
Exact Generation of Minimal

Acyclic Deterministic Finite

Automata

Marco Almeida Nelma Moreira Rogério Reis

Technical Report Series: DCC-2007-05

Version 1.0

Departamento de Ciência de Computadores

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Abstract

We give a canonical representation for minimal acyclic deterministic finite automata
(MADFA) with n states over an alphabet of k symbols. Using this normal form, we
present a method for the exact generation of MADFAs. This method avoids a rejection
phase, that would be needed if a generation algorithm for a larger class of objects that
contains the MADFAs were used. We give an upper bound for MADFAs enumeration
that is exact for small values of n.

1 Introduction

The problem of the enumeration of minimal (non-isomorphic) n-state acyclic deterministic
finite automata (MADFAs) is an open problem that recently has been considered by several
authors. Domaratzki et al. [DKS02] presented a characterization of MADFAs, gave a lower
bound and some exact calculations. Domaratzki [Dom04a, Dom04b] obtained improved lower
and upper bounds for these values. The lower bound is based upon the enumeration of certain
families of MADFAs, and the upper bound is obtained by enumerating n-state initially-
connected acyclic deterministic finite automata, where states have associated a topological
order (i.e., whenever there is a transition from a state s to a state s′, s < s′). This approach
has the drawback of considering labelled automata, and thus possible isomorphic ones.
Câmpeanu and Ho [CH04] gave a tight upper bound for the number of states of a MADFA

accepting words of length less than or equal to a given integer. Liskovets [Lis06] gave a
linear recursive relation for the number of unlabelled (non-isomorphic) initially-connected
acyclic deterministic finite automata, and has also enumerated initially-connected acyclic
automata with a unique pre-dead state (i.e., a state such that all transitions from it go to
a unique absorbing state, called dead). As all MADFAs have this characteristic, a better
upper bound is thus achieved.

In this paper we give a canonical representation for MADFAs with n states over
an alphabet of k symbols. Using this normal form, we present a method for the exact
generation of MADFAs. This method has the advantage of avoiding a rejection phase
that would be needed if a generation algorithm for a larger class of automata that contains
the MADFAs were considered. Our first approach to the enumeration of MADFAs was
to generate initially-connected deterministic finite automata (IDFAs) using the algorithm
presented in Almeida et al. [RMA05, AMR06]and then test for non-cyclicity as well as for
non-minimality. In those experiments this method was shown to be more than 20 times
slower than the method described in this paper. It is also relevant to note that although
Liskovets obtained an exact formula for the enumeration of unlabelled initially-connected
acyclic deterministic finite automata, no normal form or exact generator algorithm is known
for that class.

In the next section, we present basic concepts used in this paper. In Section 3 we review
some characterizations of (minimal) acyclic deterministic finite automata. Based upon those
characterizations, in Section 4, we present a canonical representation for MADFAs. In
Section 5, we describe an algorithm for the exact generation of all MADFAs, given n and
k. In Section 6, we address the problem of MADFAs enumeration (without its generation)
and give exact formulae for small values of n. In Section 7, we conclude with some future
work.

2

2 Basic Concepts and Notation

We review some basic concepts of automata theory and finite languages. For more details
we refer the reader Hopcroft et al. [HMU00], Yu [Yu97] or Lothaire [Lot05].

Let [n,m] denote the set {i ∈ Z | n ≤ i ≤ m}. In a similar way, we consider the variants
]n,m], [n,m[and]n,m[.

Alphabets and Languages. An alphabet Σ is a finite set of symbols. A word over Σ is
a finite sequence of symbols of Σ. The empty word is denoted by ǫ. The length of a word
x = σ1σ2 · · · σn, denoted by |x|, is n. The set Σ⋆ is the set of all words over Σ. A language
L is a subset of Σ⋆. A language is finite if its cardinality is finite.

Deterministic Finite Automata. A deterministic finite automaton (DFA) A is a tuple
(Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is the alphabet, δ : Q × Σ → Q is the
transition function, q0 the initial state and F ⊆ Q the set of final states. Let the size of
A be |Q|. We assume that the transition function is total, so we consider only complete
DFAs. The transition function δ is inductively extended to Σ⋆, by (∀q ∈ Q) δ(q, ǫ) = q and
δ(q, xσ) = δ(δ(q, x), σ). A DFA is initially-connected1 (IDFA) if for each state q ∈ Q there
exists a word x ∈ Σ⋆ such that δ(q0, x) = q. A DFA is trim if it is an IDFA and every state
is useful, i.e., (∀q ∈ Q)(∃x ∈ Σ⋆) δ(q, x) ∈ F .

Isomorphism. Two DFAs (Q,Σ, δ, q0, F) and (Q′,Σ′, δ′, q′0, F
′) are called isomorphic if

|Σ| = |Σ′| = k, there exist bijections Π1 : Σ → [0, k − 1], Π2 : Σ′ → [0, k − 1] and a
bijection ι : Q → Q′ such that ι(q0) = q′0, ι(F) = F ′, and for all σ ∈ Σ and q ∈ Q,
ι(δ(q, σ)) = δ′(ι(q),Π−1

2 (Π1(σ))).

Minimality. The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F}. Two
DFAs are equivalent if they accept the same language. A DFA A is minimal if there is
no DFA A′, with fewer states, equivalent to A. For obtaining a minimal DFA the notion
of equivalent states is used. We say that two states q and q′ are equivalent if and only if
(∀x ∈ Σ⋆)(δ(q, x) ∈ F ↔ δ(q′, x) ∈ F).

A minimal DFA has no equivalent states and is initially-connected. Minimal DFAs are
unique up to isomorphism.

3 Acyclic Finite Automata and Minimality

An acyclic finite automaton (ADFA) is a DFA A = (Q ∪ {ω},Σ, δ, q0, F) with F ⊆ Q and
q0 6= ω such that (∀σ ∈ Σ)δ(ω, σ) = ω and (∀x ∈ Σ⋆)(∀q ∈ Q)δ(q, x) 6= q. The state ω is
called the dead state, and is the only cyclic state of A. The size of A is |Q|. We are going
to consider only trim complete ADFAs, where all states but ω are useful. It is obvious that
the language of an ADFA is finite. In an ADFA, two states are equivalent if they are both
either final or not final and the transition function is identical for the two states. Thus, a
minimal ADFA (MADFA) can be characterized in a simpler way:

Lemma 1 ([Lot05]). An ADFA A = (Q∪{ω},Σ, δ, q0, F) is minimal if and only if (∀q, q′ ∈
Q ∪ {ω})((q ∈ F ∨̇ q′ ∈ F) ∨ (∃σ ∈ Σ) δ(q, σ) 6= δ(q′, σ)).

A MADFA has a unique state π ∈ Q such that (∀σ ∈ Σ)δ(π, σ) = ω and it is final.
This state is called pre-dead and its existence is a direct consequence of MADFAs definition

1Also called accessible.

3

and Lemma 1. Given a trim ADFA, A = (Q ∪ {ω},Σ, δ, q0, F), the rank of a state q ∈ Q,
denoted rk(q), is the length of the longest word x ∈ Σ⋆ such that δ(q, x) ∈ F . The rank of 2

an ADFA A , rk(A), is max{rk(q) | q ∈ Q}. Trivially, we have that rk(q0) = rk(A). Given
a trim ADFA the rank of each state can be determined by the following algorithm:

for q in Q
rk (q) ← ⊥

rank (q0)

def rank (q)
i f rk (q) 6= ⊥ then return rk (q)
r ← 0
for σ ∈ Σ

i f δ(q, σ) 6= ω then r ← max(r ,1+rank (δ(q, σ)))
rk (q) ← r
return r

For every state q ∈ Q, with rk(q) > 0 there exists a transition to a state with rank
immediately lower than q’s.

Lemma 2. Let A = (Q ∪ {ω},Σ, δ, q0, F) be an ADFA, then

(∀q ∈ Q)(rk(q) 6= 0⇒ (∃σ ∈ Σ) rk(δ(q, σ)) = rk(q)− 1).

The above considerations lead to a optimized minimization algorithm for ADFAs. Con-
sider a total ordering in Σ and for each rank a total order ≺ in Q. We denote Rl = {q ∈ Q |
rk(q) = l} and nl = |Rl|, for l ∈ [0, rk(A)]. The minimization algorithm for trim ADFAs
described below is based on the one presented in Lothaire [Lot05, page 33]:

L ← ∅
for l ∈ [0, rk(A)]

for (q′, q′′) ∈ R2

l
and q′ ≺ q′′

i f (Rnm(L , δ(q′, σ))) σ∈Σ=(Rnm(L , δ(q′′, σ))) σ∈Σ ∧ (q′ ∈ F ↔ q′′ ∈ F)
then

L ← L ∪ {(q′′, q′)}
de l e t e (q′′)

def Rnm(L , q)
i f (∃q′ ∈ Q)(q, q′) ∈ L then return q′ else return q

Note that if two states are equivalent, than they must be in the same rank. By Lemma 1,
they must be both final or non final, and have the same value of the transition function. By
proceeding in increasing rank order and knowing that all transitions from a state have lower
rank states as targets, the correctness of the algorithm is ensured.

4 Normal Form for MADFAs

Based upon the minimization algorithm described in the last section, we are going to
characterize a canonical representation for MADFAs.

Let A = (Q∪{ω},Σ, δ, q0, F) be a MADFA with k = |Σ| and n = |Q| ≥ 2. Consider a to-
tal order over Σ and let Π : Σ −→ [0, k[be the bijection induced by that order. For each state

2Also called the diameter of A.

4

q ∈ Q, let its representation be an (k+1)-tuple ∆(q) = (ϕ(δ(q,Π−1(0))), . . . , ϕ(δ(q,Π−1(k−
1))), f), where the first k values represent the transitions from state q and the last value,
f , is 1 if q ∈ F or 0, otherwise. If the last value is omitted we denote the representation
by ∆̂(q). The function ϕ will assign a number to each state and is defined as follows. All
MADFAs have a dead state ω and a pre-dead state π. Let ϕ(ω) = 0 and ϕ(π) = 1. Thus,
the representation of ω and π are (0k, 0), and (0k, 1), respectively. We can continue this
process considering the states by increasing rank order, and in each rank we number the
states by lexicographic order over their transition representations. It is important to note
that transitions from a given state can only refer to states of a lower rank, and thus already
numbered. Formally, the assignment of state numbers, ϕ, can be described by the following
simple algorithm:

ϕ(ω)← 0
ϕ(π)← 1
i← 2
for l in [0, rk(A)]

for q ∈ Rl by l e x i c o g r aph i c order over ∆(q)
ϕ(q)← i

i← i+ 1

For example, considering the MADFA of Figure 1 (n = 7 and k = 3), its canonical
representation can be constructed as follows:

rank state ϕ(state) ∆(state)

ω 0 0 0 0 0
0 q6 1 0 0 0 1
1 q5 2 1 1 1 0
2 q4 3 2 1 1 0
3 q3 4 2 3 2 0
3 q2 5 3 3 0 0
4 q1 6 4 0 0 0
5 q0 7 5 6 6 0

q0

q1

q2

q3

q4

q5

q6ω

a, b, c

b, c

a

a

b, c

c
a, b

b
a, c

a

b, c

a, b, c

a, b, c

Figure 1: A MADFA that can be described by the canonical representation
[[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 0], [2, 1, 1, 0], [2, 3, 2, 0], [3, 3, 0, 0], [4, 0, 0, 0], [5, 6, 6, 0]].

The following three theorems guarantee that this representation is indeed a canonical
representation for MADFAs.

Theorem 1. Let A = (Q ∪ {ω},Σ, δ, q0, F) be a MADFA with rk(A) = d, n = |Q| and
k = |Σ|. Let (si)i∈[0,(k+1)(n+1)[, with si ∈ [0, n[, be the string representation of A as above.

5

Let (rl)l∈[0,d] be the sequence of the first states of each rank in (si)i, and let (fi)i∈[1,n[be the
sequence of the positions in (si)i of the first occurrence of each i ∈ [1, n[. Then

s0 = · · · = sk = · · · = s2k = 0 ∧ s2k+1 = 1 (N0)

(∀i ∈ [0, n]) s(k+1)i+k ∈ {0, 1} (N1)

r0 = 1 ∧ r1 = 2 ∧ rd = n ∧ (∀l ∈ [0, d[) rl < rl+1 (N2)

((∀i ∈ [1, n[) sfi
= i ∧

(∀j ∈ [0, n])(∀m ∈ [0, k[)((k + 1)j +m < fi ⇒ s(k+1)j+m 6= i))
(N3)

(∀l ∈ [0, d[)(∀i ∈ [rl, rl+1[)krl+1 + 1 ≤ fi (N4)

(∀l ∈ [0, d])(∀i ∈ [rl, rl+1[)(∃m ∈ [0, k[) s(k+1)i+m ∈ [rl−1, rl[(N5)

(∀l ∈ [0, d[)(∀i ∈ [rl, rl+1 − 1[) (s(k+1)i+m)m∈[0,k] < (s(k+1)(i+1)+m)m∈[0,k] (N6)

Proof. The condition N0 is obvious from the definition of MADFAs and the uniqueness of
the pre-dead state. The condition N1 states that the last symbol of each state representation
indicates if the state is final or not. The condition N2 ensures that states are numbered by
increasing rank order. The condition N3 defines the sequence (fi)i∈[1,n[, and ensures that
A is initially connected. The condition N4 is a direct consequence of the rank definition,
i.e., a state can only refer a state of a lower rank. The condition N5 follows from Lemma 2.
Finally, in condition N6, < denotes the lexicographic order which is imposed by the states
number and the way the representation is constructed.

We note that the above conditions N0–N6 could be expressed using directly the string
representations ∆(i) and the sets of states in each rank, (Rl)l. For instance, the condition N5,
could be (∀l ∈ [0, d])(∀i ∈ Rl[)(∃m ∈ ∆̂(i))m ∈ Rl−1. The adopted notation enforces the
possible treatment of the sets of canonical representations as formal languages.

Given a representation (si)i∈[0,(k+1)(n+1)[verifying conditions N0–N6 it is possible to

determine the rank d and the sets of states in each rank, Rl for l ∈ [0, d]. Let max ∆̂(i) be
the largest value in the representation of a state i ∈ [0, n]. Assuming R0 = {1} we have

Rl = {i | max ∆̂(i) ∈ Rl−1}, l ∈ [1, d],

where d is determined considering that (Rl)l is a (ordered) partition of [1, n]. Analogously,
it is possible to determine the sequence (rl)l refered in Theorem 1. Thus, in the following
theorems we assume that this sequence was previously calculated from (si)i.

Theorem 2. Let (si)i∈[0,(k+1)(n+1)[with si ∈ [0, n[be a string that satisfies conditions N0–
N6, then the corresponding automaton is a MADFA with n states and an alphabet of k
symbols.

Proof. From the string (si)i∈[0,(k+1)(n+1)[we can obtain a DFA with an alphabet of k symbols
and n states. By conditions N2 and N4 it must be acyclic. By conditions N3 and N5 it must
be trim. That it is minimal is a direct consequence of Lemma 1 and condition N6.

Theorem 3. Let (si)i∈[0,(k+1)(n+1)[and (s′i)i∈[0,(k+1)(n+1)[be two distinct strings satisfying
conditions N0–N6. Then they correspond to distinct MADFAs.

6

Proof. Let (si)i∈[0,(k+1)(n+1)[and (s′i)i∈[0,(k+1)(n+1)[be two distinct strings in the conditions
required. Let A = (Q ∪ {ω},Σ, δ, q0, F) and A′ = (Q′ ∪ {ω′},Σ, δ′, q′0, F

′) be the correspon-
dent MADFAs, with π and π′ their pre-dead states, respectively. The first two tuples of the
two strings are the same, by condition N0. Let j, for j ∈ [2, n], be the first tuple where the
two strings differ, and let (s(k+1)j+m)m∈[0,k] < (s′(k+1)j+m

)m∈[0,k]. Suppose that there exists

a bijection ψ : Q→ Q′ that defines an isomorphism between A and A′, then

i) ψ(ω) = ω′, because ω and ω′ are the unique cyclic states.

ii) ψ(π) = π′, because they are the unique states in each automaton, such that the dead
state is the target of all its transitions.

iii) let ∆(i) and ∆′(i) denote the representation of state i ∈ [2, n] (transitions and finality)
of A and A′, respectively; then, (∀i < j)(ψ(∆(i)) = ∆′(i))

The values of both strings (s(k+1)j+m)m∈[0,k] and (s′(k+1)j+m
)m∈[0,k] are lower than j, by

condition N4. Thus, ψ(∆(j)) 6= ∆′(j). Moreover there cannot exist j′ > j such that
ψ(∆(j)) = ∆′(j′), because such a tuple would be lexicographically smaller than the tuple
j (and that would contradict condition N6). Therefore, such an isomorphism cannot exist,
and thus the two automata are non-isomorphic.

5 Exact Generation of MADFAs

In this section, we present a method to generate all MADFAs, given n and k. For each
MADFA, its state representations are generated lexicographically according to the condi-
tions N0-N6 of Theorem 1. The algorithm traverses the search tree, backtracking in its way,
and generates all possible representations.

Let NextState(k, l, c, r, r′,D,m) be a function that returns the first (k + 1)-tuple α =
(α0, . . . , αk) that lexicographically succeeds tuple l, and that satisfies the following con-
straints:

i) (∀i ∈ [0, c[)αi ∈ [0, r[

ii) αc ∈ [r, r′]

iii) (∀i ∈ [c+ 1, k[)αi ∈ [0, r′]

iv) αk ∈ {0, 1}

v) m = 1 ⇒ {αi} ∩D 6= ∅

vi) m = 2 ⇒ {αi} ⊆ D.

If the above conditions cannot be satisfied, the function returns ⊥. If l = ⊥, it returns the
first tuple that satisfies the conditions. The parameters r and r′ are the first and last states
in the previous rank, respectively, and the parameter c is the position of the first state to
refer to a state of the previous rank (cf., constraints i-iii). The parameter D is the set of
dangling states not yet referred, i.e. not initially-accessible, and, that depending on the mode
m, should or should not be “connected” in the new tuple α. The algorithm is described as
follows:

7

1 F ← ((0k, 0), (0k, 1))
2 NewRank(n, k, F, 1, 1, {1})
3

4 def EvalMode(n, k, F,D)
5 i f |F | = n then

6 i f |D| = 1 then output F

7 return −1
8 i f |D| ≤ (k − 1)(n− |F | − 1) then return 0
9 i f |D| < (k − 1)(n− |F |) + 1 then return 1

10 else return 2
11

12 def NewRank(n, k, F, r, r′, D)
13 i f (m = evalMode(n, k, F,D)) 6= −1 then

14 for c ∈ (k − 1, . . . , 0)
15 l ← ⊥
16 while (l ← NextState(k, l, c, r, r′, D,m)) 6= ⊥
17 SameRank(n, k, F + l, c, r, r′, (D \ {li|i < k}) ∪ {|F |}, l)
18

19 def SameRank(n, k, F, c, r, r′, D, l)
20 i f (m = evalMode(n, k, F,D)) 6= −1 then

21 for c′ ∈ (c, . . . , 0)
22 while (l ← NextState(k, l, c′, r, r′, D,m)) 6= ⊥
23 SameRank(n, k, F + l, c′, r, r′, (D \ {li|i < k}) ∪ {|F |}, l)
24 NewRank(n, k, F, r′ + 1, |F | − 1, D)

The following claims ensure the correctness of the algorithm.

Claim 1. Every generated sequence F satisfies conditions N0-N6.

Claim 2. For each n and k all legal strings are generated.

Proof 1. Claims 1 and 2 (Sketch) Considering the algorithm above and the existence of the
function NextState, we have,

• The condition N0 is guarantee by line 1.

• The condition N1 is a direct consequence of constraint iv.

• By the constraints i-iii, each new state generated by NextState belongs to the rank im-
mediately after the rank of state r. Moreover, the functions NewRank and SameRank
constraint the states to be generated by rank increasing order (and unit steps). This
guarantees condition N2.

• The function EvalMode and the constraints v-vi, ensure that conditions N3 and N4
are fulfilled. The conditions stated in lines 8 − 10 correspond to a pruning of the
state representations search tree. If the number of dangling states (|D|) is equal to
(k − 1)(n − |F |) + 1, i.e., equals all possible transitions left then all transitions from
the states to be created must refer those states (m = 2). If (k − 1)(n − |F | − 1) <
|D| < (k− 1)(n−|F |)+1 then at least one of those states must be referred (m = 1). If
|D| ≤ (k−1)(n−|F |−1) none of those states needs to be referred. The set of dangling
states is updated in each recursive call to the functions NewRank and SameRank

(lines 17, 23 − 24).

8

• The condition N5 is a direct consequence of constraint ii.

• The condition N6 is ensured because NextState generates the tuples in lexicographic
order, and the way the parameter c takes values (lines 14− 17, 21 − 24).

The algorithm was implemented in Python.In Table 5 the number of MADFAs for some
small values of n and k is summarized. For k = 2 and n ≤ 6, those values were already
presented by Domaratzki et al. [DKS02] and by Liskovets [Lis06].

k = 2 k = 3 k = 4 k = 5
n MADFAs Time (s) MADFAs Time (s) MADFAs Time (s) MADFAs Time (s)

2 6 0.012 14 0.015 30 0.017 62 0.017
3 60 0.015 532 0.019 3900 0.061 26164 0.307
4 900 0.026 42644 0.579 1460700 17.965 43023908 507.296
5 18480 0.026 6011320 0.579 1220162880 16683.977
6 487560 7.240 1330452032 24481.959
7 15824880 243.873
8 612504240 9695.755
9 27619664640 457881.581

Table 1: Number of MADFAs for small values of n and k and performance times for its
generation (AMD Athlon 64 at 2.5MHz).

6 Towards an Exact Enumeration of MADFAs

In this section we address some issues regarding the enumeration of MADFAs and therefore
of finite languages.

6.1 Counting MADFAs by Ranks

It is easy to count the number of MADFAs over an alphabet of k symbols and with rank
d. Each MADFA represents a distinct finite language where the largest word has length d,
and all languages in these conditions are represented by a MADFA of rank d. The number
of words of length i is ki, for i ∈ [0, d], and thus we have,

Rk(d) =

(

d−1
∏

i=0

2ki

)

(2kd

− 1).

6.2 Counting MADFAs for n and k

The number of finite languages represented by MADFAs with n states over an alphabet of
k symbols, Mk(n), would be obtained if we could count its canonical representations. So
far, however, we were only able to do obtain Mk(n) for small values of n and assuming that
we know the possible distributions of states by ranks. Let A = (Q ∪ {ω},Σ, δ, q0, F) be a
MADFA and rk(A) = d. Let (nl)l∈[1,d] be the sequence of the number of states in each
rank. The number of these sequences is atmost 2n−3, for n > 2, as they correspond to the
integer compositions of size n−2. For each sequence(nl)j∈[0,d], let (mf)f∈[1,d] be the number
of dangling states that are target of transitions from a state of a previous rank, for the first
time.

We are going to analyse the possible configurations for n ∈ [2, 5], using the Principle
of Inclusion and Exclusion (see Charalambides [Cha02]). It is important to note that some
configurations are not allowed for small values of k.

9

For n = 2, the state q0 can be final or not, and the number of possible transition functions
is 2k, excluding the one where all transitions have as target the dead state. We have

Mk(2) = 2(2k − 1).

In the following diagrams the dead state is omitted. For n = 3, we only have to consider one
configuration:

(nl)l∈[0,2] = (1, 1, 1) (mf)f∈[1,2] = (1, 1).

Then,
Mk(3) = 22(3k − 2k)(2k − 1).

For n = 4 (and k > 1), we have two configurations (nl)l∈[0,3] and (nl)l∈[1,3[, each one with
a possible sequence (mf)f :

d (nl)l∈[0,d] (mf)f∈[1,d]

3

(1, 1, 1, 1)

(1, 1, 1)

2

(1, 2, 1)

(1, 2)

Then,

Mk(4) = 23(4k − 3k)(3k − 2k)(2k − 1) + 2(4k − 3k2 + 2k)

(

2(2k − 1)

2

)

For n = 5, we have four possible configurations:

d (nl)l∈[0,d] (mf)f∈[1,d] d (nl)l∈[0,d] (mf)f∈[1,d]

5
(1, 1, 1, 1, 1)

(1, 1, 1, 1) 4

(1, 1, 2, 1)

(1, 1, 2)

4

(1, 2, 1, 1)

(1, 1, 2)
(1, 2, 1)

3

(1, 3, 1)

(3, 1)

10

The last configuration is only possible for k > 2. Then,

Mk(5) = 24(5k − 4k)(4k − 3k)(3k − 2k)(2k − 1)

+ 22(5k − 4k)(4k − 3k2 + 2k)

(

2(2k − 1)

2

)

+ 23(5k − 4k2 + 3k)(3k − 2k)

(

2(2k − 1)

2

)

+ 22(5k − 4k2 + 3k)

(

2(3k − 2k)

2

)

(2k − 1)

+ 2(5k − 4k3 + 3k3− 2k)

(

2(2k − 1)

3

)

.

In a similar way, we can obtain the formulae for higher values3 of n. But the interaction
between the sequences (nl)l and (ml)l is not so straightforward to count and the above
general approach leads to double counting. It provides, however, an upper bound for Mk(n).

6.3 Estimates of the Number of States per Ranks

The possible distributions of states per ranks are an important issue towards the enumeration
of MADFAs. As was pointed out by Liskovets [Lis06], the number of states in rank 1 must
be at most 2(2k − 1). Let d ≥ 1 be the rank of a MADFA, let nl for l ∈ [1, d] be the number
of states in each rank, with n−1 = 1, n0 = 1 and nd = 1. Because the MADFA must be
initially-connected, we have the following recurrence:

nd−i ≤ nd−(i+1) + (
i−2
∑

j=0

kj −
i−2
∑

j=0

nd−j), i ∈ [1, d[.

In the other hand, for each state in each rank there exist a transition to a state in the
previous rank, thus we have

ni ≤ 2((
i−1
∑

j=−1

nj)
k − (

i−2
∑

j=−1

nj)
k), i ∈ [1, d[. (1)

The inequality (1) was also derived by Câmpeanu and Ho [CH04]. They presented a closed
formula for the recurrence obtained considering the equality in (1) and, with that, obtained
upper bounds for the number of states of MADFAs.

7 Conclusions

We presented a canonical representation for minimal acyclic deterministic finite automata
with n states and k symbols and a method for their exact generation. The study of the
combinatorial properties of this canonical representation can contribute to obtain a formula
for their enumeration. In particular, a characterization in terms of context-free languages,
if exists, would be helpful. We also plan to study the possibility of use this canonical
representation for a uniform random generator for MADFAs.

3The formula for n = 6 is a page long and cumbersome.

11

8 Acknowledgements

We are most grateful to Valery Liskovets that kindly posed several interesting questions
related to the number of MADFAs and its distributions by number of final states. We
thank also the anonymous referees for their valuable comments.

References

[AMR06] M. Almeida, N. Moreira, and R. Reis. Aspects of enumeration and generation
with a string automata representation. In H. Leung and G.Pighizzini, editors,
Proc. of DCFS’06, pages 58–69, Las Cruces, New Mexico, 2006. NMSU.

[CH04] C. Câmpeanu and W. H. Ho. The maximum state complexity for finite languages.
J. of Automata, Languages and Combinatorics, 9(2-3):189–202, 2004.

[Cha02] C. A. Charalambides. Enumerative Combinatorics. Chapman & Hall, 2002.

[DKS02] M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. J. of Automata, Languages and
Combinatorics, 7(4):469–486, 2002.

[Dom04a] M. Domaratzki. Combinatorial interpretations of a generalization of the Genocchi
numbers. Journal of Integer Sequences, 7(04.3.6), 2004.

[Dom04b] M. Domaratzki. Improved bounds on the number of automata accepting finite
languages. International Journal of Foundations of Computer Science, 15(1):143–
161, 2004.

[HMU00] J. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2000.

[Lis06] V. A. Liskovets. Exact enumeration of acyclic deterministic automata. Discrete
Applied Mathematics, 154(3):537–551, March 2006.

[Lot05] M. Lothaire. Algorithms on words. In Applied Combinatorics on Words, chapter 1.
Cambridge University Press, 2005.

[RMA05] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata. In
C. Mereghetti C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors,
Proc. of DCFS’05, pages 269–276, Como, Italy, 2005.

[Yu97] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, volume 1. Springer-Verlag, 1997.

12

