIP problems used as benchmarks are defined in the MIPLIB [1] (see
Table 8 on appendix B). The evolutionary system starts by reading an MPS file, and stores
the information contained there (the matrices A and G, and the vectors b, ¢ and h in
equation (1)) into an internal representation. The number of variables and constraints, their
type and bounds, and all the matrix information are, hence, determined at runtime.

The computational environment used is described in appendix A, and the set of bench-
mark instances and the statistical measures used to report solutions in appendix B. We have
selected instances which could not be solved to proven optimality in 3600 seconds of CPU
time in our computer by B&B, using the publicly available LP/MIP solver of the GLPK [8]
software. These instances come from a wide range of applications; the degree of difficulty
of the solution of the LP relaxation also varies widely. Hence, for some of the instances the
3600 seconds allowed evolution for many iterations, whereas for others this time only allowed
the initialisation of the population.

5.2 Branch-and-bound

We have used the GLPK implementation, version 4.9, as a basis for comparing our algorithm
to branch-and-bound. This software comprises a simplex-based solver for linear programs
and an implementation of the branch-and-bound algorithm. GLPK uses a heuristic by
Driebeck and Tomlin to choose a variable for branching, and the best projection heuristic
for backtracking (see [8] for further details). This was also the software for LP and MIP
solution used by relax-and-fix, on the EA.

The results obtained by B&B on the series of benchmark instances selected are provided
in Table 1. The time allowed to the search for each instance is 3600 seconds of CPU, and
the best solution found within that limit is reported!.

5.3 Evolutionary algorithms

The simple evolutionary algorithm was parameterised with 12 elements, and the improved
algorithm with 4 niches, each with 3 solutions (hence both algorithms kept a population of
12 solutions). Results are reported in tables 2 and 3 for the simple algorithm, and in tables
4 and 5 for the improved one. Both algorithms were allowed to use 3600 seconds of CPU
time. Although fine tuning of the parameters could possibly lead to better results, we have
made no attempt to do so, and used the same values for all the instances. The number

'For one of the instances, pki1, this solution is an optimum; this instance was included in the benchmark
set because it provides an example where the EAs are considerably worse than B&B.

11

Branch-and-bound
Instance name Optimal z best z % from opt.
air04 56138 56152 0.0249
air05 26374 26415 0.155
bell4 18541484.20 18560472.42 0.102
gt2 21166 21962 3.76
mod011 -54558535 || -54107967.58 0.826
modglob 20740508 20815372.17 0.361
noswot -43 -41 4.65
p6000 -2451377 -2250219 8.21
pkl 11 11 0
pp08a 7350 7370 0.272
qiu -132.873137 || -132.8731369 7e-08
setlch 54537.7 60426.250 10.8

Table 1: Optimal solution for each of the benchmark instances, and solutions obtained by
branch-and-bound, using GLPK, with the CPU time limited to 3600 seconds. Branch-and-
bound did not finish for any of these instances (* indicates that the solution found is an

optimum).

of simultaneous variables to fix on each stage of relax-and-fix is K = 10, and the limit of

simplex iterations allowed for the solution of each subproblem is S = 10000.

Best solution Worst solution Average solution
Instance Y%above Y%above Y%oabove
name z optim. z optim. z optim.
air04 56138.00 0 57159 1.82 56355.44 0.39
air05 26402 0.11 26723 1.32 26517.60 0.54
bell4 18541484.198 0 18541484.20 0 18541484.20 0
gt2 21166 0 21166 0 21166 0
mod011 -54422236.85 0.25 | -53556314.31 1.83 | -53931032.19 1.15
modglob || 20740508.086 0 20740508.09 0 20740508.09 0
noswot -41 4.65 -41 4.65 -41 4.65
p6000 -2451346 0.0013 -2451128 0.010 -2451208.24 0.0069
pkl 11 0 20 82.82 17 54.
pp08a 7350 0 7500 2.04 7408.40 0.79
qiu -132.873137 0 -132.873137 0 -132.87 0
setlch 54718.250 0.33 55586.50 1.92 55772.56 2.26

Instance Y%feas Feasibility | %best Best sol. | %opt Optimality
name run (E[tf](s)) runs (E[tf](s)) runs (E[tf](s))
air04 100 735 12 28017 12 28017
air05 100 454 4 86909 0 >90000
bell4 100 0.35 100 433 100 433
gt2 100 0.26 100 276 100 276
mod011 100 67 4 86776 0 >90000
modglob 100 0.77 100 34 100 34
noswot 100 11 100 184 0 >90000
p6000 100 396 4 88399 0 >90000
pkl 100 0.27 4 87699 4 87699
pp08a 100 0.66 32 8159 32 8159
qiu 100 7.9 100 289 100 289
setlch 100 17 4 89913 0 >90000

12

Table 2: Results obtained for 25 independent runs of the simple EA with a population of 12
elements, allowed to evolve until the CPU time spent reached 3600 seconds.

Table 3: Results obtained for the simple EA (cont.): percent of feasible, best, and optimal
runs, and expectations of the CPU time required for reaching feasibility, the best solution
found, and an optimal solution.

The comparison of the results of the simple algorithm to those of the improved algorithm,

Best solution Worst solution Average solution
Instance Y%above Y%above Y%above
name z optim. z optim. z optim.
air04 56138.00 0 57159 1.82 56357.12 0.39
air05 26402.00 0.11 26723 1.32 26517.60 0.54
bell4 18541484.20 0 18541484.20 0 18541484.20 0
gt2 21166 0 21166 0 21166 0
mod011 -54558535.01 0 | -53681175.47 1.61 | -54056540.51 0.92
modglob 20740508.09 0 20740508.09 0 20740508.09 0
noswot -41.00 4.65 -41 4.65 -41.00 4.65
p6000 -2451346.00 0.00127 -2451128 0.0102 -2451208.24 0.0069
pkl 14 27.3 19 72.7 16.56 50.5
pp08a 7350 0 7500 2.04 7381.60 0.430
qiu -132.873137 0 -132.873137 0 -132.873137 0
setlch 54632.50 0.17 55632.25 2.01 54895.83 0.657

Table 4: Results obtained for 25 independent runs of the improved EA, with 4 niches, each
with 3 elements, allowed to evolve until the CPU time spent reached 3600 seconds.

Instance Y%feas Feasibility | %best Best sol. | %opt Optimality
name runs (E[tf](s)) runs (E[tf](s)) runs (E[tf](s))
air04 100 729 12 28013 12 28014
air05 100 426 4 86862 0 >90000
bell4 100 0.35 100 395 100 395
gt2 100 0.24 100 148 100 148
mod011 100 63 8 44304 8 44304
modglob 100 0.77 100 34 100 34
noswot 100 11 100 121 0 >90000
p6000 100 396 4 88469 0 >90000
pkl 100 0.249 4 86408 0 >90000
pp08a 100 0.602 56 3687 56 3687
qiu 100 7.6 100 154 100 154
setlch 100 16 4 89851 0 >90000

Table 5: Results obtained for the improved EA (cont.): percent of feasible, best, and optimal
runs, and expectations of the CPU time required for reaching feasibility, the best solution
found, and an optimal solution.

with separation in niches, provide evidence of the superiority of the improved version, both
in the quality of the solution achieved and in the time required for reaching it. This gives an
indication of the importance of making a good usage of the elements kept in the population.
The improvements are virtually costless in terms of CPU, and provide some benefits in terms
of the results obtained.

From this section on, we will focus on a more profound analysis of the improved version

of the EA.

5.3.1 Analysis of the results

A summary of the results obtained is provided in Table 6, where the best solution found
during the time-limited branch-and-bound is compared to the average of the solutions of
the 25 runs of the improved EA. This shows that in average, for many of the instances,
the EA finds better solutions in 3600 seconds than B&B. For most of the cases where B&B
does better, the EA was not allowed to generate a meaningful number of solutions within
the time limit. For these cases, the results provide an indication of the good quality of the
initialisation operators presented in section 3.1.

For having a better insight of the performance of each algorithm, we have plotted, in
Figure 1, a log of the objective value of the best solution found as a function of the CPU

13

objective value for best solution found

objective value for best solution found

45

B&B Improved EA

sol. # different
Instance solution z average z E[t°] generated opt.sols.
air04 56152 56357.12 28014 0 3/3
air05 26415 26517.60 >90000 0 n.a.
bell4 18560472.42 18541484.20 395 267 2/25
gt2 21962 21166 148 1720 25/25
mod011 -54107967.58 || -54056540.51 44304 902 1/2
modglob 20815372.17 20740508.09 34 567 1/25
noswot -41 -41.00 >90000 17560 n.a.
p6000 -2250219 -2451208.24 >90000 1 n.a.
pkl 11 16.56 >90000 256152 n.a.
pp08a 7370 7381.60 3687 33757 1/14
qiu -132.8731369 -132.873137 154 164 15/15
setlch 60426.250 54895.83 >>90000 996 n.a.

Table 6: Summary of the results obtained on 3600 seconds of CPU time. Objective value
z of the solution of branch-and-bound. Results for 25 runs of the improved EA: average
z, expected CPU time for the EA to reach optimal solutions, average number of solutions
generated per run of the EA. Last column reports the number of different optimal solutions
found (left) and the number of times an optimal solution was found by the EA (right).

INSTANCE PK1

35 F
30
25 1

20 |

branch-and-bound ------

T T
simple EA ——
improved EA -------

objective value for best solution found

15 |

10

8600

8400

8200

8000 +
7800
7600

7400 -

7200
0

L
500

L L L
1500 2000 2500

CPU time (s)

L
1000

INSTANCE PPO8A

o
3000

impi
branch-and-bound ------

simple EA ——
roved EA -------

objective value for best solution found

500 1000

1500 2000 2500
CPU time (s)

Figure 1: Typical log of the evolution of the best solution found, by branch-and-bound and

3000 3500

68000

66000

64000

62000

60000

58000

56000

54000

50000

45000

40000

35000

30000 f

20000
0

25000

INSTANCE SETICH

simple EA ——
improved EA -------
branch-and-bound -

L
500 1000

. .
1500 2000
CPU time (s)

2500

INSTANCE GT2

3000

simple EA ——
improved EA -----—
branch-and-bound -

by each of the EAs, with the CPU time.

time. These logs are plotted for a selection of four instances: gt2 and setlch (where the EAs
are better), pp08a (where the algorithms are approximately equivalent), and pkl (where
B&B is better). Feasible solutions were found very early by all the algorithms. Except for
pkl, branch-and-bound tends to take longer to find good solutions that the EAs, and in
general, for a given time, the improved EA has a better solution than the other algorithms’.

14

500 1000

1500 2000 2500
CPU time (s)

3000

3500

For the pkl instance, the EAs are very deeply trapped on local optima, and the evolu-
tionary mechanisms are not sufficient to escape them. On all the other instances, any of the
EAs has a better behaviour, with much shorter platforms than B&B.

The pkl case is somewhat intriguing, as even though the limit time is enough for
the generation of many solutions the EA fails to produce good ones. For explaining this
behaviour, we provide another set of plots in Figure 2. These were obtained by selecting
a typical run of the EA, and recording all the intermediate solutions x*, obtained after
recombination, mutation and local search, until reaching the final solution z* (this is a
global optimum for problems pp08a and gt2, and suboptimal for setlch and pkl). We then
compared the intermediate solutions to the final one, and counted, for each of them, the
number of elements xf which were different of the corresponding value in the final solution,
x7; then, we set (5f =1if a:f =z, and 6;“ = 0 otherwise. This allowed us to calculate, for
each solution k, a measure of its distance from the final one: dj, =), 6;“. Finally, for each
value of this distance we counted the number of different intermediate solutions that were
obtained at that distance from the final one, as well as the average value of their objective,
and plotted these two measures in terms of the distance.

Figure 2 indicates that for problems where the EA found good solutions (gt2, setlch,
pp08a), the number of distinct solutions found at a short distance from the final/optimal
one is large, and tends to decrease when the distance increases. For these “easy” instances
for the EAs, the average value of the objective is very good when the distance is short, and
tends to become worse when the distance increases; there is a kind of gradient to the best
found solution. On the opposite side, for instance pkl (where the EA failed severely), the
number of solutions different from the best solution found seems to have a peak at relatively
large distances, and the average objective function is approximately flat. Likely, there is
little hope for finding a smooth path to the final solution, which might have been found
fortuitously. (An additional information that the plot for instance pkl gives concerns the
number of distinct solutions found with an odd number of different elements. These values
are small, suggesting that for this instance perturbations on the solutions should probably
be done on pairs of elements.)

Another indicator of the hardness of an instance to the EA might be given by the number
of different optimal solutions found, presented in Table 6. Even though we can draw no
conclusions for problems that were not solved to optimality, we observed that for some easy
problems the number of different optima found is large. It might be the case that B&B is
trapped by degeneration; on the contrary, degeneration gives the EA many possibilities for
finding a good solution.

For this reduced set of instances, we have also compared the behaviour of B&B to that
of the improved EA in a longer run, allowing 24 hours of CPU time. These results are
presented in Table 7. Even though they are not statistically satisfactory for the EA (as they
are based on a single run), they consolidate the idea that platforms on the landscape of the
best solution found by B&B might be very long, and that providing more time to the EA
allows it to find better solutions?. Instance pkl remains a case where the EA did not work.
For the pp08a and setlch cases, the additional time allowed improvement of the solution
found. For gt2, the optimal solution was found in less that one hour by the EA, and B&B
completed the search in 17 hours.

In order to assess the importance of each of the operators used in the evolutionary system,

2For the pp08a instance, we have selected the initialisation of the random number generator that lead to
the worst solution presented in table 4.

15

Number of distinct solutions

Number of distinct solutions

3500

3000

2500

2000

1000

140

INSTANCE PK1 INSTANCE SETICH
65 14 66000

500 f

1500

number distinct solutions found number distinct solutions found -
average z of solutions found ------- average z of solutions found

4 64000
i+ 62000

60000

.
N
&
Average z
Number of distinct solutions
Average z

58000

56000

L L 15 0 L L L L L 54000
0 5 10 15 20 25 0 10 20 30 40 50 60
Distance to final solution Distance to final solution
INSTANCE PPOSA INSTANCE GT2
11000 45 110000
number distinct solutions fqund number distinct solutions found
average z of solutions found ------- average z of solutions found -------
/ < 10500 40 H < 100000

- 90000
- 10000

- 80000
- 9500
- 70000
- 9000

Average z

- 60000

- 8500

Average z
Number of distinct solutions

- 50000

4 8000
-| 40000

7 7500 + 30000

7000 ok L L L I L L 20000
25 45

L
0 5 10 15 20 25 30 35 40
Distance to final solution Distance to final solution

Figure 2: Plot of the number of different solutions obtained (left y axis) and quality of the
solutions (right y axis), as functions of the number of indices where values are different of
the final solution, for a typical run of the improved EA.

Branch-and-bound Improved EA
Instance 1 hour 24 hours 1 hour 24 hours
gt2 21962 21166 (ended in 17h00m) 21166 21166
pkl 11 11 (ended in 4h43m) 15 15
pp08a 7370 7370 7480 7350 (after 4h27m)
set1lch 60426.250 59610.750 54930 54537.75

Table 7: Summary of the results obtained by branch-and-bound and by (a single run of) the
improved EA, allowing 24 hours of CPU time.

we executed some experiments for assessing their efficiency. These experiments consisted of
keeping track of which of the operators were responsible for improvements in the solutions,
and of analysing the behaviour of the algorithm in their absence. They showed that the two
genetic operators, the local search, and the initialisation procedure, were all necessary for
a good performance of the algorithm. From these operators the less important one was the
recombination, which very seldom found improving solutions, and whose removal led to a
relatively small deterioration in the overall performance.

6 Conclusion

We present a system for solving MIPs based on evolutionary computation, which fixes most
of the integer variables and evaluates them by solving smaller MIPs, in a process inspired in
the relax-and-fix heuristic.

16

A strategy of dividing the population into several niches improved considerably the per-
formance of the evolutionary algorithm. This is related to the improvement on diversification
when there are several niches, which decreases the probability of being trapped in local
optima. To this end, a specialised elitist strategy plays an important role, by avoiding
keeping good but identical solutions for a long time in the population.

The results obtained with this evolutionary system for some standard benchmark in-
stances were compared to those obtained by B&B. The performance of the evolutionary
algorithm is promising, as it generally obtains better solutions than B&B in a limited CPU
time, typically with much smaller memory requirements.

For difficult instances, the landscape of the B&B best found solution tends to have large
plateaux after the initial search phase, and the solution is likely to remain unchanged for a
long time. The plateaux for search with the EA are generally shorter. This indicates that
the evolutionary solver might be the right choice when there are constraints either on the
time allowed or on the size of memory available, as happens in many real-world, practical
situations.

The algorithm proposed does not take into account any particular structure of the in-
stances, and may be used without any modification for any problem which can be formulated
as a mathematical program.

There are two interesting future research directions from this work. The first is to analyse
if the evolutionary operators defined here are still useful in case the system that solves the
MIP subproblems is more powerful than B&B—for example, if one uses branch-and-cut, or
a solving black box provided by commercial solvers. The other is to study a heuristic to
select an order for fixing the variables in the subproblems solved by relax-and-fix, as this
order has a very strong impact on the performance of the EA.

A Computational Environment

The computer environment used in this experiment is the following: a machine with an Intel
Pentium 4 at 1600MHz, with 256 KB of cache and 384 MB of RAM, with the Linux Debian
operating system.

The LP/MIP solver, GLPK is implemented in the C programming language. The
evolutionary algorithms proposed in this paper were implemented mainly in Python, with the
CPU intensive parts and the interface to the MIP solver implemented in C. Profiling showed
that the CPU time spent on the Python parts is negligible, and hence a direct comparison
of these algorithms to GLPK in terms of CPU usage is acceptable.

B Benchmark instances

The instances of MIPs and IPs used as benchmarks are available in [1] and are summarised in
Table 8. They provide an assortment of MIP structures, with instances coming from different
applications. These are all instances for which branch-and-bound as implemented in GLPK,
using default values for its parameters, does not complete the search in 3600 seconds of CPU
time, in our computational environment.

17

Instance Application Number of variables Number of Optimal

name total integer binary constraints solution
air04 airline crew scheduling 8904 8904 8904 823 56138
air05 airline crew scheduling 7195 7195 7195 426 26374
bell4 fiber optic net. design 117 64 34 105 18541484.20
gt2 truck routing 188 188 24 29 21166
mod011 unknown 10958 96 96 4480 -54558535
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p6000 unknown 6000 6000 6000 2176 -2451377
pkl unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
qiu fiber optic net. design 840 48 48 1192 -132.873137
setlch capacitated lot lizing 712 240 240 493 54537.7

Table 8: Set of the MIPLIB benchmark instances used: application, number of constraints,
number of variables and optimal solutions.

C Statistics Used

In order to assess the empirical efficiency of the EAs, we provide measures of the expectation
of the CPU time required for finding a feasible solution, the best solution found, and the
optimal solution, for each of the selected MIP instances.

Let the number of independent runs observed for each benchmark be denoted by K,
and let tf: be the CPU time required for obtaining a feasible solution in observation k, or
the total CPU time in that iteration if no feasible solution was found. Let ¢7 and tz be
identical measures for reaching optimality, and the best solution found by the metaheuristic,
respectively. Based on these K observations, the expected CPU times required for reaching
feasibility, the best solution found in all the observations, and optimality, are respectively:

K

o =t 7
kB =Sk B =Y £
goE =30 pe=3 0

M=

E[tf] =
k=1

In cases where 7/, 7P, or r° are equal to 0, th, th, and) t7 provide lower bounds for
the respective expectations.

References

[1] Robert E. Bixby, Sebastian Ceria, Cassandra M. McZeal, and Martin W. P. Savelsbergh.
An updated mixed integer programming library. Technical report, Rice University, 1998.
TR98-03.

[2] Y. Davidor, H.-P. Schwefel, and R. Ménner, editors. Parallel Problem Solving from
Nature - PPSN III, volume 866 of Lecture Notes in Computer Science, Berlin, 1994.
Springer.

[3] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23-47, 2003.
[4] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[5] David E. Goldberg. Genetic Algorithms in Search, Optimization €& Machine Learning.
Addison-Wesley, 1989.

18

[6]

[10]

[11]

[12]

[13]

[14]

R. C. Kelahan and J. L. Gaddy. Application of the adaptive random search to
discrete and mixed integer optimization. International Journal for Numerical Methods
i Engineering, 12:289-298, 1978.

E. L. Lawler and D. E. Wood. Branch-and-bound methods: a survey. Operations
Research, 14:699-719, 1966.

Andrew Makhorin. GLPK — GNU Linear Programming Kit. Free Software Foundation,
http://www.gnu.org, 2006. Version 4.11.

Koji Nonobe. Studies on General Purpose Heuristic Algorithms for Combinatorial
Problems. PhD thesis, Kyoto University, 2000.

Joao P. Pedroso. Niche search: an application in vehicle routing. In IEEE International
Conference on Evolutionary Computation, volume 1, pages 177-182, Anchorage, Alaska,
1998. IEEE.

Giinter Rudolph. An evolutionary algorithm for integer programming. In Davidor et al.
[2], pages 139-148.

Dirk Schlierkamp-Voosen and Heinz Miihlenbein. Strategy adaptation by competing
subpopulations. In Davidor et al. [2], pages 199-208.

Joachim P. Walser. Integer optimization by local search — a domain-independent
approach. Lecture Notes in Artificial Intelligence, LNAI-1637, 1999.

Laurence Wolsey. Integer Programming. John Wiley & Sons, 1998.

19

