
Fast Discovery of Statistically

Interesting Words

Pedro Pereira, Nuno A. Fonseca, Fernando Silva

Technical Report Series: DCC-07-01

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Cîencias da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Fast Discovery of Statistically Interesting Words

Pedro Pereira1,2, Nuno A. Fonseca1,3, and Fernando Silva1,2

1 Artificial Intelligence and Computer Science Laboratory, Rua do Campo Alegre 1021/1055, 4169-007

Porto, Portugal
2 Department of Computer Science, Faculty of Science, Universidade do Porto, Rua do Campo Alegre

1021/1055, 4169-007 Porto, Portugal
3 Institute for Molecular and Cell Biology, Rua do Campo Alegre 823, 4150-180 Porto, Portugal

{pdr,nf,fds}@dcc.fc.up.pt

Abstract. In biological sequences, statistically interesting words can lead us to detect sub-

sequences that have a relevant functional significance (e.g. subsequences preserved through
evolution or copies of genes). In this paper, we present an efficient method for discovering

statist ically interesting words in bio logical sequences. It is based on suffix arrays and for a

sequence of size n it has a worst case time of O(n
2
) but it is faster in practice. It consumes

5n bytes of primary memory in practice but needs 9n bytes of secondary memory. The filter
to classify statistical interesting words is based on the measure for their overrepresentation in

the sequence or sets of sequences where they occur. We implemented the word discovery tool,

evaluated its performance and validated its usefulness by running it on large and real biological

sequences, and by checking if the words found were known motifs or patterns in the literature.

1 Introduction

In recent years, we have witnessed an exponential increase in the amount of biotech data, namely in
genomic [1] and proteomic [3] data. The volume of data has been doubling every three to six months
as a result of automation in biochemistry and projects of genome sequencing. Therefore, tools to
analyse biosequences should be fast and memory efficient in order to cope with the vast amounts of
data available.

Our research goal is to devise an efficient and automatic tool capable of detecting statistically
(overrepresented) interesting words in biosequences. This is important because statistically interesting
words in biosequences can lead us to detect subsequences preserved through evolution, copies of genes,
transposons, signals, etc. Since we are interested in DNA and aminoacid sequences, we consider a
word as being a sequence of symbols, with no spaces, punctuation characters or any other kind of
word separators.

In this paper we describe a fast and memory efficient tool that given a sequence or a set of
sequences reports all statistically interesting words that occur in the input. The problem of interesting
word discovery was divided into two phases: i) the identification of all interesting words; ii) and, the
filtering of statistically interesting words using a statistical filter. Several measures can be used to
classify a word as statistically interesting. We explored measures that are directly related to the over-
representation or under-representation of the words. The tool’s performance is evaluated in several
biotech data and some conclusions are drawn. The program and respective documentation is available
under the GNU Public License at http://www.ncc.up.pt/∼pdr/word-discovery/.

2 Identifying Interesting Words

A biological sequence can be seen computationally as a string. The problem addressed in this paper
can be stated as finding all statistical interesting words (substrings) in a string (biological sequence
or set of sequences). Note that a string containing O(n) characters can have up to O(n2) substrings
(repeated).

A substring x = x1x2 ·· · xn is interesting if any character z appended to it, does not create a
new substring y = x1x2 · · · xnz with the same frequency as x in the main string. For example, let the

string be abaababa. The substring ab is not interesting because aba occurs with the same frequency
and aba has ab as a prefix. This classification of interesting substrings has an important consequence:
there are only O(n) such substrings in a string and all substrings not considered interesting can be
inferred by the ones that are considered interesting [19].

Many problems involving strings can be solved using suffix trees [14]. We looked into them for
solving the problem of computing the frequencies of all substrings that occur in a string. In fact, after
constructing the suffix tree, the problem is directly solved by performing a depth-first traversal on
the tree. This works because the suffixes sharing a prefix have the same prefix-path on the tree. The
real advantage of suffix trees lies in the fact that can be constructed in linear time and space. In spite
of this characteristic, they are not very practical due to their high memory consumption, which can
be as much as 20 bytes per input character [9]. Furthermore, suffix trees have the extra problem of
being relatively difficult to construct [9, 14].

2.1 Suffix Arrays

Since we are interested in analyzing DNA or aminoacid sequences with tens of millions base pairs, in
general, we cannot perform all computations in main memory. Despite being possible to construct a
suffix tree in secondary memory, it would take a prohibitive amount of time. This is due to the awful
cache characteristics of the currently known construction algorithms [9]. There is, however, a better
alternative for this problem: suffix arrays.

A suffix array [11] is a simple data structure that provides efficient look-up of any substring of
a text and identification of repeated substrings. It is more compact than a suffix tree and can be
easily stored in secondary memory. A suffix array is a sorted list of the suffixes of a given string. The
sorted list is represented as an array of integers, or SA, that identify the suffixes in lexicographic
order. An often useful auxiliary data structure is the LCP array, an array containing the length of the
longest common prefix between each substring and its predecessor in the suffix array. Since the LCP
array is vital for many of the algorithms presented, we will, from now on, interpret “suffix array” as
“suffix array with the LCP array”. Theoretically, the space requirements of suffix arrays for a string
of length n are O(n log n) bits because O(n) integers with log n bits capacity are needed. In practice,
we limited n to 232 − 1, or 4 gigabytes, meaning that each integer has exactly 4 bytes. Therefore, a
string with length n needs 9n bytes in the worst case; n for the string; 4n for the sorted array and
4n for the longest common prefix array. This is less than half of the space needed for suffix trees [9]
in the worst case.

2.2 Suffix Sorting

Sorting efficiently all suffixes in a string is not easy. The obvious solution involving a comparison
sort, such as merge-sort or quick-sort, is O(n2 log n) in the worst case. With radix sort the worst-case
complexity is lowered to O(n2), however that is still too high for large sequences. In [11], the authors
propose an algorithm that is O(n log n), and more recently (year 2003) some linear time algorithms
[8, 7, 4] have been described. These algorithms can only be applicable if the alphabet size is constant
(as is the case of biosequences).

After some practical experiments4 we observed that the trivial solution using a comparison sort,
was too slow (as predicted), but has an optimal memory usage - 5n bytes; the linear time algorithm
from Kärkkäinen and Sanders [4] was quite slow in practice and used too much memory - 18n bytes;
and the Divsufsort [15] was fast in practice (the worst-case time complexity is O(n log n)) and had a
reduced memory usage - 5n bytes.

We only evaluated the suffix sorting algorithms that had a sample implementation available [8,
7]. Msufsort [12] was also evaluated but it used 9n bytes of memory and was not substantially faster
than Divsufsort.

4 We executed each algorithm three times and averaged the runtime and memory required for sorting the

suffixes of Saccharomyces cerevisiae and Drosophila melanogaster (sequences obtained from the release 38

of the Ensembl project).

Memory usage is critical since all the evaluated algorithms operate solely in primary memory. In
a 32-bit architecture the process size is usually restricted to less than 231 bytes of space. This means
that if the algorithm uses 5n bytes of memory, up to 409 megabytes of input can be processed. If
18n bytes are used instead, only inputs up to 113 megabytes can be processed. Therefore, based on
the experiments and considering the memory restrictions we selected Divsufsort for the suffix sorting
step.

2.3 Longest Common Prefix

Many algorithms for suffix sorting compute the longest common prefix (LCP) as an intermediate
step (e.g. [11]). However, it was decided to separate the two computations into two different steps.
We modified the worst-case linear time LCP construction algorithm given in [6]. It was not used
out-of-the-box mainly because of its memory requirements. Besides the optimal 9n bytes of space,
it requires an extra 4n bytes of memory for the Rank array. In [13] the LCP computation is made
using the optimal 9n bytes of memory. The accesses made to the arrays are, however, random and
not cache-efficient.

1: for i := 0 to n − 1 do

2: Rank[Sort[i]] := i

3: end for

4: h := 0
5: for i := 0 to n − 1 do

6: if Rank[i] > 0 then

7: j := Sort[Rank[i] − 1]

8 : while (i+ h < n) and (j + h < n) and (T [i +
h] = T [j + h]) do

9: h := h + 1

10: end while

11: Height[Rank[i]] := h
12: if h > 0 then

13: h := h − 1

14: end if

15: end if

16: end for

1: for i := 0 to n− 1 do

2: Height[Sort[i]] := i

3: end for

4: h := 0
5: for i := 0 to n− 1 do

6: if Height[i] > 0 then

7: j := Sort[Height[i] − 1]

8: while (i+ h < n) and (j + h < n) and (T [i+
h] = T [j + h]) do

9: h := h + 1

10: end while

11: Height[i] := h
12: if h > 0 then

13: h := h− 1

14: end if

15: end if

16: end for

Algorithm1. Original GetHeight. Algorithm2. Modified GetHeight.

It is possible to use 9n bytes of memory for computing the inverse LCP, reducing to 5n bytes the
space needed to be addressed in a random way. The remaining 4n bytes are used sequentially. The
idea is to reuse the Height array to compute Height[Rank[i]] instead of Height[i] for every i. Although
the need to make an extra access to Sort when LCP[i] seems a terrible disadvantage, every access
to element Height[i] is coupled with an access to Sort[i]. The algorithm that use the LCP uses its
indexes sequentially, so the extra access to Sort is not a problem.

The modified algorithm can be seen in Algorithm 2. The changes are small: Height[i] is rewritten
when it is no longer needed; LCP[i] can be accessed by Height[Sort[i]] because LCP[Rank[i]] =
Height[i] and LCP[i] = Height[Sort[i]].

2.4 Substrings and Associated Frequencies

It turns out that computing all interesting substrings contained in a string of length n can be done
using only the LCP array and an extra 4n bytes of memory in O(n) time in the worst case.

The problem of listing all the interesting substrings and their associated frequencies using the
LCP array is equivalent to list all the maximal areas in a histogram. All areas can be described as
an interval and a height.

Scanning the LCP array left-to-right, being at position i, if LCP[i+1] is smaller than LCP[i] then
we know that some maximal areas have the right interval value i . If we report the areas right-to-left,

then their heights and their left interval values will be decreasing, because they all have the same
right interval i. The idea is to have a stack which holds the incomplete sub-problems. We process
the LCP array left-to-right. If the next LCP value is greater or equal than the current LCP value
(LCP[i + 1] ≥ LCP[i]), then the next value (which is LCP[i + 1]) is pushed onto the stack. If it is
smaller, then the stack is popped until the value on top of the stack is smaller or equal than the next
LCP value (while top() < LCP[i+ 1]) do pop() end while). The areas are reported when the stack
is being popped and the next value on the stack is smaller than the value just popped.

Using the Height array, as computed from Algorithm 1; making the adjustments needed for the
characteristics of LCP array instead of a histogram; and using the indexes of the LCP array instead
of the actual values, the algorithm described can be seen in Algorithm 3. This algorithm computes
all interesting substrings and their respective frequencies.

1: push(0)

2: for i := 0 to n − 1 do

3: ReportWord(i,i, Height[i])

4 : while Height[top()] > Height[i+ 1] do

5: j := top()

6: if Height[top()] < Height[j] then

7: ReportWord(top(), i,Height[j])

8 : end if

9: end while

10: push(i+ 1)

11: end for

1: push(0)

2: for i := 0 to n− 1 do

3: ReportWord(i, i,Height[i])

4: while Height[top()] > Height[i + 1] do

5: j := top()

6: ReportWord(top(), i, Height[j])

7: end while

8: j := top()
9: if Height[j] < Height[i + 1] then

10: push(j)

11: end if

12: push(i+ 1)
13: end for

Algorithm3. Original GetInteresting. Algorithm 4. Improved GetInteresting.

It is possible to further improve Algorithm 3 by disallowing duplicates on the stack. This helps
controlling the stack size, which we want to be as low as possible, since the Height array is a memory
hog. Such modification is shown in Algorithm 4. We discovered Algorithm 4 independently, before
finding out that a very similar algorithm was already described in [5]. A similar algorithm, but using
more stack space, is also presented in [19].

Several Sequences After being able to compute all the interesting words and respective frequencies
for a single sequence, we proceeded to process more than one sequence at a time, computing the global
interesting substrings and their frequencies. Assuming that there is a character that cannot appear in
any sequence, for example the LF, line delimiter in Unix systems, the sequences can be concatenated
forming a single sequence separated by LF. This separator is denoted as $. The introduction of
the separator is important, because simply concatenating the sequences would not give us the vital
information about the sequence endings.

Since a substring containing the separator spans through several sequences, the interesting sub-
strings cannot have the separator. The easiest way to omit such substrings is to change the while

condition of Algorithm 2 to:

while (i + h < n) and (j + h < n) and (A[i +h] 6= $)
and (A[j + h] 6= $) and (T [i + h] = T [j + h]) do.

Sequence Frequency When dealing with sets of sequences more statistics for each substring can
be computed, being the number of sequences where the substring occurs an important one. The
algorithm for computing the number of sequences where the substring occurs is described in [19].
This algorithm can be improved using the ideas present in Algorithm 3. The improvement achieves
4k less space, being k the stack size. This statistic is computed in O(n log n) time and O(n) space.

3 Statistical Filter

After finding all interesting words, a statistical filter is applied to them. A word is considered
statistically interesting if it is overrepresented in the sequence or in the set of sequences where it
occurs. To measure the over-representation, the expected number of occurrences and the standard
deviation of this value is computed. Equivalently, we need to know how the values are distributed.

3.1 Statistical Distribution

We assume that the random variables are independent and identically distributed. Under these
assumptions, it follows a binomial distribution. We consider every character position, that can be
a possible place for the word occurrence, as a Bernoulli trial. For example, if we have the sequence
ACGATCAGTACA and the word we are computing the statistics for, has length 5, there are exactly 8
places where the word can occur. Generalizing, having a sequence and word of length Sn and Wn

respectively, there are Sn − Wn + 1 places where the word can appear if Sn ≥ Wn or zero otherwise.
The binomial distribution gives the discrete probability b(k; n, p) of obtaining exactly k successes

(matches) out of n Bernoulli trials (word positions). Each Bernoulli trial is true with probability p
and false with probability q = 1 − p. For large values of n and small values of p, typically larger
than 1000 and smaller than 0.1, respectively, the binomial distribution can be approximated by the
Poisson distribution with λ = np, which has the probability mass function:

p(k; λ) = e−λ λk

k!
. (1)

Equivalently p(k;λ) ≈ b(k; n, λ/n) when n is sufficiently large and p sufficiently small [2]. It is
advantageous to use the approximation, since the Poisson cumulative distribution function is less
computationally expensive.

3.2 Word Frequency in a Set of Sequences

The number of Bernoulli trials for a word can be easily computed for a single sequence with all
characters composing the sequence belonging to the alphabet. For example, in DNA sequences, the
N is a placeholder and does not belong to the DNA alphabet. The characters that do not belong to
the alphabet, are not considered in the computation of the Bernoulli trials (word positions) because
they are not used for computing the probability of the alphabet symbols.

The idea is to build a table with an entry of each different run length that appear in the input.
A run is a block of consecutive alphabet symbols surrounded by non-alphabet symbols, begin-of-
file or end-of-file. For example, AxAAxAAA has three runs with lengths of 1, 2 and 3. For each entry
(indexed by run length), we have the run length frequency and two more entries. See Table 1 for an
example. The entry “Accumulated” is the accumulated frequency computed bottom up; the “Sum”
is an accumulated “Accumulated” times “Length” also bottom up.

Length Frequency Accumulated Sum

1 4 9 19

2 2 5 15
3 1 3 11

4 2 2 8

Table 1. Runs table for ACTGxAxATxA$xTTTxGx$GAxAxTGCA.

A sequence of size n cannot have a corresponding table with more than O(
√

n) entries. This is
achieved because the table has a number of entries corresponding to the number of runs with different
lengths presented in the input. If we imagine that the input has runs with length 1, 2, .. . , 2

√
n, with

each run of different length appearing only once, we can see that 2n +
√

n characters of the input are
covered. Therefore, in the worst case the table has O(

√
n) size which is when each run length only

appears once in the input and every single run length up to 2
√

n is present.

Being k the length of the word we are considering, if we have n runs with lengths L1L2 · · ·Ln,
Li ≥ k for 1 ≤ i ≤ n, the number of Bernoulli trials is

(L1 − k+ 1) + (L2 − k + 1) + . . . + (Ln − k + 1)

simplifying yields
n(−k+ 1) + (L1 + L2 + . . . + Ln) = Ak(−k +1) + Sk

where Ak is the “Accumulated”, Fk the “Frequency” and Sk the “Sum”. It is possible that an entry
for k does not exist in the table. In this case, the formula is Ai(−k + 1) + Si, where i is the largest
tabulated value smaller than k. This result is important because we can use a binary search for
searching the runs table. The binary search on the table has complexity O(log t), where t is the
number of table entries.

To check if, an interesting word, as computed in the previous section, might have any statistically
interesting substring, we only need to test if the whole word is statistically interesting, as such word
is the largest, or the representative of the class. This works because we know that

p(w1w2 . . . wkwk+1) = p(w1)p(w2) . .. p(wk)p(wk+1)

and because 0 ≤ p(wk+1) ≤ 1 (it is a probability)

p(w1)p(w2). . . p(wk) ≥ p(w1)p(w2) . . . p(wk)p(wk+1).

If the table has entries for both k and k + 1, then, one can prove that

Nk = Nk+1 + Ak+1 + Fk. (2)

We can conclude that Nk ≥ Nk+1, because by definition, for every k, both Ak and Fk are non
negative. It can be shown that (CDF is the Poisson cumulative distribution function)

CDF(x, Nkpwk
) ≤ CDF(x, Nk+1pwk+1

)

1− CDF(x, Nkpwk
) ≥ 1 − CDF(x, Nk+1pwk+1

).

In fact, we can generalize the result for all possible k. We can extend the table to all values of k
without associated runs in the sequences setting the Fk to zero. Therefore, testing the bigger word
is sufficient to determine if the word is statistically interesting because if any substring of a word is
statistically interesting, the word is also statistically interesting.

A word is considered statistically interesting if the probability of occurring at least the numbers of
times than it did occur is smaller than a user specified threshold. Note that we only verify if the word
appears much more than the statistically expected value. If we wanted the opposite, or to classify
a word as being interesting, because it appeared less than the number of expected occurrences, we
would have to test more than one substring per word.

3.3 Interesting Number of Occurrences in Sequences

A word can also be considered interesting because it occurs in large number of sequences, despite
not being interesting when considering the number of global occurrences. It is rather easy to see the
following:

Pr(“occurring in sequence i”) = 1− qn (3)

where the n is the number of Bernoulli trials that there are in a certain sequence and with a certain
word length. The problem with this approach is that each sequence potentially allows a different
number of Bernoulli trials for the same word size. Furthermore, we would end up with too many
probabilities - one for each sequence. A short-cut was taken due to efficiency reasons; compute the
global n and then divide it by the number of sequences. This is possible assuming that the sequences
length are approximately the same.

The equation is then seen as (m is the number of sequences and Nk is the number of Bernoulli
trials in the whole input for a word of length k):

Pr(“occurring in sequence i”) = 1 −qNk/m. (4)

We then look at eachsequence as a Bernoulli trial with a success probability equal to Pr(“occurring in sequence i”).
The statistics we need to compute can be modeled by a Binomial distribution. The number of
sequences is typically low; as low as 10, for example. This means that the Binomial cannot be approx-
imated by the Poisson distribution, which is acceptable, since the Binomial cumulative distribution
function is reasonably fast to compute for small numbers.

With this statistic, we compute, for each word, two values: the probability of occurring in more
sequences than it did, and occurring in less sequences than it did. A word is considered statistically
interesting if any of these two values is smaller than a threshold.

4 Implementation

We implemented the word discovery tool using the C language, because we needed to perform a
substantial low-level interfacing with the kernel, namely using memory mapped files and having an
extreme control on memory allocation. For the suffix sorting, we use the Divsufsort [15] implementa-
tion. We also use the R [17] library for computing the Poisson’s and Binomial’s cumulative distribution
functions. This library is linked to the C code. Since R allows the computation of the log(probability),
we used this metric instead of probability where it makes sense (ie, where the values are too low).

In spite of being possible to process sets of sequences up to 409 megabytes in 32-bit machines, not
having 2 gigabytes of memory will slow down dramatically the computation. So, in practice, the limit
for n is less than k/5 bytes, where k is min(m, 231− 1) and m is the memory available in the system.
All values are in bytes. Additionally, 8n bytes of external memory are also required, but these days
this is not really a hard restriction. For instance, 32-bit systems with 2 GB of memory are capable
of handling inputs up to 400 MB, 64-bit systems with 4 GB of memory can handle inputs up to 800
MB.

5 Experiments and Results

We validated the word discovery tool with genomic data and checked if the words found were known
motifs and patterns in the literature. We have also performed some benchmarks for measuring the
program’s performance. The sequences used in the benchmarks are indicated in Table 2 and were
obtained from the release 38 of the Ensembl project. The computer used in the experiments had a
“Dual core AMD Opteron Processor 250”, with 4 gigabytes of RAM but only 600 megabytes free.

5.1 Validation

Human Gene for Proinsulin One of the chosen sequences was the human gene for proinsulin
from chromosome 11 [16] with 4992 base-pairs. Using our word discovery program on this sequence,
it produced:

A [Z=388.6] [N=15] [L=26] (1/1) GGGGACAGGGGTGTGGGGACAGGGGT

as the best ranked word. A indicates that the word was considered statistically interesting because
it occurs more times than expected; Z is the score of the word; N is the number of occurrences; L is
the word length, and finally 1/1 indicates that the word occurs in one sequence on a total of one
sequence. The word found is a super-word of a previously reported pattern ACAGGGGTGTGGGG [10].

Saccharomyces cerevisiae We searched for statistically interesting words within the Saccharomyces
cerevisiae genome, also known as baker’s yeast for the properties: − log(pvalue) ≥ 2500, having at
least 250 base pairs, occurring more than seven times, and appearing in at least six chromosomes.

Sequence Length Average Standard deviation

Saccharomyces cerevisiae whole genome 12156606 102.435 0.052

Anopheles gambiae chromosome 2R 61545105 330.896 2.269

Drosophila melanogaster whole genome 144141726 12141.928 966.574
Table 2. Organisms used for evaluation and runtimes in seconds.

The most significantly interesting word found occurs nine times in six of the seventeen chromo-
somes and has a length of 853 base pairs. The word was them feed to BLAST5 which returned the
significant (p(N) < e−6) results. The extremely low p(N) indicate that the hits were not expected to
occur by pure chance. All the hits were reported to occur in zones marked as retrotransposons.

5.2 Scalability

To evaluate the scalability behaviour of the the word discovery program we considered 3 sequences
with increased sizeand searchedon each sequence for all statistically interesting words with − log(pvalue)
greater or equal to 128. Each organism sequence were processed three times, and the average times
and standard deviation were recorded.

The values collected are presented in Table 2. The great discrepancy between the first two
sequences and the last can be explained by the fact that the last sequence needed 685 megabytes of
primary memory. However, only 600 megabytes of memory were available. This lead to the use of
swap memory during execution, thus explaining the high average and high standard deviation times.
Looking at Table 2 we know that the word discovery program discovers all words of all sizes for a
sequence size with over 137 megabytes in 3 hours and 30 minutes. With these results, we believe that
the program has feasible runtimes.

6 Related Work

The Teresias [18] is a program developed at the IBM Bioinformatics and Pattern Discovery group. It
is based on well-organized exhaustive search based on combinations of shorter patterns. The Teiresias
algorithm guarantees that all maximal [18] words are reported. The algorithm needs to receive as
input the minimum number of literals that a pattern can contain, L. Another required parameter is
W that indicates the maximum distance between any consecutive L literals. In the worst case the
algorithm is O(n3 log n), but it is reported to work very well when the inputs are highly regular and
the parameters W and L are small. Teiresias has a more powerful language since it admits don’t
care characters and classes of equivalency (for example, in the aminoacid alphabet one can group the
symbols according the chemical nature or structural character).

Teiresias also discovers exact words with a statistical filter that relies “on Bayes theorem in
conjunction with a 2nd order Markov chain” [18].

Beside the worst-case – O(n3 log n) vs. O(n2), a critical difference is the availability of the
programs. While our program is freely available with the full source code under the Gnu Public
License, Teiresias is available as a binary and only on a reduced set of architectures.

7 Conclusion

We designed, implemented, and validated a tool for discovering statistically interesting words in
biosequences. It supports a flexible alphabet that can be composed by any ASCII subset.

The tool finds the words by performing four steps: i) suffix sorting in O(n log n) time using 5n
bytes of primary memory and secondary memory; ii) computing the longest common prefix array
in O(n) time using 5n bytes of primary memory but 9n bytes of secondary memory; iii) calculating
the interesting words and their frequency in O(n log n) time using 4n + 12k (k ≤ n is the maximum

5
Located at http://www.yeastgenome.org/.

stack size, in practice k ≈ c log n) bytes of primary memory and 8n bytes of secondary memory; iv)
filtering the interesting words using a statistical filter in O(n2) time in the worst case (assuming that
computing the cumulative distribution function for the binomial and Poisson distributions is O(1)
time and space) but fast in practice using 5n bytes of primary memory and 9n bytes of secondary
memory.

Therefore in practice, all steps are performed with a maximum memory consumption of 5n bytes
of primary memory.

Acknowledgements The work presented in this paper has been supported by funds granted to LIACC

through the Programa Operacional “Ciência, Tecnologia, Inovacão” (POCTI) e do Programa Operacional

Sociedade da Informacão (POSI) do Quadro Comunit́ario de Apoio III (2000-2006). Pedro Pereira is funded

by FCT grant SFRH/BD/30628/2006 and Nuno Fonseca by FCT grant SFRH/BPD/26737/2006.

References

1. Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and David L. Wheeler.

Genbank. Nucleic Acids Research , 33:235–242, 2005.
2. Willian Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, third

edition, 1968.

3. H.M.Berman, J.Westbrook, Z.Feng, G.Gilliland, T.N.Bhat, H.Weissig, I.N.Shindyalov, and P.E.Bourne.

The protein data bank. Nucleic Acids Research, pages 235–242, 2000.
4. Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In Proceedings 13th

International Conference on Automata, Languages and Programming. Springer-Verlag, 2003.

5. Toru Kasai, Hiroki Arimura, and Setsuo Arikawa. Efficient substring traversal with suffix arrays.

6. Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In CPM ’01: Proceedings of the 12th Annual

Symposium on Combinatorial Pattern Matching, pages 181–192. Springer-Verlag, 2001.

7. Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction of suffix

arrays. In CPM ’03: Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching,
pages 186–199. Springer-Verlag, 2003.

8. Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In CPM ’03:

Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching, pages 200–210, London,

UK, 2003. Springer-Verlag.
9. Stefan Kurtz. Reducing the space requirement of suffix trees. Software - Practice and Experience,

29(13):1149–1171, 1999.

10. Amy Lew, William J. Rutter, and Giulia C. Kennedy. Unusual dna structure of the diabetes susceptibility

locus iddm2 and its effect on transcription by the insulin promoter factor pur-1/maz. Proceedings of the
National Academy of Sciences of the United States of America , 97(23):12508–12512, November 2000.

11. Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM Jornal on

Computing, 22(5):935–948, 1993.
12. Michael Maniscalco. Msufsort. http://www.michael-maniscalco.com/msufsort.htm.

13. Giovanni Manzini. Two space saving tricks for linear time lcp array computation. In SWAT, pages

372–383, 2004.

14. Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):262–272,
1976.

15. Yuta Mori. Divsufsort. http://homepage3.nifty.com/wpage/software/libdivsufsort.html.

16. Rotwein P., Yokoyama S., Didier D. K., and Chirgwin J. M. Genetic analysis of the hypervariable region

flanking the human insulin gene. The American Journal of Human Genetics, 1986.
17. R Development Core Team. R: A language and environment for statistical computing. R Foundation for

Statist ical Computing, Vienna, Austria, 2005.

18. Isidore Rigoutsos and Aris Floratos. Combinatoria l pattern discovery in biological sequences: The teiresias

algorithm. Bioinformatics, 14(1):55–67, 1998.
19. Mikio Yamamoto and Kenneth W. Church. Using suffix arrays to compute term frequency and document

frequency for all substrings in a corpus. Computational Linguistics, 27(1):1–30, 2001.

