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A Network Intrusion Detetion System based on theTunable Ativation Threshold theoryMario J. Antunes and Manuel E. CorreiaComputer Siene DepartmentFaulty of SieneUniversity of PortoRua do Campo Alegre, 8234150-180 PortoPortugal{mantunes;m}�d.f.up.ptAbstratThe main ativity of a Network Intrusion Detetion System (NIDS) onsistsin analysing the �ow of network pakets and identify whih ones are part of anongoing attak or intrusion. Two major problems related with NIDS deploymentare the distintion between normal and abnormal ativity in the network andthe detetion of new kind of attaks that have not ourred previously. Severalapproahes have been applied to solve the problem, with relative suess, inlud-ing mahine learning, data mining, statistial and those inspired in the immunesystem.In spite of the large body of reseah done on this subjet, the literatureevidenes some problems these approahes have when applied to real worldnetworks. These are mainly due to performane and salability issues. Inthis paper we present negative seletion and danger theory as two of the majorimmunologial approahes applied so far to the �eld of intrusion detetion. Wepresent what we believe are their major limitations under this ontext andpropose a new NIDS framework based on the Grossman's Tunable AtivationThreshold (TAT) theory. This theory is based on the general idea that in theimmune system T-ells ativation thresholds are adjusted dynamially and thisadjustment is based on the reent history of T-ells and APCs interations.1 IntrodutionAn intrusion an be seen as a set of ations that attempt to ompromise a seureproperty. Intrusion detetion is the proess of monitoring relevant events that ourin a omputer-based information system. The main goal of intrusion detetion is thusto positively identify all possible ourrenes of atual attaks and, at the same time,2



to not be distrated by regular events and deeived by the signalling of false attaks[33℄. A NIDS has thus to detet unauthorised use, misuse and abuse of omputersystems by both system insiders and external intruders.There are several ways to identify and tehnologially ategorise existing IntrusionDetetion System (IDS), suh as audit soure loation and intrusion detetion responseand detetion methods [11℄. Considering the soure from where an IDS gets itsinformation, these systems an be further lassi�ed as Network IDS (NIDS), HostIDS (HIDS) and Hybrids. The intrusion detetion response is related with the waythe IDS responds to attaks and an be lassi�ed as passive, reative and proative.There are also two lasses to lassify an IDS based on the way it identi�es potentialintrusions: anomaly detetion and misuse detetion [11℄.Anomaly (behaviour-based) detetion bases its deisions on a pro�le of normalnetwork or system behavior, denoted by what is alled the normal ativity pro�le.The system looks for anomalous ativities, whih by de�nition are ativities that donot math the previously established pro�le. An intrusion is thus a deviation from thenormal ativity pro�le [4℄.The misuse detetion (knowledge-based) based systems examines network andsystem ativity, omparing the data olleted by the IDS with the ontents of adatabase, looking for known misuses. The database ontains the signatures of knownattaks in the form of rules. If a math is found, an alert is generated and all theevents that do not math any signature are onsidered not intrusive [4℄.Both of these methods of detetion have strengths and weaknesses. On one hand,misuse-based systems generally have a very low rate of false positives but annotidentify novel attaks, leading to high false negative rates. On the other hand,anomaly-based systems are able to detet novel attaks but urrently produe a largenumber of both false positives and false negatives [4℄. These problems are due tothe inability of urrent anomaly-based tehniques to deal adequately with ontinuoushanges in network environments. This is a lear indiation for the need to �ndand apply new paradigms that an better ope with legitimate hanges in omputernetworks and systems usage over time, meaning that any kind of pro�le for normalbehaviour also needs to be dynami in nature.The appliation of biologial immune system onepts and algorithms provides thesystem with the innate apability to distinguish self from non-self, learn new formsof intrusion not previously seen and memorize past events, among other interestingharateristis [10℄. These harateristis inrease the quality and resiliene of thesesystems by providing them with the ability to reat to new and never enounteredattaks on networks that hange gradually over time.The immune-based IDS developed so far are generally based on two main immuno-logial theories: Negative Seletion (NS) [13℄ and Danger Theory (DT) [1℄. Startingfrom this well established work we propose a new framework for network intrusiondetetion based on a di�erent theory proposed by Grossman: TAT [14℄. TAT statesthe ativation threshold of Tells is dynamially adjusted based on the reent historyof Tells-APC interations. This theory onsiders a di�erent approah from both NSand DT in what onerns the self-non-self system disrimination.The seletion is made by the T-ell based on the ontinuous reation to the3



signals reeived from APC. The ativation is based on the tuning of a threshold thatre�ets the reent history of intraellular interations between T-ells and APCs. Thisthreshold is not �xed, as stated by NS and the immune response in not based in ellapoptosis (death), as proposed by DT. We believe that TAT possesses interestingharateristis that an be applied to IDS and harnessed to de�ne a better metaphorfor intrusion detetion based on immune systems that is better equipped to ope withthe aute problem of e�etively deteting intrusions in real-world networks.In Setion 2 we summarize the developments done so far in immune-base IDS usingboth approahes NS and DT. In Setion 3 we desribe the fundamentals of the TATtheory and the metaphor that an be thus derived for network intrusion detetion.In Setion 4 we propose a new work framework based on TAT, desribing its mainomponents and proesses. In Setion 5 we present some onlusions we an derivefrom this preliminary e�ort and desribe the major ongoing researh ativities we areurrently engaged with to re�ne these ideas into a fully funtional IDS.2 Arti�ial Immune Systems applied to IDSAn Arti�ial Immune Systems (AIS) an be see as an adaptive system inspired bytheoretial immunology that an be applied to problem solving [10℄. It is widelyreognized that network omputer seurity is regarded as one of the most intuitive andpopular �eld of omputer siene where we an e�etively use the biologial immunesystem as a omputing metaphor in the form of an AIS.In [20℄ the authors present an in-depth desription of the state of the art in thedevelopment of IDS based on immune biologial approahes. The work done so farin this �eld an be subdivided into three main subareas [20℄, there are: systemsinspired by the immune system that employ onventional algorithms (for example, IBMvirus detetor from Kephart [17℄), those derived from negative seletion paradigms, asintrodued by Forrest [13℄ and �nally those that take advantage of DT [24℄. In thissetion we give a summary desription of the last two approahes, emphasizing theirmain di�erenes to the TAT theory.In negative seletion [13℄ the system generates a baseline of self patterns based onnormal system ativity. A large randomly detetor set is then generated where eahdetetor is ompared to eah one of the self patterns. If they math, the detetor isdestroyed and removed from the initial repertoire. Otherwise, the detetor is madeavailable to math the monitored patterns and, if they math with a ertain a�nity,this should indiate that an abnormal ativity has ourred. In her seminal work,Forrest et al. [12℄ managed to take full advantage of some important base har-ateristis of the immune system, suh as diversity, adaptability, anomaly detetionand identity by behaviour, among others. In [13℄ she proposed a �rst approah todeploy an AIS for network seurity, where the non-self is haraterised as "undesirednetwork onnetions". In this approah both good and bad onnetions, as well asthe detetors are represented by binary strings. These strings are then subjeted toa pattern mathing algorithm that is applied to identify self onnetions. In this �rstlearning phase, the binary strings that are eliminated onstitute the negative seletion4



operation of the AIS being built. On the other hand, if any one of the other survivingpatterns mathes an antigen and a ertain threshold is attained, the orrespondingantibody (the pattern mathing string) is ativated and the presumed intrusion isreported to a human operator that deides if we are truly in the presene of a realinident. If this is the ase, the pattern math string is promoted to the memorydetetor ategory with the mission to reognize future similar attaks. LISYS [5, 16℄was one of the �rst suessful NIDS based on AIS.In [18℄ Kim identi�ed three fundamental design goals requirements for networkbased intrusion detetion systems: distribution, self-organisation and lightweight op-eration. She also onludes a typial AIS framework must inlude negative seletionand lonal seletion mehanisms and should take advantage of gene library evolutionalgorithms. She presents an AIS inorporating the requirements and harateristislisted above, desribes the developed arhiteture and shows some promising resultsof its appliation in a real loal area network. There are however serious salabilityproblems assoiated with the negative seletion paradigm when is used in the ontextof live network tra� [19℄. When network tra� inreases, the self and non-selfspae inreases dramatially, thus beoming inreasingly di�ult to �nd a set ofomputationally e�ient detetors apable of providing adequate overage of the selfand non-self spae.With NS it is no trivial matter to map the entire self and non-self dynami spae.Firstly, they both tend to hange over time. Moreover, only some non-self is harmfuland one may �nd some self that an ause damages [18, 1℄. More reently, Stibor et.al[32℄ explored the appropriateness of using arti�ial immune systems based on negativeseletion for intrusion and anomaly detetion problems, speially when ompared toother well known statistial anomaly detetion methods. In [31℄ the author identi�essome problems related with the use of Hamming shape-spaes applied to anomalydetetion in the ontext of negative-seletion based algorithms.In [3℄ Aikelin et al. presents a survey of the state of the art in intrusion detetionsystems based on AIS, stressing their weaknesses and defending the need to adopt anew immunologial paradigm, the Danger Theory. Matzinger's Danger Theory [24℄starts by observing that there must be some kind of disrimination proess that goesbeyond the lassial self-non-self distintion. She bases her argument on evidenesfrom well known natural behaviours. For example, there is no immune reation toforeign bateria in the food we eat although they are foreign entities. The humanbody hanges over its lifetime as well but the immune system is still apable of opingwith these hanges. Other aspets that ollide with the traditional viewpoint are theautoimmune diseases whih attak the self and suessful grafting transplants wherethere are no attaks against foreign (non-self) tissues. The entral idea of the DTis that the immune system does not reat to non-self but to danger. The systemdisriminates "some" self and "some" non-self, whih is a starting point to explainwhy it is possible to ope with "non-self but harmless" and with "self but harmful"system aggressors [2℄.The theory states that danger is measured by signals sent out when distressedells die in some unnatural way. These signals enourage the marophages to aptureantigens in their neighbourhood and establish a danger zone around the alarm signal5



emitted by the distressed ell. Only those B-ells produing antibodies that mathantigens within the danger zone get stimulated and start the lonal expansion proess.This theory suggests that the immune system reation to threats is based on theorrelation of various signals, providing a method of linking the threat diretly to theattaker. In [1℄ Aikelin et al. transposes the DT to the realms of omputer seurity.Their objetive is to speify a omputational model based on DT to de�ne, exploreand �nd danger signals. The orrelation of danger signals to IDS alerts and thesealerts to intrusion senarios is a subjet still far from being ompletely de�ned andneeds to be better lari�ed.In our opinion, this theory has two main drawbaks. First there is the presumptionthat triggering is based on ell apoptosis. In an IDS implementations this impliesthat there must have been an intrusion for a orrespondent reation, without a priorpredition that an intrusion is going on. This ould be disastrous in a produtionenvironment.Seondly, the meaning and quanti�ation of "danger" an be a hard task of di�ultpratial appliability to intrusion detetion. All omputer networks are di�erent, aswell as their meaning of what onstitute normal and abnormal ativities. So is theirmeasure of what onstitutes a "danger signal".3 The Tunable Ativation Threshold theoryThe biologial immune system is a very omplex multi-layered struture, omposedby a set of ellular omponents that interat with eah other to reat against themiroorganisms (pathogens), that an ause diseases, suh as virus and baterias.Antigens are substanes (usually proteins) identi�ed as foreign by the immune system(the nonself antigens), whih stimulates the release of antibodies to destroy pathogens[6℄. The immune system is generally divided in two oneptual layers. Firstly, theinnate immune system, whose behaviour is determined by eah person's individualgeneti inheritane and responds similarly during eah individual entire lifetime. It isomposed by a physial barrier (skin), some �uids (e.g. sweat and tears), and oneinside the body, by the ativity of APCs (for example, the marophages) that tryto destroy the pathogens, fragmenting them into antigeni peptides. Some of thesepeptides bind to speial proteins alled Major Histoompatibility Complex (MHC),being presented in the ell surfae as a pair "MHC/peptide".Seondly, the adaptive or spei� immune response, reognizes an antigen as nonselfaording to prior memory of past intrusions, reating adaptively to new similar events.In the adaptive system spei�ity refers to the binding proess of an antigen (self ornonself) by a ell, in whih eah ell has a reeptor that only reognizes one spei�antigen. Furthermore, the moleule surfae of an antigen has di�erent antigen peptidesthat an be bound by di�erent ells. It is therefore possible to have a high number ofantigens that an be reognized and destroyed by numerous immune system ells [10℄.In the metaphor used in the ontext of a NIDS the innate immune system orre-sponds to the baseline knowledge given to the system about know attaks. This anbe done by using signatures or rules for well known attaks. This is the approah6



normally used by some popular NIDS, like Snort [28℄.The adaptive immune system orresponds to the IDS ability to unover new pre-viously unseen attaks that an our within the network.One major mehanism of the immune system is its apability to distinguish selffrom non-self and thus avoid auto-reativity. This ability an be partly explainedby negative-seletion but the problems of overage, salability and performane re-ported by some reent researh [19, 32℄ emphasizes the need for news approahes andparadigms. Another question is related to the usually �xed threshold onsidered forell ativation and the need for manual intervention in order to on�rm the preseneof maliious ativity.The Tunable Ativation Threshold (TAT) [14, 15℄ hypothesizes that T-ells havetheir ativation threshold adjusted dynamially by the "kind" and "quality" of signalsreeived from the APCs. This hypothesis proposes that every interation betweenT-Cell Reeptor (TCR) and its ligands on APC result in an intraellular ompetitionbetween "exitation" and "de-exitation" signaling pathways, ausing the T-ell toinrease or derease its ativation threshold [7℄.T-ells reat di�erently to the signals they reeive from APC (through pairs "MHC/peptide"),adjusting its threshold of ativation proportionally to the signals reeived from theAPC. Thus, eah T-ell has its own responsiveness and tuning updated aording tothe history of intraellular interations between T-ell and APC.The ativation threshold inreases gradually if the signals reeived are reurrent anddereases in the absene of signals. T-ells should be ativated if, in a given period oftime, the signals reeived from the APC are higher than the urrent threshold. Notiethat this an happen if a T-ell does not reeive signals from an APC for some timeand ends up with a substantially dereased threshold, thus beoming muh easier toativate in the presene of higher signals.The seletion proess therefore is not pre-programmed, instead, it requires a meh-anism of signal-transdution that translates the di�erent external stimulation signalsfrom APC into relatively uniform intraellular signals. Under this senario thresholdsignals would allow some of the less exessively autoreative naive T-ells to survivelonger than others, allowing negative seletion earlier and late during the maturationproess [15℄. This behavior ontrasts with lassial immunology paradigms where allthe ells that math the self are naturally disriminated by the survival of those ellsthat have a higher level of a�nity with the non-self (immunoompetent ells).In TAT the interations between TCR and "MHC/peptide" omplexes induebiohemial hanges in the T-ell signalling and ativation mahinery that alter thesensitivity of T ells to subsequent stimulation [30℄. Thus, di�erent T-ells will havedi�erent a�nity levels to reat to the di�erent pairs "MHC/peptides".The TAT operation model an be desribed as follows. Eah T-ell has two "oun-ters"; One orresponds to the ativation threshold (L) and the other orresponds tothe signal reeived from the APC in eah interation (I). The APC presents a peptideto a T-ell that will adjust its level of ativation aording to the signal reeived.Depending on the intensity of the signal, the ounter I an beome higher than Land in this ase, the T-ell is ativated. This mehanism makes the T-ell regulatedaording to the peptides presented by the APC. The T-ell thus adjusts dynamially7



its limits of ativations and ination for a partiular antigen. Figure 1 represents thekinetis of intraellular signal intensity and the ativation threshold. It illustrates asignal intensity that inreases smoothly, adjusting the threshold and a more intensesignal that overomes the threshold limit, whih implies the ell ativation.

Figure 1: The relation between the signal intensity and the ativation threshold of aT-ell.In TAT the self-non-self disrimination depends heavily on the initial training of thesystem and the ontinuous monitoring of the reent history of T-ell-APC interations.The signal reeived from the APCs is "self" if all T-ells able to reeive the signal haveits thresholds (variable L) adapted and the signal is below the threshold. On the otherhand, if the signal reeived from the APC is above the threshold of all the T-ellstrained to reeive it, then the signal is onsidered by TAT as "non-self".The system key phase is thus the training phase. The baseline of the system isthe normal (self) behavior, and this knowledge is used to produe the TCR. Thisnaive ells are born in the thymus aording to eah individual geneti information.Its ativation threshold is high and during the maturation phase it dereases naturallyand spontaneously at a de�ned rate. In the T-ells that reeive reurrent signals (selfpatterns), the dereasing of the threshold is opposed by a natural tendeny for thesignal to inrease it. In this ase, the ativation threshold will be always above theinput signal reeived by the APC. On the other hand, in T-ells that do not reeiveenough signals, the threshold will also derease, but there is no signal in oppositediretion. Thus, in some moment, they will be ativated, turning these ells tooreative to detet non-self patterns [14℄. This dynami operation makes the automati8



adjustment of the ativation threshold in T-ells dependent on two main fators: theirinitial training and the monitorization of the signals reeived by the APC.The appliation of TAT to intrusion detetion thus has the following points ofinterest:
• the automati adjustment of T-ells ativation threshold based on the systemativity re�ets more aurately what really happens in a network. The networktra� is di�erent in all the networks and it is neessary to have detetorsompatible with this reality.
• the ativation is an automati proess based on the kinetis between the signalintensity and threshold and thus the manual intervention to on�rm the attakmay no longer be required.
• the dynami threshold seem to be more realisti than the model defended bylassial immunology, as it re�ets the real operation of the system. The reog-nition of a new unseen intruder (an attak) depends on the "strength" of thesignal reeived from the APCs (tra� �lter).
• the normal operation of the system should �ne tune the threshold of some T-ells,onverting them into "memory" ells. For example, when an attak takes plaein the network, the T-ells that reeive suh signals will automatially adjust itsthreshold to a value that will allow for their ativation making that ell reativeto this same attak or some of its variants.
• the gradual threshold adjustment over time tends to minimize (or even eliminate)the false negative events beause T-ells will only ativate when the signal isabove the threshold.
• the ativation is triggered when the bind math a threshold adjusted dynamiallyover time. This should re�et the dynami history of the system, instead of apre-de�ned state supposed to re�et the natural evolution of those individuals.Computer networks are not all equal and eah one has its own dynamis fornormal ativity. Eah network should thus adjust dynamially its threshold ofreation aording to its own ativity pro�le.
• reurrent signals are usually related to normal ativity. This is preisely whatusually happens in a network. Abnormal ativities are exeptional signals thatshould adjust the threshold to a level apable of ativating the T-ell.The metaphor of TAT applied to intrusion detetion is summarized in the �gure 2.At this phase of our researh, there are some questions that need to be better lari�ed:
• it is not lear what should be the rates in whih the threshold (L) and signalinput variable (I) should vary, to re�et a real-world network system. If thesignal is reurrent, then L should inrease more than I.9



Figure 2: The metaphor of TAT and the intrusion detetion.
• the strings that eah APC will math in the network tra� must also be verywell de�ned.In our opinion, the self-non-self distintion proposed by TAT has some very in-teresting and metaphori insights that an be easily mapped and applied to intrusionand anomaly detetion, when ompared to NS and DT. Firstly, the T-ell seletionis diretly related to its interation with the environment, avoiding any prematuredistintion in the thymus, as happens with NS. Moreover, the signi�ant di�erenesbetween both approahes are based on the fat that ativation is based on a tunablethreshold instead of a �xed one. We may thus have di�erent individual T-ells withdi�erent levels of reation.Comparing to DT, TAT is not based on ellular apoptosis. So, the system is notexpeting to be infeted for latter reation. In TAT, the system detets the intruderif the signal reeived is above the T-ell threshold. Moreover, there is no need to"lassify" eah signal sine what matters is its intensity and its relation to its reentourrenes level. A preise meaning for what is a "danger signal" and the need forits orrelation is not neessary.4 The proposed frameworkIn this setion we present a framework for an IDS based on the TAT model sum-marily desribed in Setion 3. Figure 3 illustrates the general proposed arhiteture,10



Figure 3: General arhiteture of the NIDS using TATemphasizing its main proesses and data �ows.Our system is omposed by two main strutures that interat periodially: Tells,orresponding to detetors and APCs orresponding to network �lters that extratpatterns from network �ows. A network ommuniation �ow identi�es all the paketsexhanged between two appliations in the network and an be identi�ed by thefollowing attributes: soure and target IP address, soure and target ports (Transportlayer), protool type (Internet layer), servie type (TCP header) and input routerinterfae [29℄. We an identify three main operational phases: (1) the initial trainingof Tells, (2) network tra� proessing and (3) T-ell and APC interations basedon the TAT algorithm. Eah detetor is identi�ed by a string of m attributes andhas two variables: the ativation threshold (variable L) and the intensity of the signalreeived by eah APC interation (variable I). The APCs are identi�ed by a vetor ofsub-strings with k attributes (with k < m), orresponding to the tra� being �lteredfrom the network, and a variable J orresponding to the number of ourrenes foreah string.The system operates as follow:1. it starts by reating two sets: detetors represented by Tells and tra� �ltersrepresented by APCs.2. variables L are initialized with a very large pre-de�ned value for all Tells.11



3. variable I is reset to zero for eah interation T-ell-APC.4. APCs ollet network tra� in real time and store the ourrenes of eah of its�lters. The number of ourrenes is stored in variable J.5. eah entry in the APC table is periodially presented to all the TCR and, inase of a math, the variable I is updated with the value J. The variable L isalso inreased by a value that should re�et the intensity of the signal (I). Thismeans that the signals are reurrent, orresponding to self ativity, and bothvariables are inremented in suh a way that L always beomes greater than I.6. on the other hand, if the detetor �nds a rare or a too strong signal, then bothI and L will derease, but L is made to dereases faster, ausing I to be higherthan L at some time in the future, ausing the detetor to beome ativated.The ativity of the APCs an be desribed as follow:1. eah network �lter (APC) extrats several patterns from the network and ountsourrenes in a de�ned period of time.2. These ourrenes are stored in a APC table, assoiated to eah string (variableJ)3. In the ase that no math exists to a partiular string (J = 0), then that stringis removed from the list.This desription emphasizes the general harateristis desribed in the previoussetion, being possible to identify the metaphor proposed in Figure 2 (Setion 3).Figure 4 details the main proesses involved. The training is omposed by twodistint separate phases. Firstly, the system is trained with a self data omposedexlusively of normal tra� from the network we want to protet (Self-Tagged).Seondly, we train the system with a data-set omposed both by normal and knownattaks (Non-self Tagged). One possible approah is to "synthetially" generate theseattaks from the detetion rules of the Snort IDS [28℄. This seond training phasematures T-ells by ausing an adaptation of its thresholds and turning them moresensible to these attaks.This proedure will tune some T-ells to be highly adjusted to reat to the alreadyknown attaks. These T-ells at as "memory ells" sine their existene reordsprevious known attaks. The ativation threshold for these ells should also remainin a low value (near zero) in order to make them reat quiker in any re-ourrene ofthese attaks.The monitorization proess an our in several points of the network. For example,it ould onsist of proesses running on several PCs in a loal area network. Eahproess has a set of generated APCs that will �lter the network tra� aording to12



Figure 4: General arhiteture for the NIDS.spei� rules. These rules will be used to reate a vetor of sub-strings that should�lter in real time the tra� olleted from the network. The APC stores, for eahsub-string, the number of ourrenes thus found.For network tra� apture (�sni�ng�) we intend to use the netmate [25℄ tool. Thisis a �exible and extensible measurement tool written in Java. It has several modules forpaket aounting, delay/loss measurement, paket apturing and net�ow statistis.We have done several experiments olleting net�ows from a medium size network thaton�rmed the robustness and appropriateness of this tool, mainly its ability to lassifynetwork �ows and to be easily extended with more spei� net�ow harateristis, suhas the total pakets sent in eah diretion, amount of bytes transmitted and durationamong others. During apture, besides the net �ow statistis, it is possible to olletseveral di�erent kind of data from network tra� suh as bandwidth measures, paketdelay and the payload for eah paket.For our framework, in order to arry on the two training phases, we intend toollet tra� from normal ativity of the network, as well as the tra� generatedduring indued syntheti network attaks. The data thus olleted will allow us toprodue two very di�erent data-sets for further lassi�ation.To obtain the �rst preliminary results we intend to use the DARPA/MIT LinolnLaboratory o�-line intrusion detetion evaluation data set [23℄. This o�-line data setontains around 500000 network onnetions, between normal and 17 labeled attaks.The amount of harateristis (features) olleted by netmate, as well as by someother network monitoring tools, is very large and, in some ways, redundant. From13



another perspetive, not all the features are really important for intrusion dete-tion [21℄. It is possible to redue the feature set without loosing auray. This islargely substantiated by the large body of researh done on the use of data miningtehniques[22℄ and mahine learning [27, 26, 8, 9℄ approahes.A muh redued feature set an generally be obtained from the training data-set,suh that: (1) it maintains the auray for the lassi�ation proess and (2) it beomesomputationally possible, in real time, to proess the data olleted by netmate. Also,in terms of representation, the redued dimension of the feature set an bring goodbene�ts in the representation of the normal data-set in the shape-spae (Hamming orreal-value), as well as in the measuring of the distane between T-ells and the eventsobserved.We intend to explore mehanisms of feature set redution for a better shape-spaeoverage, starting by some aepted researh in the �eld [9, 27℄. The results desribedin [30℄, explains the modulation of TAT in an Hamming spae-spae. We intend tostudy the appliation of this model to our researh and explore the appropriatenessof TAT implemented with Hamming shape-spaes as a network intrusion detetionsystem. We also intend to measure the auray obtained with di�erent feature setsand what an be its impat in the overall system performane.The use of TAT in a NIDS ontext has the potential of bringing new insights tothe AIS researh. A working system will ertainly help to justify some immunologialbehaviors that are not yet well understood.5 Conlusions and future workWe have proposed a novel NIDS framework based on the TAT theory and presented aframework for its appliation in the ontext of network intrusion detetion. We havealso desribed NS and DT as the two main immunologial models applied to AIS-basedIDS so far, summarized its behaviour and emphasized their major drawbaks whenapplied to real large sale network intrusion detetion.The TAT theory sustains that the ativation of a T-ell (network detetor) isbased in a threshold that is �ne tuned aording to the reent history of Tell-APCinterations. This general idea gives interesting insights to the appliation of TAT topratial NIDS.In [20℄ it is argued that the researh in AIS-based IDS, and its experimental resultsso far, have shown that these systems are only able to work on relatively simple, smallproblems, in very seleted environments. The authors also emphasize the need toexplore new immunologial mehanisms that have not been previously studied andapplied for intrusion detetion. The theoretial study of TAT, the pratial resultsobtained with TAT in other ontexts [7℄ gives us good on�dene that this theory anbe applied with suess in the deployment of e�etive NIDS.Our ongoing researh will ontinue with the development and implementation ofthis arhiteture in order to obtain omprehensive results about the use of TAT inthe ontext of NIDS. The next steps will be to de�ne a methodology to over in amore optimal way the events shape-spae (Hamming or Real-value), to de�ne and test14
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