
Efficient representation of integer

sets

Marco Almeida Rogério Reis

Technical Report Series: DCC-2006-06

Version 1.0

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Efficient representation of integer sets

Marco Almeida Rogério Reis
{mfa,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract

We present a solution that uses bitmaps and bitwise operators to represent non-
negative integer sets and implement some common set theoretical operations. We also
show how it is possible to extend this representation to set partitions.

1 Introduction

Finite sets are a common and frequently used data structure. Several algorithms make heavy
use of these objects, and, in some cases, they are at the very core of the algorithm. This
makes it necessary to have a simple and efficient way to represent and manipulate these
objects. We present a solution that uses bitmaps and bitwise operators to represent non-
negative integer sets and implement some common set theoretical operations. We also show
how it is possible to extend this representation to set partitions. This representation was
used in an implementation of Hopcroft’s automata minimization algorithm as part of the
FAdo [fad] project. Some experimental results were presented in the DCFS 2006 [AMR06].

This report is organized as follows. In the next Section we describe some computational
advantages of our bitmap representation. In Section 3 we show how to use a bitmap to
represent a set and implement some basic set theoretical operations. In Section 4 we explain
how to complete the bitmap representation so that we can also deal with set partitions. In
Section 5 we present the implementation details of a set library based on this representation
and in Section 2 we describe some computational advantages. The complete API is given in
Appendix A.

2 Computational advantages

Boolean algebras can represent basic operations of both set theory and propositional logic.
Using bit sequences and propositional logic connectives, we can represent finite non-negative
integer sets and implement some basic set theoretical operations such as union, intersection
and difference.

In computational terms, there are two main advantages that come directly out of this
representation. First, the amount of memory needed by this data structure is very small.
Second, any general purpose modern CPU has very efficient implementations of bitwise
operations. These instructions require very few clock cycles to complete, even when compared
to the most elementary arithmetic instructions.

Bitmaps present significant advantages over equivalent simple set data structures such
as arrays or linked lists. These are compact data structures which allow to store n elements

2

in ⌈n/w⌉ memory words. Small bitmaps (those with a size that does not exceed the word
size) can be stored and manipulated in registers during the execution of several instructions
without the need to access memory. This allows to exploit bit-level parallelism, limit
the memory access and maximize the use of the data cache, making it possible to obtain
significant speed gains.

3 Sets with bitmaps

Using a bitmap with n bits we can represent a set of non-negative integers in the range
0, . . . , n − 1 in the following way. For each bit in the bitmap, if the bit’s value is 1, we
assume that the integer corresponding to the bit’s position in the bitmap is a member of the
set. The rest of the bits represent integers that do not belong to the set.

Let us consider the sets A = {2, 3, 5} and B = {0, 2, 4}. With bitmaps of size eight these
sets are written as 01110100 and 10101000, respectively. Bitwise operators can now be used
to implement some common set theoretical operations. The bitwise AND and OR, for example,
allow us to calculate the intersection and union, of two given sets, respectively. The unary
bitwise not operator can be used to obtain a set’s complement. Some examples are:

A ∩ B = {2}

00110100
AND 10101000

= 00100000

A ∪ B = {0, 2, 3, 4, 5}

00110100
OR 10101000

= 10111100

Ā = {0, 1, 4, 6, 7}

NOT 00110100
= 11001011

Other operations, such as set difference, can be implemented by combining these basic
bitwise operators.

4 Set Partitions with bitmaps

Formally, a partition of a given set A is a set {Ai}i∈I , where I is an index set, such that:

∀i ∈ I, ∅ 6= Ai ⊆ A

A = ∪i∈IAi

∀i, j ∈ I, i 6= j, Ai ∩ Aj = ∅

We call each Ai a block of the partition.

If we tried to apply the former ideas to the representation of partitions, some problems
would arise. In general, for any finite set S with |A| = n ≥ 0, P(A) = 2n. A bitmap for a
set partition of a set with n elements would have 2n bits. It would also be extremely sparse,
with only n bits actually used. A partition of a set with 32 bits would require a bitmap with
4294967296 bits. This is not a viable solution.

However, a partition P of a set S with n elements, can not have more than n blocks.
Since each block is a subset of S, it can not hold any more than n elements. If we use
bitmaps to represent each of the blocks in P , we will be needing, at most, n bitmaps with n
bits each, in a total of n2 bits. This is a considerably smaller bitmap, and, for the same set
of 32 elements of the previous example, only 1024 bits are required. In more practical terms,
we are representing a partition not as a set of sets, but as an array of sets. This way, the

3

space needed to represent a partition grows quadratic and not exponential. The following
example illustrates this approach.

Let us consider the set S = {0, 2, 3, 4} and a partition P = {{0}, {2, 3}, {4}}. The bitmap
10111, with five bits, is enough to represent S. The naive approach we first described uses
a bitmap B, with 25 bits, to represent P ,

B = 10011000000000000000000000000000.

Of the whole thirty two bits, only the first, the fourth and the fifth are active. Instead,
if we use the proposed alternative, we need only five bitmaps with five bits each, which will
require a total of twenty five bits.

B0 = 10000

B1 = 00110

B2 = 00001

B3 = 00000

B4 = 00000

Each one of these bitmaps Bi represents a block of the partition P and can be written
as an array.

A = [0000, 00110, 00001, 00000, 00000]

This representation allows us to avoid dealing with a huge, sparse, bitmap while making
use of all the advantages of the integer set representation we described earlier.

5 Implementation

When efficiency is a concern, representing set partitions with bitmap arrays is a solution
that actually solves some problems in a simple and elegant way. There are, however, some
set theoretical operations that require special attention. Finding out if some set S is a block
of a given partition P , for example, is no longer a matter of performing a simple bitwise AND

between P and S — except, of course, if S has the same size as P , but this would imply a
waste of space that we wish to avoid.

In a more general way, operations that need to search the partition (such as block removal
or existence testing) can be quite expensive in computational terms. We propose a solution
based on AVL trees. These are binary search trees on which the lookup, insertion and
deletion operations take O(log n) time.

5.1 AVL trees

An AVL tree (or height-balanced tree) [Knu98] is a self-balancing binary search tree. The
balance factor of a node is the difference between the height of its subtrees. An AVL tree
is considered balanced if every node has a balance factor of, at most, one. A node with any
other balance factor is considered unbalanced and requires re-balancing the tree.

In a balanced AVL tree, searching, inserting and removing nodes are operations that
require O(log n) time (where n is the number of nodes in the tree) on both the average and
the worst case. Clearly, the insertion or removal of nodes may force the tree to be rebalanced.
In a general way, this is a very efficient data structure that actually outperforms red-black
trees or splay trees in search intensive applications [Pfa04].

4

a) b)

Figure 1: a) example of an unbalanced tree; b) the same tree after re-balancing (now an
AVL)

5.2 Bitmap arrays with AVL trees

In Section 4 we proposed a representation of set partitions based on bitmap arrays. It is
quite easy to have a total order over the elements of such an array. From the definition of
set partition, we know that the intersection of any two blocks must result in the empty set
and that every block contains at least one element. This allows us to order the blocks, for
example, by comparing the first element of each block. Since we are using sets of non-negative
integers, the usual ≤ relation can be used.

Having a total order defined, we can now use an AVL tree to represent the array of
bitmaps. This way, all the operations necessary to the implementation of the usual set
theoretical functions (searching, inserting and removing elements) will take O(log n) time.
In an unordered array (or linked list for that matter) search alone is an O(n) operation.

5.3 The library

Using the methods described in the previous sections, we have written a small library to
handle non-negative integer sets. This library, zset, is written in the C programming
language and implements the usual set theoretical operations.

Because of the need to deal with arbitrarily big bitmaps, which may exceed the size of a
C integer (be it 32 or 64 bits), we used the GMP library. GMP is a free library for arbitrary
precision arithmetic. It has a rich set of functions, with a regular interface and is designed
to be as fast as possible, both for small and huge operands.

We used GMP’s multiple precision integers (mpz t type) to represent bitmaps. The logical
and bit manipulation functions were used instead of the bitwise operators to implement all
set theoretical functions.

As for the set partitions, and given the complexity of the algorithms involved, mainly
the ones required to maintain balance, we used a small implementation of AVL trees for the
C programming language [avl]. This library is also freely available under the LGPL license.

Some of the functions are simple enough to be implemented as macros. While at first
this may look a good idea for efficiency concerns, it is not. Because the preprocessor replaces

5

every macro call with its definition, macros are unknown to the debugger. This “feature”
not only makes the debugging process a lot more complicated but it also renders profiling
impossible. Instead of macros, we used the inline keyword in all function declarations. This
is part of the ISO C99 standard and instructs the compiler to integrate the function’s code
into the code for its callers. It is just as fast as a macro [StGDC05] but allows the debugger
to follow the function calls, thus enabling both debug and profiling.

A API

We now present the API for zset, the library described in the previous section.

Module set

Data types

typedef unsigned long int zset elm t;

set element data type

typedef avl tree t * partition t;

set partition data type

typedef struct zset {
mpz t s;

unsigned long int n;

} *zset t;

set data type

Macros

#ifdef INLINE

#define INLINE DECL extern inline

#else

#define INLINE DECL static

#endif

Functions

INLINE DECL zset t zsetInit(unsigned long n)

initializes a set with n elements

INLINE DECL void zsetDestroy(zset t s)

frees the memory space allocated for set s

INLINE DECL void zsetAdd(zset t s, zset elm t e)

adds element e to set s

INLINE DECL void zsetDel(zset t s, zset elm t e)

removes element e from set s

INLINE DECL void zsetIntersection(zset t s, zset t s1, zset t s2)

s = s1 ∩ s2

INLINE DECL void zsetUnion(zset t s, zset t s1, zset t s2)

s = s1 ∪ s2

INLINE DECL void zsetDifference(zset t s, zset t s1, zset t s2)

s = s1 − s2

INLINE DECL int zsetHasElm(zset t s, zset elm t e)

returns 0 if e /∈ s
INLINE DECL int zsetIsSubzset(zset t s1, zset t s2)

returns 0 if s1 * s2

INLINE DECL unsigned long int zsetCardinal(zset t s)

returns the number of elements in s

INLINE DECL partition t partitionInit(void)

initializes a partition

INLINE DECL void partitionDestroy(partition t p)

frees the memory space allocated for partition p

INLINE DECL void partitionAdd(partition t p, zset t s)

6

adds set s to partition p

INLINE DECL void partitionDel(partition t p, zset t s)

remove set s from partition p

INLINE DECL int partitionCardinal(partition t p)

returns the number of blocks in partition p

References

[AMR06] Marco Almeida, Nelma Moreira, and Rogério Reis. Aspects of enumeration and
generation with a string automata representation. In 8th International Workshop
on Descriptional Complexity of Formal Systems (DCFS), 2006.

[avl] Gnu libavl, binary search trees library. http://www.stanford.edu/ blp/avl/.

[fad] FAdo: tools for formal languages manipulation. http://www.ncc.up.pt/fado.

[Knu98] Donald E. Knuth. The Art of Computer Programming. Searching and Sorting.,
volume 3. AW, 1998.

[Pfa04] B. Pfaff. Performance analysis of bsts in system software. SIGMET-
RICS/Performance poster, June 2004.

[StGDC05] Richard M. Stallman and the GCC Developer Community. Using the GNU
Compiler Collection (GCC). Free Software Foundation, 2005. Version 4.0.2.

7

