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Abstract

In this paper we present an extension of the Nelder and Mead simplex algorithm for
non-linear programming, which makes it suitable for both unconstrained and constrained
optimisation. We then explore several extensions of the method for escaping local optima,
and which make it a simple, yet powerful tool for optimisation of nonlinear functions
with many local optima.

A strategy which proved to be extremely robust was random start local search, with a
correct, though unusual, setup. Actually, for some of the benchmarks, this simple meta-
heuristic remained as the most effective one. The idea is to use a very large simplex at
the begin; the initial movements of this simplex are very large, and therefore act as a
kind of filter, which naturally drives the search into good areas.

We propose two more mechanisms for escaping local optima, which, still being very
simple to implement, provide better results for some difficult problems.

1 Introduction

The usage of the Nelder and Mead’s simplex algorithm [10] for non-linear optimisation as a
part of a meta-heuristic is not new; several authors have suggested the inclusion of simulated
annealing ideas in it[13, 4]. More recently, it has been used as a basis for applying the scatter
search method [8] and tabu search [5]. The results reported in the literature are generally
very encouraging.

We suggest further improvements to the simplex algorithm, in particular for tackling
constraints, as most of the non-linear problems (NLP) with practical interest are constrained
problems. Previously published works used penalties on infeasible solutions as a way of
handling constrained problems; this, however, is not general, as it requires the knowledge
of bounds on the objective function. In this work we propose a scheme for classifying the
solutions of an NLP that takes into account both feasibility and the objective value. Based
on it, we are able to sort the points of the simplex even in the case where some points are
feasible and other points are not. This makes possible determining through which point of the
∗Researcher at INESC - Porto
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simplex should reflection, expansion, or contraction be done, thus allowing straightforward
application of the Nelder and Mead’s algorithm.

The simplex algorithm is a local search method, and does not encompass a procedure for
escaping local optima. Random-start iterated local search provides a simple way for avoiding
local optima.

We investigate on the performance of the modified simplex algorithm, as well as iterated
local-search based on it. We propose additional procedures for trying to get away from local
minima.

The idea used in the Nelder and Mead algorithm’s extension for constrained problems
can be further exploited, allowing us to deal with tabu search in a similar setting. Making
some areas on the vicinity of local optima as tabu areas, however, did not lead to good
performance. We rather propose the opposite idea: the exploitation of the areas of the
current local optimum instead of their avoidance.

2 The simplex method

The simplex method for NLP is a very simple and elegant algorithm for finding the minimum
of a function in a multi-dimensional space. It works based only on function evaluations, hence
does not require information concerning the gradient of the function.

In an N -dimensional space, a simplex is a polyhedron with exactly N + 1 vertices (in
general, we will be interested in non-degenerate simplexes, which have a finite volume in its
space).

The algorithm, depicted in Algorithm 1, starts with a simplex with N + 1 points, and
evaluates its vertices. It will then, at each iteration, try to get rid of its worst point, by
applying the following steps:

1. Reflect the simplex into the opposite side of the worst point (top-left image at figure 1,
line 5 of Algorithm 1).

2. If the reflection led to a point which is better than the simplex’s best point, then try
expanding further in that direction (top-right image at figure 1, line 7 of Algorithm 1).

3. If the reflection led to a point which is worse than the second-worst point, then contract
the simplex in one-dimension, moving the worst point in the direction of the simplex’s
centroid (bottom-left image at figure 1, line 9 of Algorithm 1).

4. If this contraction did still not improve the simplex’s second-worst point, then do a
multi-dimensional contraction, by moving all the points in the direction of the best
point (bottom-right image at figure 1, line 13 of Algorithm 1).

These steps are repeated until a specified stopping criterion is satisfied. The more frequently
used criteria are based on the slack between the best and the worst point, on the distance
the simplex’s centroid moved, or on the number of function evaluations.

For a more complete description of the method please refer to [10], and for a computa-
tional implementation to [12].

In the remain of this paper we will assume that there are box constraints on the nonlinear
problems, i.e., for a problem of dimension N there will be constraints:

li ≤ xi ≤ ui i = 1, . . . , N. (1)
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Figure 1: Operations on a simplex. In the initial simplex (on the left side), the best point is
indicated by ∗, and the worst point is indicated by w.

In this context, a random solution for any problem is an N -dimensional vector that can be
drawn as

xi = U (li, ui) i = 1, . . . , N, (2)

where we denote a random number with uniform distribution in the interval [a, b] as U (a, b).
In Algorithm 1 s∗ is the best point in the simplex, s′ its worst point, and s′′ its second

worst point. The simplex centroid is s̄ = 1
N

∑N
j=1 s

j . On line 2 we denote the j-th unit vector
by ej . For the calculation of the stopping criterion (line 4), we use absolute deviations if the
objective values are less than one, relative deviations otherwise.

In all the experiments reported in this paper, the usual simplex expansion and contraction
parameters were applied: α = 1, γ = 2, β = 1/2.

Algorithm 1: The Nelder and Mead simplex algorithm, for doing a local search
starting from point x.

SimplexLocalSearch(x, ε, λ, M)
(1) s0 = x
(2) sj = x± λ (uj − lj) ej , j = 1, . . . , N
(3) k = 0
(4) while |f(s∗)− f(s′)| < ε and k < M
(5) r = (1 + α) s̄− α s′′
(6) if r better than s∗

(7) s∗ = γ r + (1− γ) s̄
(8) else if r worse than s′′

(9) r = β s′ + (1− β) s̄
(10) if r better than s′′

(11) s′ = r
(12) else
(13) sj = (sj + s∗)/2, ∀j : sj 6= s∗

(14) update s∗, s′, s′′

(15) k = k+1
(16) return s∗
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2.1 Classification of NLP solutions

Generally, points on the simplex are ordered according to the value of the objective function,
possibly added to a penalty, if the problem is constrained and the solution is infeasible.
Notice, however, that the simplex algorithm does not require the actual value of function
evaluation at each of the points; all that is required is to order the simplex’s points, for
determining through which vertex should reflection, expansion, or contraction be done. This
is a common characteristic to all direct search methods [9].

If in addition to the box constraints there are P more general constraints in the form
gp(x) ≤ 0, for p = 1, . . . , P , then the total constraint violation for a solution x can be assessed
by

δ(x) =
P∑

p=1

max(gp(x), 0) +
N∑

i=1

[max(xi − ui, 0) + max(li − xi, 0)]. (3)

We propose that the comparison of solutions should be based on this value, as well as on the
objective value. For two different solutions x and y, we say that x improves y if and only if
δ(x) < δ(y), or δ(x) = δ(y) and the objective value of x is better than that of y.

Based on this classification scheme, we are able to order the points of the simplex, even
if some points are feasible and other not, and directly apply the algorithm to constrained
problems. Notice that equality constraints are poorly dealt by this modified method. The
simplex will probably converge into a point which is on the surface defined by the equality,
but will likely have much trouble for moving on that curve, in order to improve the value of
the objective, without increasing infeasibilities. The classification system was used in [11]; a
more elaborate method would be the filter method proposed in [2].

2.2 Preliminary results

One possibility for using the Nelder and Mead algorithm is to start from a random point, as
described in Algorithm 2.

Algorithm 2: The simplex search starting from a random point.
Simplex(ε, λ, M)
(1) read problem’s data (N, f, . . .)
(2) x = random solution (Equation 2)
(3) x∗ = SimplexLocalSearch(x, ε, λ, M)
(4) return x∗

Using the solution classification method described in the previous section, the search can
start with a very large simplex, as this method tackles the danger of getting out of bounds.
Hence, we propose a setting were the initial step is very large: we set λ = 1. This implies
that all the points except the initial random point will be out of bounds, but now this is
no longer a problem. Computational experiments have shown that this setup improves the
overall performance of the simplex search; for smaller steps, the simplex would soon be
trapped in a (generally poor) local optimum.

For giving an insight of the quality of the simplex method with the proposed setup, we
show here the results on some standard benchmark functions (maximisation problems were
converted into minimisations).

Problem A: Sphere function. Optimal solution: f∗ = 0.
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fA(x) =
N∑

i=1

x2
i , xi ∈ [−30, 30] , i = 1, . . . , N

Problem B: Ackley function [1] (e is Euler’s number). Optimal solution: f∗ = 0.

fB(x) = −20 exp

−0.2

√√√√ 1
n

N∑
i=1

x2
i

+ exp

(
1
N

n∑
i=1

cos(2πxi)

)
− 20− e,

xi ∈ [−30, 30] , i = 1, . . . , N

Problem C: Rosenbrock function[14]. Optimal solution: f∗ = 0.

fC(x) =
N−1∑
i=1

[
100

(
x2

i − xi+1

)2 − (xi − 1)2
]
, xi ∈ [−5, 10] , i = 1, . . . , N.

For these test functions with dimension N = 10, we performed an experiment using
100 independent runs of Algorithm 2. The parameters used were: maximum number of
evaluations M = 100000, convergence criterion ε = 0, and initial step λ = 1. The results
obtained are reported in table 1.

As expected, for the Sphere function (which is unimodal), the optimal solution is always
found. Concerning the Ackley and the Rosenbrock functions, the method finds the global
optimum many times, even though these functions have many local optima. The explanation
is that with the current setup, the movements of the initial, very large simplex, are large
movements, which can filter small neighbourhood local optima, and move the simplex into
“good” search areas, where, in these cases, the global optimum is located. Please see figure 2
for a visual insight.

For all of these benchmarks, the escaping mechanisms described in the next section
systematically found the global optimum; hence, they were not included in the difficult
benchmark set.

3 Escaping local optima

As the simplex method uses downhill movements, its solution will in general be a local
optimum. If we wish to overcome this drawback, and be able to potentially obtain the
global optimum of an NLP, we have to provide an escape mechanism.

The strategies that we describe for escaping are based on a restart criterion ε, and a
stopping criterion M . Both of these are user-supplied values.

Restart will occur if the vertices of the simplex have all evaluations which are feasible (or
all infeasible), and the deviation between the objective (resp., the infeasibility) of the best
and worst vertices is bellow ε.

All of the methods will stop if the number of evaluations has reached the limit M .

Problem Optimal Best found Average % successful
solution solution solution runs

sphere 0 4.94066e-324 9.24891e-321 100
rosenbrock 0 5.62635e-26 0.717584 82
ackley 0 5.32907e-14 2.18798 37

Table 1: Results for the Nelder and Mead’s simplex method, with problem sizes N = 10,
stopping criteria M = 100000 and ε = 0, and inital step λ = 1.
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Figure 2: Movements on the large simplex are driven by the general trend of the function,
and many narrow local optima are avoided. Example for a 2-dimensional version of the
Ackley function.

3.1 Random-start iterated simplex

This method consists of restarting the algorithm from a random solution every time there
is convergence of the simplex according to the criterion ε, until the maximum number of
evaluations M is reached, as presented in Algorithm 3. At each iteration, a random point is
drawn and the simplex is reinitialised from that point (with a step λ). Whenever the best
found solution is improved, a new local search is performed with a smaller stopping criterion
ε′, for refining this local optimum (line 8 on Algorithm 3).

The algorithm returns the best solution found on all the iterations.

3.2 Directional escape

Another possibility for escaping local optima is the following. When the simplex has con-
verged according to the criterion ε, start expanding the simplex through its best vertex
(always updating the ranking among the vertices). Expansion will initially decrease the
quality of the point; but after a certain number or repetitions, we will reach a local pessimum,
and the subsequent expansion will lead to an improvement. We propose to expand until the
worst point of the simplex has been improved. At that point, we expect to be on the other
side of the hill; hence, if we restart the simplex algorithm from that point, we expect to
reach a different local optimum. We also restart if the bound has been crossed, using the
first point outside bounds to initialise the simplex.
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Algorithm 3: Iterated simplex: repeated local search starting from random points.
IteratedSimplex(ε, ε′, λ, M)
(1) read problem’s data (N, f, . . .)
(2) k = 0
(3) while k < M
(4) x = random solution (Equation 2)
(5) x = SimplexLocalSearch(x, ε, λ, M − k)
(6) k = current number of function evaluations
(7) if x∗ not initialised or x better than x∗

(8) x∗ = SimplexLocalSearch(x, ε′, λ, M − k)
(9) k = current number of function evaluations
(10) return x∗

After an escape point is determined, the simplex is reinitialised around it as describe in
section 2, by adding a step independently to each of the coordinates of x0. We called this
strategy escape, and detail it in Algorithm 4.

Algorithm 4: Directional escape, based on expansions of the simplex.
Escape(ε, ε′, λ, M)
(1) read problem’s data (N, f, . . .)
(2) k = 0
(3) x = random solution (Equation 2)
(4) while k < M
(5) x = SimplexLocalSearch(x, ε, λ, M − k)
(6) k = current number of function evaluations
(7) if x∗ not initialised or x better than x∗

(8) x∗ = SimplexLocalSearch(x, ε′, λ, M − k)
(9) repeat
(10) x′ = x
(11) x = γ s′′ + (1− γ) s̄ ←(work on the last simplex)

(12) s∗ = x ←(work on the last simplex)

(13) until x better than x′ or x is out of bounds
(14) k = current number of function evaluations
(15) return x∗

On this algorithm, after finding a local optimum, the simplex is repeatedly expanded
through its best point (lines 9–13), until obtaining an improvement in the objective value,
and a new local search is started from that point.

This strategy has the nice property of requiring no additional parameters.

3.3 Tabu search

Tabu search for non-linear programming is not a precisely defined concept, as there is not
a commonly used notion of tabu in this context. Actually, if the tabu concept is related to
the kind of movement that is done, the escape mechanism described in the previous section
can be considered as a tabu search: after a local optimum is reached, only expansion of the
simplex is considered non-tabu.
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In this section we propose a different concept: that of tabu based on the region of space
being searched (as proposed also, for example, in [5]).

As we will shortly see, for tabu search to work in our setting it will have to be significantly
modified, compared to the more usual tabu search in combinatorial optimisation.

3.3.1 Tabu solutions: classification

A trivial extension of the method devised for solution classification described on section 2.1
consists of associating a tabu value to each solution, and then using this value as the primary
key for solution sorting.

In this context, for two different solutions x and y, x is said to improve y if and only if:

• x has a smaller tabu value than y;

• both have similar tabu values, and x has a smaller sum of constraint violations than y
(i.e., δ(x) < δ(y));

• both are feasible and not tabu, and the objective value of x is better than that of y.

3.3.2 Tabu regions

The most straightforward way of implementing a tabu search for continuous, non-linear
problems is that of making the region around a local optimum (obtained by the Nelder and
Mead algorithm) a tabu region. This way, for the tenure of the tabu status, we are sure that
the search will not fall into the same local optimum.

This strategy, however, did not lead to good results, for the benchmarks used in this
paper. We have tested many different approaches on this method, all of them with no
success. The main reasons for this are related to the size of the tabu region: if it is too
narrow, the search tends to find local optima on the border between tabu and non-tabu
regions; on the other hand, if the region is too large, good local optima around the current
solution are missed. This difficulty in parameterisation, and the observation that search
around local optima is frequently essential to find better solutions, lead us to give up true
tabu search, and try the opposite strategy: non-tabu search.

3.4 Inversing tabu regions: non-tabu search

As all the strategies that assigned a tabu status to the region of the last found local optima
failed, we deduced that this tabu status barred the search from good regions, resulting in
poor performance.

It is therefore expectable that for a good performance, the search has to be driven into
the areas of previous local optima, instead of avoiding them. The rationale is that good
local optima are often close to other local optima; hence, it might make sense to reinforce
the search around previous optima, instead of avoiding regions close to them. Of course, the
limit of this reasoning occurs when search cannot escape some particular local optimum.

The algorithm that we devised for this, which could be named non-tabu search is depicted
in Algorithm 5.

In this algorithm, the region around a local optimum is exploited by drawing a random
solution on its vicinity, and restarting local search from it (lines 9–18). A parameter σ
controls the distance from the current base solution, used to draw new starting solutions.
Another parameter, R, controls the number of attempts to do around each base solution.
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Algorithm 5: The non-tabu algorithm.
NonTabuSearch(ε, ε′, λ, M , σ, R)
(1) read problem’s data (N, f, . . .)
(2) k = 0
(3) x = random solution (Equation 2)
(4) x = SimplexLocalSearch(x, ε, λ, M − k)
(5) k = current number of function evaluations
(6) x∗ = x
(7) y = x
(8) while k < M
(9) for i=1 to R
(10) xj = yj ± σ (uj − lj), j = 1, . . . , N
(11) x = SimplexLocalSearch(x, ε, λ, M − k)
(12) k = current number of function evaluations
(13) if x better than x∗

(14) x∗ = SimplexLocalSearch(x, ε′, λ, M − k) ←refine search

(15) k = current number of function evaluations
(16) if x′ not initialised or x better than x′

(17) x′ = x
(18) y = x′

(19) return x∗

After R attempts are made, the base solution moves into the best solution found in theses
tentatives.

These two parameters give a way for controlling the search, and to adapt it to the problem
being tackled. Good parameters for a particular problem are generally easy to devise; but
we could find no parameters that are simultaneously good for all the benchmarks.

4 Computational results

For the evaluation of the strategies that we proposed in this paper, we have relied on a
set of multi-modal test functions which include constrained and unconstrained problems.
(Benchmarks which were maximisation problems were converted into minimisations; we
report the optimal objectives, or our best known objectives if optimality is not proven.)

Problem 1: Griewank’s function (d = 4000). Optimal solution: f∗ = 0.

f1(x) =
1
d

N∑
i=1

(xi − 100)2 −
N∏

i=1

cos
(
xi − 100√

i

)
+ 1, xi ∈ [−600, 600] i = 1, . . . , N

Problem 2: Shekel’s foxholes (m = 30; ci, A(i) available in [3]). Optimal solution:
f∗ = −10.20787 . . ..

f2(x) = −
m∑

j=1

1
||x−A(j)||2 + cj

, xi ∈ [0, 10] i = 1, . . . , N

Problem 3: Michalewicz’ function (m = 10). Optimal solution: f∗ = −9.6601517 . . ..

f3(x) = −
N∑

i=1

sin(xi) · sin2m

(
i · x2

i

π

)
, xi ∈ [0, π] i = 1, . . . , N
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Problem 4: Langerman’s function. (m = 30; ci, A(i) available in [3]). Optimal solution:
f∗ = −1.5.

f4(x) = −
m∑

j=1

cj · e−
||x−A(j)||2

π · cos(π · ||x−A(j)||2) xi ∈ [0, 10] i = 1, . . . , N

Problem 5: Crescent function (N = 2) [7]. Best known solution: f∗ ≈ −6961.814.

f5(x) = (x1 − 10)3 + (x2 − 20)3, subject to:
(x1 − 5)2 + (x2 − 5)2 ≥ 100
(x1 − 6)2 + (x2 − 5)2 ≤ 82.81
x1 ∈ [13, 100], x2 ∈ [0, 100]

Problem 6: Luus’s function (N = 3) [4]. Best known solution: f∗ ≈ −11.67664.

f6(x) = x2
1 + x2

2 + x2
3, subject to:

4(x1 − 0.5)2 + 2(x2 − 0.2)2 + x2
3 + 0.1x1x2 + 0.2x2x3 ≤ 16

2x2
1 + x2

2 − 2x2
3 ≥ 2

xi ∈ [−2.3, 2.7] i = 1, 2, 3

Problem 7: Keane’s function. Best known solution: f∗ ≈ −0.747303.

f7(x) = −

∣∣∣∑N
i=1 cos4(xi)− 2

∏N
i=1 cos2(xi)

∣∣∣√
(
∑N

i=1 ix
2
i )

,

subject to:∏N
i=1 xi ≥ 0.75∑n
i=1 xi ≤ 15N/2

xi ∈ [0, 10] i = 1, . . . , N

Problem 8: Polygon model [6]. (The actual number of variables is 2N .) Best known
solution: f∗ ≈ −0.746984.

f8(x, y) = −1
2

∑N−1
i=1 xi+1xi sin(yi+1 − yi),

subject to:
x2

i + x2
j − 2xixj cos(yi − yj) ≤ 1, i = 1, ..., N, j = i, ..., N

yi ≤ yi+1, i = 1, . . . , N
xi ∈ [0, 1], yi ∈ [0, π] i = 1, . . . , N

For the benchmarks which admit choosing the dimension of the problem, we have set
N=10. In all the runs a random solution x0 in the box defined by the problem bounds was
used as the first vertex s0 of the initial simplex. The remaining vertices si, i = 1, . . . , N , were
obtained adding a step on each coordinate, as described in section 2. In this experiment we
have set λ = 1, implementing that all the points except s0 will be infeasible, as they will be
out of the bounding boxes. As for the case of the standard simplex method, computational
experiments have shown that this improves the overall performance of all the tested methods.

For each of the methods, the initial solution is different from run to run; but for a given
run, all the methods will start on the same solution. This explains why the performance
curves presented below are all identical during the initial steps (until the first restart).

In this experiment the maximum number of function evaluations allotted to each method
was M = 100000. For all the methods except the pure simplex method, we established a
criterion ε = 10−4 for stopping the current downhill search. This implies that when the
deviation between the objective of the best and the worst point of the simplex is less than
that value, all the escape strategies will restart on a different solution. The pure simplex
method will continue the search trapped on that local optimum, until reachingM evaluations.
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Figure 3: Performance on unconstrained benchmarks.
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Figure 4: Performance on constrained benchmarks.

11



Problem Method Best found solution Average solution Standard % succ.
value dev. from opt. value dev. from opt. deviation runs

griewank simplex 5.42101e-20 5.42101e-20 0.0610834 0.0610834 0.0648968 7
it-simplex 3.40844e-13 3.40844e-13 1.5458e-12 1.5458e-12 1.05875e-12 100
esc+rand 5.2005e-13 5.2005e-13 0.0111093 0.0111093 0.0091483 23
esc+reinit 2.99198e-13 2.99198e-13 0.000690256 0.000690256 0.00221823 91
nontabu 3.55938e-13 3.55938e-13 0.000717737 0.000717737 0.00230486 89

shekel simplex -10.2079 0 -1.58797 8.61991 0.889729 1
it-simplex -10.2079 0 -7.68605 2.52182 3.46323 65
esc+rand -10.2079 0 -3.46104 6.74684 3.60729 22
esc+reinit -10.2079 0 -2.08117 8.1267 2.08814 6
nontabu -10.2079 0 -1.58797 8.61991 0.889729 1

michalewicz simplex -9.38692 0.273235 -7.62653 2.03363 1.06321 0
it-simplex -9.58442 0.0757324 -9.34113 0.319019 0.174226 0
esc+rand -9.65524 0.00491115 -9.35476 0.305387 0.15857 0
esc+reinit -9.66015 -1.00009e-11 -9.48182 0.178334 0.117634 2
nontabu -9.66015 -1.00009e-11 -9.51409 0.146057 0.114983 4

langerman simplex -0.0174966 1.4825 -0.000398003 1.4996 0.00198529 0
it-simplex -0.797694 0.702306 -0.183889 1.31611 0.12337 0
esc+rand -0.797694 0.702306 -0.452344 1.04766 0.167528 0
esc+reinit -0.797694 0.702306 -0.341029 1.15897 0.236473 0
nontabu -1.5 0 -0.758496 0.741504 0.145192 1

keane simplex -0.424008 0.323295 -0.232212 0.515091 0.0503369 0
it-simplex -0.559488 0.187815 -0.45247 0.294833 0.0436819 0
esc+rand -0.677179 0.0701241 -0.529374 0.217929 0.0623664 0
esc+reinit -0.739872 0.00743129 -0.473476 0.273827 0.107812 0
nontabu -0.747218 8.50598e-05 -0.696889 0.0504137 0.0515507 1

crescent simplex -6961.81 0 -5378.59 1583.22 2162.72 61
it-simplex -6961.81 6.5e-07 -6862.86 98.9504 669.05 97
esc+rand -6961.81 1e-06 -6961.8 0.0119889 0.0210561 69
esc+reinit -6961.81 1e-06 -6961.8 0.0112842 0.0184502 67
nontabu -6961.81 1.8e-06 -6954.83 6.98607 69.6741 44

luus simplex -11.6758 0.000807526 -9.45878 2.21785 1.5797 0
it-simplex -11.6766 1.39e-08 -11.261 0.415647 1.1832 29
esc+rand -11.6766 1.882e-07 -11.4715 0.205172 0.655578 39
esc+reinit -11.6766 2.41e-08 -11.5025 0.174092 0.623979 38
nontabu -11.6766 0 -11.572 0.104608 0.392146 59

polygon simplex -0.651455 0.0955292 -0.486476 0.260509 0.0906192 0
it-simplex -0.713004 0.0339798 -0.655703 0.0912811 0.0259117 0
esc+rand -0.735198 0.0117861 -0.706547 0.0404369 0.0170169 0
esc+reinit -0.746781 0.000203215 -0.73376 0.0132238 0.0104011 0
nontabu -0.745532 0.00145254 -0.734565 0.0124194 0.00549593 0

Table 2: Results for the several escape methods, stopping criteriaM = 100000 and ε = 1.e−4,
initial step λ = 1, and refinement stopping criterion ε′ = 1.e− 12.
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We have also used the best and the average solution found on the 100 runs as a per-
formance measure; it is shown in table 2. This table shows that the iterated simplex fails
to find truly good results for some of the benchmarks, even when the average solution is
acceptable.

For the non-tabu search, the parameters used were σ = 0.1 and R = 10. Notice that
for some benchmarks these are not good; in particular, for the Shekel’s problem non-tabu
behaved approximately as the pure simplex, as it could not get off the region of a local
optimum. (Good parameters for this benchmark, however, would hurt the performance on
the others.)

A performance measure considered is the value of the best evaluation as a function of the
number of evaluations. That value, averaged on 100 independent runs, is plotted on figures 3
and 4. For constrained problems, lines were plotted after all the 100 runs obtained feasible
solutions (hence, after it was possible to average the objective values).

These graphics give an idea of the quality of each of the methods. They show that
there is not a clear winner for all the benchmarks. For the Griewank and the Shekel
problems, iterated simplex is the best strategy. In particular for Griewank, this strategy
could always find the optimal solution around evaluation 80000; from that point on, there
are only refinements. For the other benchmarks, non-tabu is possibly the best method. The
escape method is the most balanced strategy.

5 Conclusions

In this paper we presented an extension of the simplex method for non-linear programming
which allows its straightforward application to constrained problems.

For avoiding stagnation in local optima, we analysed the behaviour of several escaping
mechanisms. The simplest of them is random-start local search. Another one was based
on expanding the simplex from the local minimum, going uphill, until the expansion goes
downhill again. At that point, we expect to be on the other side of the hill, and restarting
simplex descent will likely lead to a different local optimum. The other possibility presented
is based on the exploitation of the area of a the previous local optimum, by drawing starting
points for local search in its vicinity: we called it non-tabu search.

Computational experiments have shown that all the escaping mechanisms were effective
for avoiding stagnation in local optima.

Due to the simplicity of its implementation, random start iterated local search is a highly
attractive method. However, for some problems it is not able to find truly good solutions
(though the average solution is generally of high quality).

The simplex expansion escaping mechanism is for most of the test cases slightly superior
to random start local search, but in general the non-tabu search provides the best results.

Test and improvement of the escape methods for problems with equality constraints, and
other possibilities of dealing with these constraints, remain as topics for future research. More
research topics are their incorporation in more elaborate strategies, like strategic oscillation
or population based methods.
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[6] E. D. Dolan and J. J. Moré. Benchmarking optimization software with COPS. Technical
Report ANL/MCS-246, Argonne National Laboratory, 2001.

[7] C. A. Floudas and P. M. Pardalos. Recent Advances in Global Optimization. Princeton
University Press, 1992.

[8] F. Glover, M. Laguna, and R. Mart́ı. Scatter search. Technical report, Graduate School
of Business and Administration, University of Colorado, 2000.

[9] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: then and now.
Journal of Computational and Applied Mathematics, 124(1-2):191–207, 2000.

[10] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[11] J. P. Pedroso. Meta-heuristics using the simplex algorithm for nonlinear programming.
In Proceedings of the 2001 International Symposium on Nonlinear Theory and its
Applications, pages 315–318, Miyagi, Japan, 2001.

[12] J. P. Pedroso. Extensions of the nelder and mead simplex algorithm: an implemen-
tation in the C++ programming language. Internet repository, version 0.1, 2005.
http://www.ncc.up.pt/˜jpp/nlp-simplex.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipies
in C: the Art of Scientific Computing. Cambridge University Press, second edition,
1997.

[14] H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
The Computer Journal, 3(3):175–184, 1960.

14


