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Abstract

The representation of combinatorial objects is decisive for the feasibility of sev-
eral enumerative tasks. In this work, we present a (unique) string representation for
(complete) initially-connected deterministic automata (ICDFA’s) with n states over an
alphabet of k symbols. For these strings we give a regular expression and show how they
are adequate for exact and random generation, allow an alternative way for enumeration
and lead to an upper bound for the number of ICDFA’s. The exact generation algorithm
can be used to partition the set of ICDFA’s in order to parallelize the counting of
minimal automata (and thus of regular languages). A uniform random generator for
ICDFA’s is presented that uses a table of pre-calculated values. Based on the same table,
an optimal coding for ICDFA’s is obtained. We also establish an explicit relationship
between our method and the one used by Nicaud et al..

Keywords finite automata, initially connected deterministic finite automata, exact enu-
meration, random generation, minimal automata

1 Introduction

The enumeration of languages based on their model representations is useful for several
language characterisations, as well as for random generation and average case analysis.
Adequate representations are also a main issue in symbolic manipulation environments. In
this paper, we present a canonical form for initially connected deterministic finite automata
(ICDFA’s) with n states over an alphabet of k symbols and show how it can be used for
counting, exact enumeration, sampling and optimal coding, not only the set of ICDFA’s
but, to some extent, the set of regular languages. This canonical form was first used in the
FAdo project [MR05a, fad] to test if two minimal DFA’s are isomorphic. However a precise
characterisation of this representation as regular languages of [0, n− 1]⋆ allows an exact and
ordered generator of ICDFA’s and leads to an alternative way to enumerate them.

The enumeration of different kinds of finite automata was considered by several authors
since late 1950s. For more complete surveys we refer the reader to Domaratzki et al.[DKS02]
and to Domaratzi [Dom06]. Harary and Palmer [HP67, HP73] enumerate isomorphic
automata with output functions as certain ordered pairs of functions. Harrison [Har65]

∗This report extends the work represented in [AMR06, RMA05a, RMA05b]
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considered the enumeration of non-isomorphic DFA’s (and connected DFA’s) up to per-
mutation of alphabetic symbols. With the same criteria, Narushima [Nar77] enumerated
minimal DFA’s. Liskovets [Lis69] and Robinson [Rob85] counted strongly connected DFA’s
and also non-isomorphic ICDFA’s. The work of Korshunov, surveyed in [Kor78], enumerates
minimal automata and gives estimates of ICDFA’s without an initial state.

More recently, several authors examined related problems. Domaratzki et al. [DKS02]
studied the (exact and asymptotic) enumeration of distinct languages accepted by finite
automata with n states. Liskovets [Lis06] and Domaratzki [Dom04] gave (exact and asymp-
totic) enumerations of acyclic DFA’s and of finite languages. Nicaud [Nic00], Champarnaud
and Paranthoën [CP05] presented a method for randomly generating complete ICDFA’s.
Bassino and Nicaud [BN] showed that the number of complete ICDFA’s is Θ(n2nS(kn, n)),
where S(kn, n) is a Stirling number of the second kind.

In this paper we obtain a new formula for the number of non-isomorphic complete
ICDFA’s and we precisely relate our methods to those used by Nicaud et al. in the
cited works. The exact generation algorithm developed can be used to partition the set
of ICDFA’s in order to parallelize the process of counting minimal automata, and thus
counting regular languages. We also designed a uniform random generator for ICDFA’s that
uses a table of pre-calculated values (as usual in combinatorial decomposition approaches).
Based on the same table it is also possible to obtain an optimal coding for ICDFA’s.

The work reported it this paper was already partially presented [RMA05b, AMR06] and
is organised as follows. In the next section, some definitions and notation are introduced.
Section 3 presents and characterizes canonical strings for non-isomorphic ICDFA∅’s. Sec-
tion 4 gives an upper bound and a new formula for ICDFA∅’s enumeration, and relates our
methods to some others in the literature. Section 5 briefly describes the implementation of
a generator and Section 6 the methods for parallelizing the counting of regular languages.
Using a table of pre-calculated values, in Section 7 is designed a uniform random generator
and in Section 8 an optimal coding for ICDFA∅’s. In Section 9 the results of previous
sections are extended to incomplete ICDFA∅’s. Section 10 concludes and addresses some
future work.

2 Preliminaries

Given two integers, m and n, let [m,n] be the set {i ∈ Z | m ≤ i ∧ i ≤ n}.
A deterministic finite automaton (DFA) A is a tuple (Q,Σ, δ, q0, F ) where Q is a finite

set of states, Σ the alphabet, i.e., a non-empty finite set of symbols, δ : Q × Σ → Q is the
transition function, q0 the initial state and F ⊆ Q the set of final states. Let the size of A
be |Q|. If otherwise stated, we assume that the transition function is total, so we consider
complete DFA’s. As we are not interested in the labels of the states, we can represent them
by an integer i ∈ [0, |Q| − 1].

A DFA is initially-connected1 (ICDFA) if for each state q ∈ Q there exists a sequence
(q′i)i∈[0,j] of states and a sequence (σi)i∈[0,j−1] of symbols, for some j < |Q|, such that
δ(q′m, σm) = q′m+1, q′0 = q0 and q′j = q. The structure of an automaton (Q,Σ, δ, q0) denotes
a DFA without its final state information and is referred to as a DFA∅. Each structure, if
|Q| = n, will be shared by 2n DFA’s. We denote by ICDFA∅ the structure of an ICDFA.

Two DFA’s (Q,Σ, δ, q0, F ) and (Q′,Σ′, δ′, q′0, F
′) are called isomorphic (by states) if |Σ| =

|Σ′| = k, there exist bijections Π1 : Σ → [0, k − 1], Π2 : Σ′ → [0, k − 1] and a bijection

1Also called accessible.
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ι : Q → Q′ such that ι(q0) = q′0, for all σ ∈ Σ and q ∈ Q, ι(δ(q, σ)) = δ′(ι(q),Π−1
2 (Π1(σ))),

and ι(F ) = F ′.

The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F} with δ extended to
Σ⋆. Two DFA’s are equivalent if they accept the same language. Obviously, two isomorphic
automata are equivalent, but two non-isomorphic automata may also be equivalent. A DFA

A is minimal if there is no DFA A′, with fewer states, equivalent to A. Trivially, if a
DFA is minimal then it must be an ICDFA. Minimal DFA’s are unique up to isomorphism.
Domaratzki et al. [DKS02] give some asymptotic estimates and explicit computations of the
number of distinct languages accepted by finite automata with n states over an alphabet
of k symbols. Given n and k, they denote by fk(n) the number of pairwise non-isomorphic
minimal DFA’s and by gk(n) the number of distinct languages accepted by DFA’s, where

gk(n) =

n
∑

i=1

fk(i). (1)

3 String representation for ICDFA’s

The method used to represent a DFA has a significant role in the amount of computer work
needed to manipulate that information, and can give an important insight about this set of
objects, both in its characterisation and enumeration.

Let us disregard the set of final states of a DFA. A naive representation of a DFA∅ can
be obtained by the enumeration of its states and for each state a list of its transitions for
each symbol. For the DFA∅ in Fig.1 we have:

[[A (a : A, b : B)], [B (a : A, b : E)], [C (a : B, b : E)],

[D (a : D, b : C)], [E (a : A, b : E)]]. (2)

Given a complete DFA∅ (Q,Σ, δ, q0) with |Q| = n and |Σ| = k and considering a total order

A B

D

C

E

a
b

a

b

a

b

a

b

b

a

Figure 1: A DFA with no final states marked

over Σ, the representation can be simplified by omitting the alphabetic symbols. For our
example, we would have

[[A (A,B)], [B (A,E)], [C (B,E)], [D (D,C)], [E (A,E)]]. (3)

The labels chosen for the states have a standard order (in the example, the alphabetic
order). We can simplify the representation a bit if we use that order to identify the states,
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b
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a
c

b
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Figure 2: An ICDFA∅ for which the string representation is [1, 2, 0, 2, 3, 0, 3, 0, 2, 1, 3, 2]

and because we are representing complete DFA∅’s we can drop the inner tuples as well. We
obtain

[0, 1, 0, 4, 1, 4, 3, 2, 0, 4]. (4)

To obtain a canonical representation, given an order over the alphabet awe can consider an
induced order in the states and transitions. A canonical order over the set of the states
can be defined by exploring the automaton in a breadth-first way choosing at each node the
outgoing edges in the order considered for Σ. The procedure is the following: let the first
state 0 be the initial state q0 of the automaton, the second state the first one to be referred
to (excepting q0) by a transition from q0, the third state the next referred in transitions from
one of the first two states, and so on... For the DFA∅ in Figure 1, this method induces an
unique order for the first three states (A,B,E), but then we can arbitrate an order for the
remaining states (C,D). Two different representations are thus admissible:

[0, 1, 0, 2, 0, 2, 3, 4, 1, 2] and [0, 1, 0, 2, 0, 2, 1, 2, 4, 3]. (5)

If we restrict this representation to ICDFA∅’s, then this representation is unique and defines
an order over the set of its states. In the example, the DFA∅ restricted to the set of states
{A,B,E} is represented by [0, 1, 0, 2, 0, 2].

For the ICDFA∅ represented in Figure 2, consider the alphabetic order in {a, b, c}. The
states ordering is A,C,B,D and [1, 2, 0, 2, 3, 0, 3, 0, 2, 1, 3, 2] is its string representation.

Formally, let Σ be an alphabet with |Σ| = k, and Π : Σ → [0, k − 1] a bijection. Given
an ICDFA∅ (Q,Σ, δ, q0) with |Q| = n, let ϕ : Q → [0, n − 1] be defined by the following
algorithm:

de f i n e ϕ(q0 ) = 0
i = 0
s = 0
do

for σ ∈ Σ (according to the order induced by Π) :
i f δ(ϕ−1(s), σ) /∈ ϕ−1([0, i]) then

de f i n e ϕ(δ(ϕ−1(s), σ)) = i + 1
i = i + 1

s = s + 1
while s < i

Lemma 1 The function ϕ is bijective.

Proof That ϕ is injective is trivial, because whenever, in the definition above, a new
extension to ϕ is defined a different value is assigned. Let us prove that ϕ is surjective.
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Let q ∈ Q. As (Q,Σ, δ, q0) is an ICDFA∅ there exist sequences (q′i)i∈[0,i] and (σi)i∈[0,j−1]

with j < n such that δ(q′m, σm) = q′m+1, for m ∈ [0, j − 1], q′0 = q0 and q′j = q. We have

ϕ(q′0) = 0. For m ∈ [0, j − 1], if q′m ∈ ϕ−1([0, n − 1]) then q′m+1 ∈ ϕ−1([0, n − 1]). Then
ϕ−1([0, n − 1]) = Q, and thus ϕ is a bijection.

We have the following with trivial proof:

Lemma 2 The function ϕ defines an isomorphism between (Q,Σ, δ, q0) and ([0, n−1],Σ, δ′, 0)
with δ′(i, σ) = ϕ(δ(ϕ−1(i), σ)). Moreover the canonical string that represents this automa-
ton, as described before, is: (si)i∈[0,kn−1] with si ∈ [0, n−1] and si = δ′(⌊i/k⌋,Π−1(i mod k)),
for i ∈ [0, kn − 1].

Lemma 3 Let (si)i∈[0,kn−1] be the canonical string of a complete ICDFA∅ A = (Q,Σ, δ, q0)
with |Q| = n and |Σ| = k, then:

(∃j ∈ [0, n − 1]) sj = n − 1, (R0)

(∀m ∈ [2, n − 1])(∀i ∈ [0, kn − 1])(si = m ⇒ (∃j ∈ [0, i − 1]) sj = m − 1), (R1)

(∀m ∈ [1, n − 1])(∃j ∈ [0, km − 1]) sj = m. (R2)

Proof As R0 is a consequence of R2, we will omit it whenever R2 is enforced. Rule R1
establishes that a state label (greater than 0) can only occur after some occurrence of its
predecessors. This is a direct consequence of ϕ definition where the extensions to ϕ are
defined in ascending order.

Suppose that R2 does not verify, thus exists a state r ∈ Q, that for m = ϕ(r), m that
does not occur in the first km symbols of the string (the m first state descriptions). But
m /∈ {si | i ∈ [0,mk − 1]} = {δ′(i, σ) | i ∈ [0,m − 1], σ ∈ Σ} means that m is not accessible
from state 0 in ([0, n − 1],Σ, δ′, 0), and this automaton is isomorphic to A (by ϕ). This
contradicts the fact that A is initially connected. Thus R2 is verified.

Lemma 4 Every string (si)i∈[0,kn−1] with si ∈ [0, n − 1] satisfying R1 and R2 represents a
complete ICDFA∅ with n states over an alphabet of k symbols.

Proof Let S = {si | i ∈ [0, kn − 1]}. Because of R2, (n − 1) ∈ S, and using R1, we
have S = [0, n − 1]. Thus let us consider the automaton ([0, n − 1], [0, k − 1], δ, 0) where
δ(r, σ) = skr+σ. Trivially this defines a DFA∅, so it only remains to show that it is initially
connected. Let m be a state of the automaton. Because of R2 there must exist j < mk
such that sj = m. This means that δ(⌊j/k⌋, j mod k) = m. If j = 0 then we can stop, if
not we can repeat the process, the number of times necessary (not more than m) to get to
the initial state and thus prove that m is accessible from the initial state.

From these lemmas (Lemma 1–4), follows immediately that:

Theorem 1 There is a one-to-one mapping between (si)i∈[0,kn−1] with si ∈ [0, n − 1] satis-
fying rules R1 and R2, and the non-isomorphic ICDFA∅’s with n states, over an alphabet
of size k.

This canonical representation can be extended to incomplete ICDFA∅’s (IICDFA∅), by
representing all missing transitions with the value −1. In this case, rules R1 and R2 remain
valid, and we can assume that the transitions from this state (normally called dead-state)
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are into itself. It is also easy to verify that the representation is unique for non-isomorphic
IICDFA∅’s.

For each canonical string representing an ICDFA∅, if we add a sequence of final states,
we obtain a canonical form for ICDFA’s. The same applies to IICDFA∅, with the proviso
that the dead-state cannot be final.

4 Enumeration of ICDFA’s

In order to have an algorithm for the enumeration and generation of ICDFA∅’s, instead
of rules R1 and R2 an alternative set of rules were used. For n = 1 there is only one
(non-isomorphic) ICDFA∅ for each k ≥ 1, so we assume in the following that n > 1. In
a canonical string of an ICDFA∅, let (fj)j∈[1,n−1] be the sequence of indexes of the first
occurrence of each state label j. For explanation purposes, we call those indexes flags.

It is easy to see that (R0,R1) and (R2) correspond, respectively, to (G1) and (G2):

(∀j ∈ [2, n − 1])(fj > fj−1), (G1)

(∀m ∈ [1, n − 1]) (fm < km). (G2)

This means that f1 ∈ [0, k − 1], and fj−1 < fj < kj for j ∈ [2, n − 1]. We begin by
counting the number of sequences of flags allowed.

Theorem 2 Given k and n, the number of sequences (fj)j∈[1,n−1], Fk,n, is given by

Fk,n =

k−1
∑

f1=0

2k−1
∑

f2=f1+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1

1 =

(

kn

n

)

1

(k − 1)n + 1
= C(k)

n ,

where C
(k)
n are the (generalised) Fuss-Catalan numbers.

Proof The first equality follows from the definition of the (fj)j∈[1,n−1]. For the second, note

that C
(k)
n enumerates k-ary trees with n internal nodes, T k

n (see for instance [SF96]). In
particular, for k = 2, C2

n are exactly the Catalan numbers that count binary trees with n
internal nodes. This sequence appears in Sloane OEIS [Slo03] as A00108 and for k = 3 and
k = 4 as sequences A001764 and A002293, respectively. So it suffices to give a bijection
between these trees and the sequences of flags. Recall that a k-ary tree is an external node
or an internal node attached to an ordered sequence of k, k-ary sub-trees.

Let T k
n be a k-ary tree and let < be a total order over Σ. For each internal node i

of T k
n its outgoing edges can be ordered left-to-right and attached a unique symbol of Σ

according to <. Considering a breadth-first, left-to-right, traversal of the tree and ignoring
the root node (that is considered the 0-th internal node), we can represent T k

n , uniquely, by
a bitmap where a 0 represents an external node and a 1 represents an internal node. As the
number of external nodes are (k − 1)n + 1, the length of the bitmap is kn. Moreover the
j + 1-th block of k bits corresponds to the children of the j-th internal node visited, for j ∈
[0, n−1]. For example, the bitmaps of the trees in Figure 3 are [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] and
[0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], respectively. The positions of the 1’s in the bitmaps correspond
to a sequence of flags, (fi)i∈[1,n−1], i.e., fi corresponds to the number of nodes visited before
the i-th internal node (excluding the root node). It is obvious that (fi)i∈[1,n−1] verifies G1.
For G2, note that for the each internal node the outdegree of the previous internal nodes
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[2,5,8] [1,2,4]

Figure 3: Two 3-ary trees with 4 internal nodes and the correspondent sequence of flags.

is k. Conversely, given a sequence of flags (fj)j∈[1,n−1], we construct the bitmap such that
bfi

=1 for i ∈ [1, n − 1] and bj = 0 for the remaining values, for j ∈ [0, kn − 1]. As above, for
the representation of the j + 1-th internal node, ⌊fj/k⌋ gives the parent and fj mod k gives
its position between its siblings (in breadth-first, left-to-right traversal).

To generate all the ICDFA∅’s, for each allowed sequence of flags (fj)j∈[1,n−1], all the remain-
ing symbols, si, can be generated according to the following rules:

i < f1 ⇒ si = 0, (G3)

(∀j ∈ [1, n − 2])(fj < i < fj+1 ⇒ si ∈ [0, j]), (G4)

i > fn−1 ⇒ si ∈ [0, n − 1]. (G5)

Before we give a formula for the number of these strings, we recall that Liskovets [Lis69]
and, independently, Robinson [Rob85] gave for the number of non-isomorphic complete

ICDFA∅’s, Bk,n, the formula Bk,n =
bk,n

(n−1)! where bk,1 = 1 and for n > 1 bk,n = nkn −
∑

1≤j<n

(

n−1
j−1

)

nk(n−j)bk,j. The total number of transition functions is nkn and from that
they subtract the number of those that have n− 1, n− 2,. . . ,1 states not accessible from the
initial state. Then, they divide by (n−1)!, as the names of the states (except the initial) are
irrelevant. On the other hand, the formula (14) we will derive is a direct positive summation.

First, let us consider the set of strings (si)i∈[0,kn−1] with si ∈ [0, n − 1] and satisfying
only G1 (i.e. R0 and R1). The number of these strings gives an upper bound for Bk,n. We
know that the last k symbols of any string can be chosen from [0, n − 1], so there always nk

choices. For the others they belong to the language An ∩ [0, n − 1]kn−k, where for c > 0,

Ac = L(0⋆

c−1
∏

j=1

j(0 + · · · + j)⋆). (6)

For each m, the words of length m of these languages are related with partitions of [1,m]
into c ≥ 1 parts (see Moreira and Reis [MR05b]), and so they can be enumerated by Stirling
numbers of the second kind, S(m, c) [SF96]. In this case, we have |An ∩ [0, n − 1]kn−k| =
S(k(n − 1) + 1, n).

Theorem 3 For all n, k ≥ 1, Bk,n ≤ S(k(n − 1) + 1, n)nk ≤ nS(kn, n).
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Proof The second inequality follows from the recursive definition of Stirling numbers of the
second kind and the following propriety, S(n − i,m) ≤ 1

ni S(n,m), for i ∈ [0, n − m].

Our bound is slightly more tight than the one given by Bassino and Nicaud [BN], that is
exactly the right member of the second inequality.

Now in order to simultaneously satisfy R1 and R2, we must consider the sequences of
flags. Given a sequence of flags (fj)j∈[1,n−1] and considering fn = kn, the correspondent set
of canonical strings can be represented by the regular expression:



0f1

n−1
∏

j=1

j(0 + . . . + j)fj+1−fj−1



 ,

which is a direct consequence of G1–G5.

Considering the set of sequences of flags (see Theorem 2) the set of canonical strings can
be represented by the regular expression:

k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1



0f1

n−1
∏

j=1

j(0 + . . . + j)fj+1−fj−1



 .

For n = 3 and k = 2 we have

(01 + 1(0 + 1))((0 + 1)2 + 2(0 + 1 + 2))(0 + 1 + 2)2 + 12(0 + 1 + 2)4,

and the number of these strings is (1 + 2)((2 + 3)32) + 34 = 216.

From the above, we have that for each sequence of flags (fj)j∈[1,n] the number of canonical
strings is

n
∏

j=1

jfj−fj−1−1, (7)

Theorem 4 The number of canonical strings (si)i∈[0,kn−1] representing ICDFA∅’s with n
states over an alphabet of k symbols is given by

Bk,n =

k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1

n
∏

j=1

jfj−fj−1−1, (8)

where fn = kn and f0 = −1.

In Section 8 we give another recursive definition for Bk,n more adequate for tabulation.

Corollary 1 The number of non-isomorphic ICDFA’s with n states over an alphabet of k
symbols is 2nBk,n.

4.1 Enumeration of incomplete ICDFA∅’s

Theorem 4 can be easily extended to obtain a formula for incomplete ICDFA∅’s, i.e.,
IICDFA∅’s. We assume that the number of states of an IICDFA∅ does not count the
dead-state.
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Theorem 5 The number of canonical strings (si)i∈[0,kn−1] and −1 ≤ si ≤ n−1 representing
incomplete IICDFA∅ with n states over an alphabet of k symbols is given by

B1
k,n =

k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1

(

n
∏

j=1

(j + 1)fj−fj−1−1), (9)

where f0 = −1 and fn = kn .

Corollary 2 The number of non-isomorphic IICDFA’s with n states over an alphabet of k
symbols is 2nB1

k,n.

4.2 Analysis of the Nicaud et al. Method

Champarnaud and Paranthoën [CP05], generalising work of Nicaud [Nic00] for k = 2,
presented a method to generate and enumerate ICDFA∅’s, although not giving an explicit
and compact representation for them, as the string representation used here. The same
method is used by Bassino and Nicaud [BN]. An order < over Σ⋆ is a prefix order if
(∀x ∈ Σ⋆)(∀σ ∈ Σ)x < xσ. Let A be an ICDFA∅ over Σ with k symbols and n states. Given
a prefix order in Σ⋆, each automaton state is ordered according to the first word x ∈ Σ⋆ that
reaches it in a simple path from the initial state. The sets of this words P are in bijection
with k-ary trees with n internal nodes, and therefore to the set of sequences of flags, in our
representation2. Then it is possible to obtain a valid ICDFA∅ by adding other transitions
in a way that preserves the previous state labelling. For the generation of the sets P it is
used another set of objects that are in bijection with k-ary trees with n internal nodes and
are called generalized tuples. It is defined as

Rk,n = {(x1, . . . , xs) ∈ [1, n]s | ∀i ∈ [2, s], (xi ≥ ⌈ i
k−1⌉ ∧ xi ≥ xi−1)}

with s = (k − 1)n.
However we can establish a direct bijection between this set and the set of sequences

of flags. Let X = (x1, . . . , xs) be a generalised tuple. From it, we can build the sequence
(1p1 , 2p2 , . . . , npn), where pj = |{xi ∈ [1, n] | i ∈ [1, s] and xi = j}| for j ∈ [1, n]. Then we
have that f1 = p1, fi = pi + fi−1 + 1, for i ∈ [2, n − 1] and fn = pn + fn−1 + 2. It is obvious
that (fi)i∈[1,n−1] satisfies G1. To prove that it satisfies G2, note that

fi =
i−1
∑

j=1

pj + i − 1,

for i ∈ [1, n − 1]. We know that

i(k − 1) ≥
i−1
∑

j=1

pj + 1,

where xPi−1
j=1

pj+1 is the first occurrence of i in X. But then we have, fi < ki, as wanted. In

a similar way, we can transform a sequence of flags in a generalized tuple.
Nicaud et al. compute the number of ICDFA∅’s using recursive formulae associated with

generalised tuples, akin the ones we present in Section 7. The upper bound refered above is
obtained, disregarding the first condition in the definition of the generalized tuples.

2Indeed our order over the set of states induces a prefix order in Σ⋆, namely a graded lexicographic order.
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5 Generating ICDFA∅’s

In this section, we present a method to generate all ICDFA∅’s, given k and n. We start
with an initial string, and then consecutively iterate over all allowed strings until the last
one is reached. The main procedure is the one that given a string returns the next legal
one. For each k and n, the first ICDFA∅ is represented by the string 0k−110k−1 . . . (n− 1)0k

and the last is represented by 12 . . . (n− 1)(n − 1)(k−1)n+1. According to the rules G1- G5,
we first generate a sequence of flags, and then, for each one, the set of strings representing
the ICDFA∅’s in lexicographic order. The initial sequence of flags is (ki − 1)i∈[1,n−1]. The
algorithm to generate the next sequence of flags is the following:

def nextflags(i) :
i f i==1 then fi = fi − 1
else

i f (fi−1 == fi−1 ) then
fi = k ∗ i − 1
nextflags(i − 1)

else fi = fi − 1

To generate a new sequence, we must call nextflags(n-1). Given the rules G1 and G2
the correctness of the algorithm is easily proved. When a new sequence of flags is generated,
the first ICDFA∅ is represented by a string with 0s in all positions different from the flags
(i.e., the lower bounds in rules G3–G5). The following strings, with the same sequence of
flags, are computed lexicographically using the procedure nexticdfa, called with a = n − 1
and b = k − 1:

def nexticdfa(a, b) :
i = a ∗ k + b
i f a < n − 1 then

while i ∈ (fj)j∈[1,n−1] :
b = b − 1
i = i − 1

fj = the nea r e s t f l a g not exceed ing i
i f si == sfj

then
si = 0
i f b == 0 then nexticdfa(a − 1, k − 1)
else nexticdfa(a, b − 1)

else si = si + 1

The generator can then be implemented by the following procedure:

def generator() :
i f islast((si)i∈[0,kn−1]) then

return None
i f isfull((si)i∈[0,kn−1]) then

nextflags(n − 1)
reset()

nexticdfa(n − 1, k − 1)
return (si)i∈[0,kn−1]

12



k : n ICDFA∅ Time

h m s

2:2 12 0.000

3:2 56 0.000

2:3 216 0.000

4:2 240 0.000

5:2 992 0.000

6:2 4032 0.000

2:4 5248 0.000

3:3 7965 0.000

7:2 16256 0.000

8:2 65280 0.000

2:5 160675 0.008

4:3 243000 0.013

9:2 261632 0.021

10:2 1047552 0.065

3:4 2128064 0.100

2:6 5931540 0.304

5:3 6903873 0.384

6:3 190505196 9.881

2:7 256182290 13.879

4:4 642959360 31.766

3:5 914929500 43.400

7:3 5192233245 7 9.193

2:8 12665445248 12 48.542

8:3 140764942800 3 21 34.260

5:4 175483321344 3 39 49.899

3:6 576689214816 11 49 32.790

2:9 705068085303 12 10 51.000

Table 1: Times for the generation of all ICDFA∅’s for small values of k and n, ordered by
magnitude.

where islast() tests if the current string represents the last automaton; isfull() tests if
the current string is the last automaton for a given sequence of flags,namely sl = j for
l ∈ [fj + 1, fj+1 − 1], with j ∈ [1, n − 1] and i ∈ [0, kn − 1]; and reset() computes the first
automaton for a new sequence of flags (with 0s in every position different from the flags).

The time complexity of the generator is linear in the number of automata. As an example,
for k = 2 and n = 9 it took about 12 hours to generate all the 705068085303 ICDFA∅’s,
using a AMD Athlon at 2.5GHz. In Table 1 we present the time for the generation of all
ICDFA∅’s for some svalues of k and n.

Finally, for the generation of ICDFA’s we only need to add to the string representation
of an ICDFA∅, a string of n 0’s and 1’s, correspondent to one of the 2n possible choices of
final states.

13



6 Counting Regular Languages (in Slices)

To obtain the number of languages accepted by DFA’s with n states over an alphabet of k
symbols, we can generate all ICDFA’s, determine which of them are minimal (fk(n)) and
calculate the value of gk(n), by Equation (1). However, even for small values of n and k the
total number of ICDFA’s can be considerable. As an example, for n = 3 and k = 2 there
are 1728 ICDFA’s that we can generate and minimize in less than a second using an AMD
Athlon 64 3800+. But if we take n = 7 and k = 2, the same Athlon 64 3800+ would require
about 344 hours to generate and minimize all the 32791333120 ICDFA’s. For even greater
values of n or k this is an intractable problem.

We must have an efficient implementation of a minimization algorithm, not because of
the size of each automaton but because the number of automata we need to cope with.
For that we implemented Hopcroft’s minimization algorithm [Hop71], using efficient set
representations. For very small values of n and k (n + k < 16) we represented sets as
bitmaps and for set partitions AVL trees [avl] were used [AR06].

6.1 Make it parallel

If we manage to partition the search space in a safe way, we can parallelize the problem and
execute several instances of the minimization algorithm simultaneously. Because our method
generates ICDFA∅ in an ordered way, we can very easily consider intervals of arbitrary size
from any family of ICDFA∅’s with n states over an alphabet of k symbols. We call these
intervals slices. They are independent and can be simultaneously given to the minimization
algorithm. A slice is represented by a tuple (A1, F,A2) where A1 is the first ICDFA∅, F
is the sequence of flags of A1 and A2 is the last ICDFA∅. Based on this procedure, the
following method can be used to enumerate all the regular languages recognized by a given
family of ICDFA∅’s taking advantage of an environment with m CPUs available:

Let S be an array of s <= m slices, each corresponding to size ICDFA∅’s
while i < s

spawn minimize slice(S[i])
i = i + 1

The spawn minimize slice() procedure starts a new process, on an available CPU. For
each one of the size ICDFA∅’s, and for each possible set of final states, this process will
test the minimality of the ICDFA. Because there are m simultaneous processes, the actual
time needed to enumerate the regular languages is roughly t/m, where t is the time that
would be required if a single CPU were enumerating the same family of ICDFA’s. For
the generation of ICDFA’s, we used the observation by Domaratzki et al. [DKS02], that
is enough to test 2n−1 sets of final states, using the fact that a DFA is minimal iff its
complementary automaton is minimal too.

Note that this approach relies in the assumption that we have a much more efficient way
to partition the search space than to actually perform the search (in this case a minimization
algorithm).
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6.2 Creating the slices

The task of creating the slices, can be achieved as follows. Given an initial automaton, A1,
and an integer, size, the nexticdfa() procedure can be called size times or until the final
automaton is reached. The algorithm returns the automaton A2 and, if exists, the next one.
The next, if exists, is memorised and will be used as the first automaton (A1) for the next
slice.

However using the bijections described in Section 8, a much efficient method can be used.
Given a canonical string for an ICDFA∅ of size n over an alphabet of k symbols, we can
compute its number in the generation order and vice-versa, i.e., given a number less than
Bk,n, we can obtain the corresponding ICDFA∅. So, instead of generating all the ICDFA∅’s
so that then we can save the strings that represent slices, each slice can be given by an tuple
of integers and only for those numbers is necessary to obtain the correspondent ICDFA∅.

For n = 3 and k = 2, for example, taking slices of 100 ICDFA∅’s we get the following
sequence:

{(0, 99), (100, 199), (200, 215)}
Now, instead of generating 216 ICDFA∅’s, we can compute the string representation of

only 6. The sequence of flags is also obtained from this conversion.

6.3 Experimental results

For this experiment we used two approaches. We developed a simple slave management
system – called Hydra — based on Python threads, that was composed by a server and a
variable set of slaves. In this case, the slaves can be any computer3. For each slice a process
was executed via ssh, and the result was returned to the server. Another approach was to
use a computer grid, in particular 24 AMD Opteron 250 2.4GHz (dual core).

In Table 2, we summarise some experimental results. Most of the values for k = 2 and
k = 3, were already given by Domaratzki et al. in [DKS02] and the new results are in bold
in the table. For k = 2, n = 8 we have divided the universe of ICDFA∅’s in 254 slices and
the estimated CPU time for each one to be processed is 11 days.

Moreover, the slicing process can give new insights about the distribution of minimal
automata. Figure 4 presents two examples of the values obtained for the rate of minimal
DFA’s. For n = 7 and k = 2 we give the percentage of minimal automata for each of the 257
slices we had used to divide the search space (32791333120 ICDFA∅’s). Each slice had about
100000 ICDFA∅’s, and so 128000000 ICDFA’s, and it took about 78 minutes to conclude
the process. The whole set of automata was processed in 12 hours of real time of a CPU
grid, that corresponds to 344 hours of CPU time.

7 Uniform Random Generation

The canonical strings for ICDFA∅’s (Section 3) permit an easy random generation of ICDFA∅s,
and thus of ICDFAs. To randomly generate an ICDFA for a given n and k, it is only
necessary to: (i) randomly generate a valid sequence of flags (fi)i∈[1,n−1] according to G1
and G2; (ii) followed by the random generation of the rest of the nk elements of the string
following G3–G5 rules; (iii) and finally the random generation of the set of final states.
The uniformity issue for steps (ii) and (iii) is quite straightforward. For step (iii) it is just

3We used all the normal desktop computers of our colleagues in the CS Department.
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n ICDFA∅ ICDFA Minimal (fk(n)) Minimal % Time (s)

k = 2 1 1 2 2 100% 0
2 12 48 24 50% 0
3 216 1728 1028 59% 0.018
4 5248 83968 56014 66% 0.99
5 160675 5141600 3705306 72% 79.12
6 5931540 379618560 286717796 75% 8700
7 256182290 32791333120 25493886852 77% 1237313

k = 3 1 1 2 2 100% 0
2 56 224 112 50% 0.002
3 7965 63720 41928 65% 0.7
4 2128064 34049024 26617614 78% 494.72
5 914929500 29277744000 25184560134 86% 652703

k = 4 1 1 2 2 100% 0
2 240 960 480 50% 0.01
3 243000 1944000 1352732 69% 23.5
4 642959360 10287349760 7756763336 75% 184808

k = 5 1 1 2 2 100% 0
2 992 3968 1984 50% 0.041
3 6903873 55230984 36818904 66% 756.2

Table 2: Performance and number of minimal automata.

necessary to use a uniform random integer generator for a value i ∈ [0, 2n]. It is enough,
for step (ii) the repeated use of the same number generator for values in the range [0, i] for
0 ≤ i < n according to G3–G5. Step (i) is the only step that needs special care. Consider
the case n = 5 and k = 2. Because of R1 flag f1 can only be on positions 0 or 1. But
there are 140450 ICDFA∅’s with f1 in the first case and only 20225 in the second. Thus
the random generation of flags, to be uniform, must take this into account by making the
first case more probable than the second. We can generate a random ICDFA∅ generating its
representing string from left to right. Supposing that flag fm−1 is already placed at position
i and all the symbols to its left are generated, i.e., the prefix s0s1 · · · si is already defined,
then the process can be described by:

r = random(1,
mk−1
∑

j=i+1

Nm,j)

for j = i + 1 to mk − 1 :

i f r ∈
[

j−1
∑

l=i

Nm,l,
j

∑

l=i

Nm,l

]

then return i

where random(a,b) is an uniform random generated integer between a and b, and Nm,j is the
number of ICDFA∅s with prefix s0s1 · · · si with the first occurrence of symbol m in position
j, making Nm,i = 0 to simplify the expressions. The values for Nm,j could be obtained from
expressions similar to Equation (14), and used in a program. But the program would have
a exponential time complexity. By expressing Nm,j in a recursive form, we have, given k
and n:
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Figure 4: Rate of minimal DFA’s with (k = 3,n = 5) for 915 slices and with (k = 2,n = 7)
for 257 slices.

Nn−1,j = nnk−1−j with j ∈ [n − 2, (n − 1)k − 1],

Nm,j =
(m+1)k−j−2

∑

i=0
(m + 1)iNm+1,j+i+1 with m ∈ [1, n − 2],

j ∈ [m − 1,mk − 1].

(10)

The second equation, can have an even simpler form:

Nm,mk−1 =
k−1
∑

i=0
(m + 1)iNm+1,mk+i with m ∈ [1, n − 2],

Nm,i = (m + 1)Nm,i+1 + Nm+1,i+1 with m ∈ [1, n − 2],
i ∈ [m − 1,mk − 2].

(11)

This evidences the fact that we keep repeating the same computations with very small
variations, and thus, if we use some kind of tabulation of this values (Nm,j), with the obvious
price of memory space, we can create a version of a uniform random generator, that apart of
a constant overhead used for tabulation of the function refered, has a complexity of O(n3k).

The algorithm is described by the following:

g = −1
for i = 1 to n − 1 :

f = generateflag(i, g + 1)
for j = g + 1 to f − 1 :

print random(0, i − 1)
print i
g = f

def generateflag(m, l) :

r = random (0 ,
mk−1
∑

i=l

mi−lNm,i )

for i = l to mk − 1 :

i f r < mi−lNm,i

then return i

else r = r − mi−lNm,i
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This means that using a C implementation with libgmp the times reported in Table 3
were observed. It is possible, without unreasonable amounts of RAM to generate random

k = 2 k = 3 k = 5 k = 10 k = 15
n = 10 0.10s 0.16s 0.29s 0.61s 1.30s
n = 20 0.31s 0.49s 1.26s 4.90s 12.24s
n = 30 0.54s 1.37s 3.19s 19.91s 62.12
n = 50 1.61s 3.86s 17.58s 2.22m 947.71s
n = 75 3.96s 12.98s 76.69s 700.20s 2459.34s
n = 100 7.92s 36.33s 215.32s 2219.04s 8091.30s

Table 3: Times for the random generation of 10000 automata (AMD Athlon 64 at 2.5GHz)

automata for unusually large values of n and k. For example, with n = 1000 and k = 2
the memory necessary is less than 450MB. The amount of memory used is so large not only
because of the amount of tabulated values, but because the size of the values is enormous.
To understand that, it is enough to note that the total number of ICDFA∅’s for these values
of n and k is greater than 103350, and the values tabulated are only bounded by this number.

7.1 Statistical test of the random generator

Although the method used to generate random automata is, by its own construction, uniform,
we used χ2 test to evaluate the random generation quality. The universe of ICDFA∅’s with
6 states and 2 symbols has a total size of 5931540. This size is large enough for a test with
some significance and it is still reasonable, both in time and space, to perform the test.
We generated three different sets of 3000000 ICDFA∅’s and perform the test in each one.
Because of the size of the data, we could not find any tabulated values for acceptance, and
thus the following formula was used with v = 30000000 − 1 and xp being the significance
level (1% in this case):

v + 2
√

vxp +
3

4
x2

p −
2

3
.

The size of the data sets and the repetition of the test for three times, is the recommended
procedure by Knuth ([Knu81], pages 35–39). For the three experiments the values obtained
were, respectively, 5933268.92456, 5925676.75108 and 5935733.28172, that are all smaller
than the acceptance limit, that for this case was 5938980.75468.

8 Optimal coding of ICDFA∅’s

Given a canonical string for an ICDFA∅ of size n over an alphabet of k symbols, we can
compute its number in the generation order (as described in Section 5) and vice-versa, i.e.,
given a number less than Bk,n, we can obtain the corresponding ICDFA∅. This provides
an optimal encoding for ICDFA∅’s, as defined by M. Lothaire [Lot05]. This bijection is
accomplished by using the tables defined in Section 7 that correspond to partial sums of
Equation (14). By expanding Nm,j using Equations (10), we have:

Theorem 6 Bk,n =
k−1
∑

l=0

N1,l.
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8.1 From ICDFA∅’s to Integers

Let (si)i∈[0,kn−1] be the canonical string of an ICDFA∅, and let (fj)j∈[1,n−1] be the corre-
sponding sequence of flags. From the sequence of flags we obtain the following number,

nf =

n−1
∑

j=1

j−1
∏

m=1

(mfm+1−fm−1)

jk−1
∑

l=fj+1

(jl−fjNj,l), (12)

which is the number of the first ICDFA∅ with flags (fj)j∈[1,n−1]. For each j ∈ [1, n − 1],

the product
j−1
∏

m=1
(mfm+1−fm−1) corresponds to the number of strings s′0s

′
1 . . . s′fj−1 that have

flags f1, . . . fj−1. The parameter l ranges over the possible values of flag j before fj and the
factor jl−fjNi,l counts the number of the correspondent strings (s′fj+1 . . . s′kn−1).

Then, we must add the information provided by the rest of the elements of the string
(si)i∈[0,kn−1]:

nr =
n−1
∑

j=1





fj+1−1
∑

l=fj+1

sl(j + 1)fj+1−1−l





n−1
∏

m=j+1

(m + 1)fm+1−fm−1







 . (13)

The number of the canonical string (si)i∈[0,kn−1] is ns = nf + nr.

8.2 From Integers to ICDFA∅’s

Given an integer 0 ≤ m < Bk,n a canonical string for an ICDFA∅ can be obtained using
a inverse method. The flags (fj)j∈[1,n−1] are generated from right-to-left, by successive
subtractions. The rest of the string (si)i∈[0,kn−1] is generate considering the remainders of
integer divisions. The algorithms are the following, where f0 = 0:

// obta inn ing the f l a g s
s = 1
for i = 1 to n − 1 :

j = i ∗ k − 1

p = ij−fi−1−1

while j >= i − 1 and m ≥ p ∗ s ∗ Ni,j :
m = m − Ni,j ∗ p ∗ s
j = j − 1
p = p/i

s = s ∗ ij−fi−1−1

fi = j
// the r e s t
i = k ∗ n − 1
j = n − 1
while m > 0 and j > 0 :

while m > 0 and i > fj :
si = m mod (j + 1)
m = m ÷ (j + 1)
i = i − 1

i = i − 1
j = j − 1
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9 Randon generation and optimal coding for IICDFA∅’s

The recursive formulas Ni,j can be extended to deal with incomplete ICDFA∅’s:

N1
n−1,j = (n + 1)nk−1−j with j ∈ [n − 2, (n − 1)k − 1],

N1
m,mk−1 =

k−1
∑

i=0
(m + 2)iN1

m+1,mk+i with m ∈ [1, n − 2],

N1
m,i = (m + 2)N1

m,i+1 + N1
m+1,i+1 with m ∈ [1, n − 2],

i ∈ [m − 1,mk − 2].

And, we have:

Theorem 7

B1
k,n =

k−1
∑

l=0

2l ∗ N1
1,l. (14)

For k=2, B1
2,n is sequence A107668 in Sloane OEIS [Slo03].

9.1 Uniform Random Generation

The algorithm for a uniform random generator can be trivially modified for the generation
of IICDFA∅’s. Letting the parameter t be 0 for the generation of ICDFA∅’s (and N be
remaned as N0) and 1 for IICDFA∅’s, we have the following general algorithm:

g = −1
for i = 1 to n − 1 :

f = generateflag(i, g + 1)
for j = g + 1 to f − 1 :

print random(0, i − 1)
print i
g = f

def generateflag(m, l, t) :

r = random (0 ,
mk−1
∑

i=l

(m + t)i−lN t
m,i )

for i = l to mk − 1 :

i f r < (m + t)i−lN t
m,i

then return i

else r = r − (m + t)i−lN t
m,i

9.2 Optimal coding for IICDFA∅’s

In the same way we can obtain formulae for the number of an IICDFA∅, and, reciprocally,
given an integer 0 ≤ m < B1

k,n, we can obtain a canonical string for an IICDFA∅. In the

conversion from IICDFA∅’s to integers, besides the use of N1
i,j we must add one to the base

of the powers (m and j in (12) and m + 1 and j + 1 in (13)).

The general code (for both ICDFA∅’s and IICDFA∅’s) is as follows:
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nf =
n−1
∑

j=1

j−1
∏

m=1

((m + t)fm+1−fm−1)

jk−1
∑

l=fj+1

((j + t)l−fjN t
j,l), (15)

nr =
n−1
∑

j=1





fj+1−1
∑

l=fj+1

sl(j + 1 + t)fj+1−1−l





n−1
∏

m=j+1

(m + 1 + t)fm+1−fm−1







 . (16)

Likewise, for the conversion from integers to IICDFA∅s, we must: take f0 = −1, add
one to the base of the powers in line 4 and line 9, and to the divisor in line 8 and line 16;
and line 15 becomes si = m mod (j + 2) − 1.

The general code (for both ICDFA∅’s (t = 0) and IICDFA∅’s, (t = 1)) is as follows:

// obta inn ing the f l a g s
s = 1
for i = 1 to n − 1 :

j = i ∗ k − 1

p = (i + t)j−fi−1−1

while j >= i − 1 and m ≥ p ∗ s ∗ Ni,j :
m = m − Ni,j ∗ p ∗ s
j = j − 1
p = p/(i + t)

s = s ∗ (i + t)j−fi−1−1

fi = j
// the r e s t
i = k ∗ n − 1
j = n − 1
while m > 0 and j > 0 :

while m > 0 and i > fj :
si = m mod (j + 1 + t)
m = m ÷ (j + 1 + t)
i = i − 1

i = i − 1
j = j − 1

10 Conclusion

The methods here presented were implemented and tested to obtain both exact and approx-
imate values for the density of minimal automata. A web interface to the random generator
can be found in the FAdo project web page [fad].

Champarnaud et al. in [CP05], checked a conjecture of Nicaud that for k = 2 the number
of minimal ICDFA’s is about 80% of the total, by sampling automata with 100 states (for
all possible number of final states). Our results also corroborate that conjecture, being the
exact values for some small values of n and samples for greater values. In particular, for
k = 2 and n = 100 we obtained the same results as Champarnaud et al.. It seems that for
k > 2 almost all ICDFA’s are minimal. For k = 3, 5 and n = 100 that was also checked
by Champarnaud et al.. For a confidence interval of 99% and significance level of 1% the
following table presents the percentages of minimal ICDFA’s for several values of k and n,
and each possible number of final states.
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k\n 5 6 7 8 9 10 20 40 80 160

3 85.8% 90.8% 93.3% 95.0% 96.1% 96.7% 98.7% 99.4% 99.7% 99.8%

5 93.0% 96.5% 98.2% 99.1% 99.5% 99.8% 100.0% 100.0% 100.0% 100.0%

7 93.7% 96.8% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% 100.0% –

9 93.7% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –

11 93.8% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –

13 93.7% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –

Of course, one challenge is try to understand why this happens. Bassino and Nicaud [BN]
presented a random generator of ICDFA’s based on Boltzmann Samplers, recently intro-
duced by Duchon et al. [DFLS04]. However the sampler is uniform for partitions of a set
with kn elements into n nonempty subsets and not for the universe of automata. These
partitions correspond to string representations that verify R1. By considering R2, we plan
to study the possibility to write Boltzmann Samplers for ICDFA’s.
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A Enumeration of ICDFA∅’s

In this appendix we present the number of ICDFA∅’s non-isomorphic without final states
for n = 1..9 states and k = 2..10 alphabetic symbols.

k= 2 n

1 1

2 12

3 216

4 5248

5 160675

6 5931540

7 256182290

8 12665445248

9 705068085303

k= 3 n

1 1

2 56

3 7965

4 2128064

5 914929500

6 576689214816

7 500750172337212

8 572879126392178688

9 835007874759393878655

k=4 n

1 1

2 240

3 243000

4 642959360

5 3508208993750

6 34253071111894176

7 544271118689873008532

8 13147735690099619023732736

9 458677874292647947600097994111

k=5 n

1 1

2 992

3 6903873

4 175483321344

5 11826519415721875

6 1744085190146957291232

7 494949686355427145872161111

8 246491144450280856073240885624832

9 200977948941552280610264305518977871090

k=6 n

1 1

2 4032

3 190505196

4 46086910722048

5 38056697263376203125

6 84121943186006445713224896

7 423117794749852189502006410905462

8 4310798840913881378315033530121291563008

9 81510780531114326278646228956855976801744959908

k= 7 n

1 1

2 16256

3 5192233245

4 11921614605697024

5 120315894541852283281250

6 3976063029034767886935933510912

7 353521348806151995743455800832981571314

8 73484638707005629827978811367001966356732051456

9 32134987099884609628834726023582411808822980002131697574

k=8 n

1 1

2 65280

3 140764942800

4 3065045074098257920

5 377746484367585519367187500

6 186463110898012043254861617993372672

7 292790327511533355186380818285419369165134504

8 1240517859367854140741786003068555614652944740664737792

9 12533845162122187320986901745839566315023480777415952875118142242
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k=9 n

1 1

2 261632

3 3807455329593

4 786050986901533097984

5 1182694443740139221396759765625

6 8717477417765526110669606920661061954048

7 241663209893166029311235709449296848489007150038885

8 20862781312540752296309668431262192459252081308963680368459776

9 4868562054782101154240008904969374335289040629362192719160637468384235331

k=10 n

1 1

2 1047552

3 102881965757076

4 201378988990926052917248

5 3698771376375809074323775654296875

6 407056620031409364982690175796310640877007872

7 199195425299637859859159104431333727959687905790340860554

8 350350773589537416604934471527510136835511671254200548676664702271488

9 1888096336032066333099268007451472025946469500517722087924581588200472709241234833
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