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Preface

This volume contains the papers presented at the fifth Colloquium on Implementation of

Constraint and LOgic Programming Systems (CICLOPS 2005), held in Sitges (Barcelona),

Spain, in October 2005, as a satellite workshop of ICLP 2005.

CICLOPS is a workshop that aims at discussing and exchanging experiences on the design,

implementation, and optimization of logic and constraint (logic) programming systems, or

systems intimately related to logic as a means to express computations. The workshop

continues a tradition of successful workshops on Implementations of Logic Programming

Systems, previously held with in Budapest (1993), Ithaca (1994) and Portland (1995), the

Compulog Net workshops on Parallelism and Implementation Technologies held in Madrid

(1993 and 1994), Utrecht (1995) and Bonn (1996), the Workshop on Parallelism and Imple-

mentation Technology for (Constraint) Logic Programming Languages held in Port Jefferson

(1997), Manchester (1998), Las Cruces (1999), and London (2000), and recently the Collo-

quium on Implementation of Constraint and LOgic Programming Systems in Paphos (2001),

Copenhagen (2002), Mumbai (2003), and Saint-Malo (2004), and the CoLogNet Workshops

on Implementation Technology for Computational Logic Systems held in Madrid (2002), and

Pisa (2003).

This year, we received 7 paper submissions, of which 6 were accepted for presentation and

inclusion in this volume. The workshop coordinators wish to thank the program committee

for the effort and willingness put in the evaluation of the papers, and also the organization

of ICLP 2005 for their valuable help. Thanks should go also to the authors of the submitted

papers for their contribution to make CICLOPS alive.

We hope that the workshop will bring together researchers interested on implementation

technology for different aspects of logic and constraint-based languages and systems, in

order to contribute to make this event a meeting point for a fruitful exchange of ideas and

feedback on recent developments.

August 2005,

Christian Schulte

Fernando Silva

Ricardo Rocha
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The Implementation of Minimal Model Tabling in Mercury
(extended abstract)∗

Zoltan Somogyi
Dept of Comp. Science and Soft. Eng.

University of Melbourne, Australia
zs@cs.mu.OZ.AU

Konstantinos Sagonas
Dept of Information Technology

Uppsala University, Sweden
kostis@it.uu.se

Abstract
For any LP system, tabling can be quite handy in a variety of tasks, especially if it is efficiently implemented and
fully integrated in the language. Implementing tabling in Mercury poses special challenges for several reasons. First,
Mercury is both semantically and culturally quite different from Prolog. While decreeing that tabled predicates must
not include cuts is acceptable in a Prolog system, it is not acceptable in Mercury, since if-then-elses and existential
quantification have sound semantics for stratified programs and are used very frequently both by programmers and
by the compiler. The Mercury implementation thus has no option but to handle interactions of tabling with Mercury’s
language features safely. Second, the Mercury implementation is vastly different from the WAM, and many of the
differences (e.g. the absence of a trail) have significant impact on the implementation of tabling. In this paper, we
describe how we adapted the copying approach to tabling to implement minimal model tabling in Mercury.

1 Introduction
By now, it is widely recognized that tabling adds power to a logic programming system. By avoiding repeated sub-
computations, it often significantly improves the performance of applications, and by terminating more often it allows
for a more natural and declarative style of programming. As a result, many LP systems (e.g., XSB, YAP, B-Prolog,
and TALS) nowadays offer some form of tabling.

When deciding which tabling mechanism to adopt, an implementor is faced with several choices. Linear tabling
strategies such as SLDT [11] and DRA [4] are relatively easy to implement (at least for Prolog), but they are also
relatively ad hoc and often perform recomputation. Tabled resolution strategies such as OLDT [9] and SLG [1] are
guaranteed to avoid recomputation, but their implementation is challenging because they require the introduction of a
suspension/resumption mechanism into the basic execution engine.

In the framework of the WAM [10], there are two main techniques to implement suspension/resumption. The
one employed both in XSB and in YAP [5], that of the SLG-WAM [6], implements suspension via stack freezing and
resumption using an extended trail mechanism called the forward trail. The SLG-WAM mechanism relies heavily
on features specific to the WAM, and imposes a small but non-negligible overhead on all programs, not just the ones
which use tabling. The other main mechanism, CAT (the Copying Approach to Tabling [2]), completely avoids this
overhead; it leaves the WAM stacks unchanged and implements suspension/resumption by incrementally saving and
restoring the WAM areas that proper tabling execution needs to preserve in order to avoid recomputation.

For Mercury, we chose to base tabling on SLG resolution. We decided to restrict the implementation to the subset
of SLG that handles stratified programs and compute their minimal model. As implementation platform we chose
CAT. The main reason for this choice is because the alternatives conflict with basic assumptions of the Mercury
implementation. For example, Mercury has no trail to freeze, let alone a forward one; also freezing the stack à la
SLG-WAM breaks Mercury’s invariant that a call to a predicate which can succeed at most once leaves the stack
unchanged. Simply put, CAT is the tabling mechanism requiring the fewest, most isolated changes to the Mercury
implementation. This has the additional benefit that it allows us to set up the system to minimize the impact of tabling
on the performance of program components that do not use tabling. This is in line with Mercury’s general philosophy
of “no distributed fat”, which requires that, if possible, programs should not pay for features they do not use.

This extended abstract documents the implementation of minimal model tabling in Mercury (we actually aim to
compute a specific minimal model: the perfect model). We describe how we adapted the CAT mechanism to a different

∗See [8] for an expanded version with background material, correctness arguments, and more information on the implementation.
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implementation technology, one which is closer to the execution model of conventional languages than the WAM,
and present the additional optimizations that can be performed when tabling is introduced in such an environment.
Finally, we mention how we ensure the safety of tabling’s interactions with Mercury’s if-then-else and existential
quantification, constructs that would require the use of cut in Prolog.

The next section briefly reviews the Mercury language and its implementation. Section 3 introduces the various
forms of tabling in Mercury, followed by the paper’s main section (Section 4) which describes the implementation of
minimal model tabling in detail. A brief performance comparison with other Prolog systems with tabling appears in
Section 5, and the paper ends with some concluding remarks.

2 The Mercury Language and Implementation: Capsule Description
Mercury is a pure logic programming language intended for the creation of large, fast, reliable programs. While the
syntax of Mercury is based on the syntax of Prolog, semantically the two languages are very different due to Mercury’s
purity, its type, mode, determinism and module systems, and its support for evaluable functions. Mercury has a strong
Hindley-Milner type system very similar to Haskell’s. Mercury programs are statically typed; the compiler knows the
type of every argument of every predicate (from declarations or inference) and every local variable (from inference).

The mode system classifies each argument of each predicate as either input or output; there are exceptions, but they
are not relevant to this paper. If input, the argument passed by the caller must be a ground term. If output, the argument
passed by the caller must be a distinct free variable, which the predicate or function will instantiate to a ground term. It
is possible for a predicate or function to have more than one mode; the usual example is append, which has two prin-
cipal modes: append(in,in,out) and append(out,out,in). We call each mode of a predicate or function a pro-
cedure. The Mercury compiler generates different code for different procedures, even if they represent different modes
of the same predicate or function. Each procedure has a determinism, which puts limits on the number of its possible
solutions. Procedures with determinism det succeed exactly once; semidet procedures succeed at most once; multi pro-
cedures succeed at least once; while nondet procedures may succeed any number of times. A complete description of
the Mercury language can be found at http://www.cs.mu.oz.au/research/mercury/information/doc-latest/mercury ref.

The Mercury implementation The front end of the Mercury compiler performs type checking, mode checking and
determinism analysis. Programs without any errors are then subject to program analyses and transformations (such as
the one being presented in Section 4) before being passed on to a backend for code generation.

The Mercury compiler has several backends. So far, tabling is implemented only for the original backend which
generates low level C code [7], because it is the only one that allows us to explicitly manipulate stacks (see Section 4.3).
The abstract machine targeted by this low level backend has three main data areas: a heap and two stacks. The heap is
managed by the Boehm-Demers-Weiser conservative garbage collector for C. Since this collector was not designed for
logic programming systems, it does not support any mechanism to deallocate all the memory blocks allocated since
a specific point in time. Thus Mercury, unlike Prolog, does not recover memory by backtracking and recovers all
memory blocks via garbage collection.

The two stacks of the Mercury abstract machine are called the det stack and the nondet stack. In most programs,
most procedures can succeed at most once. This means that one cannot backtrack into a call to such a procedure
after the procedure has succeeded, and therefore there is no need to keep around the arguments and local variables of
the call after the initial success (or failure, for semidet procedures). Mercury therefore puts the stack frames of such
procedures on the det stack, which is managed in strict LIFO fashion.

Procedures that can succeed more than once have their stack frames allocated on the nondet stack, from which
stack frames are removed only when procedures fail. Since the stack frames of such calls stick around when the call
succeeds, the nondet stack is not a true LIFO stack. Given a clause p(. . .) :- q(. . .), r(. . .), s(. . .), where p,
q and r are all nondet or multi, the stack will contain the frames of p, q and r in order just after the call to r. After
r succeeds and control returns to p, the frames of the calls to q and r are still on the stack. The Mercury abstract
machine thus has two registers to point to the nondet stack: maxfr always points to the top frame, while curfr points
to the frame of the currently executing call. (If the currently executing call uses the det stack, then curfr points to the
frame of its most recent ancestor that uses the nondet stack.)

There are two kinds of frames on the nondet stack: ordinary and temporary. An ordinary frame is allocated for a
procedure that can succeed more than once, i.e. whose determinism is nondet or multi. Such a frame is equivalent to
the combination of a choice point and an environment in a Prolog implementation based on the WAM [10]. Ordinary
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nondet stack frames have five fixed slots and a variable number of other slots. The other slots hold the values of the
variables of the procedure, including its arguments; these are accessed via offsets from curfr. The fixed slots are:
prevfr The previous frame slot points to the stack frame immediately below this one. (Both stacks grow higher.)
redoip The redo instruction pointer slot contains the address of the instruction to which control should be transferred

when backtracking into (or within) this call.
redofr The redo frame pointer slot contains the address that should be assigned to curfr when backtracking jumps

to the address in the redoip slot.
succip The success instruction pointer slot contains the address of the instruction to which control should be trans-

ferred when the call that owns this stack frame succeeds.
succfr The success frame pointer slot contains the address of the stack frame that should be assigned to curfrwhen

the call owning this stack frame succeeds; this will be the stack frame of its caller.
The redoip and redofr slots together constitute the failure continuation, while the succip and succfr slots together
constitute the success continuation. In the example above, both q’s and r’s stack frames have the address of p’s stack
frame in their succfr slots, while their succip slots point to the instructions in p after their respective calls.

The compiler converts all multi-clause predicate definitions into a disjunction. When executing in the code of a
disjunct, the redoip slot points to the first instruction of the next disjunct or, if this is the last disjunct, to the address of
the failure handler whose code removes the top frame from the nondet stack, sets curfr from the value in the redofr
slot of the frame that is now on top, and jumps to the instruction pointed to by its redoip slot. Disjunctions other
than the outermost one are implemented using temporary nondet stack frames, which have only prevfr, redoip and
redofr slots. For more details, see [8].

The stack slot assigned to a variable will contain garbage before the variable is generated. Afterward, it will contain
the value of the variable, which may be an atomic value such as an integer or a pointer to the heap. Since the compiler
knows the state of instantiation of every visible variable at every program point, the code it generates will never look
at stack slots containing garbage. This means that backtracking does not have to reset variables to unbound, which in
turn means that the Mercury implementation does not need a trail.

3 Tabling in Mercury
In tabling systems, some predicates are designated as tabled by means of a declaration and use tabled resolution for
their evaluation; all other predicates are non-tabled and are evaluated using SLD. Mercury also follows this scheme,
but it supports three different forms of tabled evaluation: memoization (caching), loop checking, and minimal model
evaluation. We concentrate on the last form, which is the most interesting and subsumes the other two.

The idea of tabling is to remember the first invocation of each call (henceforth referred to as a generator) and
its computed results in tables (in a call table and an answer table respectively), so that subsequent identical calls
(referred to as the consumers) can use the remembered answers without repeating the computation. In (stratified)

:- pred path(int::in, int::out) is nondet.

:- pragma minimal model(path/2).

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), path(C, B).

Mercury programs, programmers who are interested in comput-
ing the answers of tabled predicate calls according to the minimal
model semantics, they can use the ‘pragma minimal model’

declaration. An example is the usual path predicate on the right.
Predicates with minimal model pragmas are required to sat-

isfy two requirements not normally imposed on all Mercury predicates. The first requirement is that the set of values
computed by the predicate for its output arguments is completely determined by the values of the input arguments.
This means that the predicate must not do I/O; it must also be pure, i.e., free of observable side-effects such as updating
the value of a global variable through the foreign function interface. The second is that each argument of a minimal
model predicate must be either fully input (ground at call and at return) or fully output (free at call, ground at return).
In other words, partially instantiated arguments and arguments of unknown instantiation are not allowed. How this
restriction affects the implementation of minimal model tabling in Mercury is discussed in the following section.

When a call to a minimal model predicate is made, the program must check whether the call exists in the call
table or not. In SLG terminology [1], this takes place using the NEW SUBGOAL operation. If the subgoal s is new,
it is entered in the table and this call, as the subgoal’s generator, will use PROGRAM CLAUSE RESOLUTION to derive
answers. The generator will use the NEW ANSWER operation to record each answer it computes in a global data
structure called the answer table of s. If, on the other hand, (a variant of) s already exists in the table, this call is a
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root for p/5

CallTableRoot

(size, num_entries, etc) Header Trie RootHeader

CallNode1

Hash Table (for values of In1)

CallNode2

Hash Table (for values of In2)

Trie (for values of In3)

CallNode3

Subgoal Structure
Status

Answer Table
Answer List

Consumer List
Subgoal’s Leader
Follower List
Gener nondet Addr
NCA nondet Addr

Figure 1: Data structures created for the calls of predicate p/5

consumer and will resolve against answers from the subgoal’s answer table. Answers are fed to the consumer one at a
time through ANSWER RETURN operations.

Because in general it is not known a priori how many answers a minimal model tabled call will get in its table,
and because there can be mutual dependencies between generators and consumers, the implementation requires: (a) a
mechanism to retain (or reconstruct) and reactivate the execution environments of consumers until there are no more
answers for them to consume, and (b) a mechanism for returning answers to consumers and determining when the
evaluation of a (generator) subgoal is complete, i.e. when it has produced all its answers. As mentioned, we chose the
CAT suspension/resumption mechanism as the basis for Mercury’s minimal model tabling implementation. However,
we had to adapt it to Mercury and extend it in order to handle existential quantification and negated contexts. For
completion, we chose the incremental completion approach described in [6]. A subgoal can be determined to be
complete if all program clause resolution has finished and all instances of this subgoal have resolved against all
derived answers. However, as there might exist dependencies between subgoals, these have to be taken into account
by maintaining and examining the subgoal dependency graph, finding a set of subgoals that depend only on each other,
completing them together, and then repeating the process until there are no incomplete subgoals. We refer to these sets
of subgoals as scheduling components. The generator of one of the subgoals in the component (typically the oldest
one) is called the component’s leader.

4 The Implementation of Minimal Model Tabling in Mercury
4.1 The tabling transformation and its supporting data structures
Mercury allows programmers to use impure constructs to implement a pure interface, simply by making a promise
to this effect. The implementation of minimal model tabling exploits this capability. Given a pure predicate such as
path/2, a compiler pass transforms its body by surrounding it with impure and semipure code as shown in figure 2
(impure code may write global variables; semipure code may only read them). Note that the compiler promises that
the transformed code behaves as a pure goal, since the side-effects inside aren’t observable from the outside.

As mentioned, the arguments of minimal model tabled procedures must be either fully input or fully output. This
considerably simplifies the implementation of call tables. SLG resolution considers two calls to represent the same
subgoal if they are variants, i.e., identical up to variable renaming. In Mercury, this is the case if and only if the two
calls have the same ground terms in their input argument positions, because the output arguments of a call are always
distinct variables. Conceptually, the call table of a predicate with n input arguments is a tree with n+1 levels. Level 0
contains only the root node. Each node on level 1 corresponds to a value of the first input argument that the predicate
has been called with; in general, each node on level k corresponds to a combination of the values of the first k input
arguments that the predicate has been called with. Thus each node on level n uniquely identifies a subgoal.

The transformed body of a minimal model predicate starts by looking up the call table to see whether this subgoal
has been seen before or not. Given a predicate declared as in the code shown on the left below, the minimal model
tabling transformation inserts the code shown on the right at the start of its procedure body.

:- pred p(int::in, string::in, int::out,

t1::in, t2::out) is nondet.

:- pragma minimal model(p/5).

p(In1, In2, Out1, In3, Out2) :-

...

pickup call table root for p 5(CallTableRoot),

impure lookup insert int(CallTableRoot, In1, CallNode1),

impure lookup insert string(CallNode1, In2, CallNode2),

impure lookup insert user(CallNode2, In3, CallNode3),

impure subgoal setup(CallNode3, Subgoal, Status)

4



path(A, B) :-
promise pure (

pickup call table root for path 2(CallTableRoot),
impure lookup insert int(CallTableRoot, A, CallNode1),

impure subgoal setup(CallNode1, Subgoal, Status),
( % switch on ‘Status’

Status = new,

(
impure mark as active(Subgoal),

% original body of path/2 in the two lines below
edge(A, C),

( C = B ; path(C, B) ),
semipure get answer table(Subgoal, AnswerTableRoot),
impure lookup insert int(AnswerTableRoot, B, AnswerNode1),

impure answer is not duplicate(AnswerNode1),
impure new answer block(Subgoal, 1, AnswerBlock),

impure save answer(AnswerBlock, 0, B)
;

impure completion(Subgoal),

fail
)

;
Status = complete,

semipure return all answers(Subgoal, AnswerBlock),
semipure restore answer(AnswerBlock, 0, B)

;

Status = active,
impure suspend(Subgoal, AnswerBlock),

semipure restore answer(AnswerBlock, 0, B)
)

).

Figure 2: Example of the minimal model tabling transformation

We store all the information we have about
each subgoal in a subgoal structure. We reach
the subgoal structure of a given subgoal through a
pointer in the subgoal’s level n node in the call ta-
ble. The subgoal structure has the following eight
fields (cf. Fig. 1), which we will discuss as we go
along: 1) the subgoal’s status (new, active or com-
plete); 2) the chronological list of the subgoal’s an-
swers computed so far; 3) the root of the subgoal’s
answer table; 4) the list of the consumers of this
subgoal; 5) the leader of the clique of subgoals this
subgoal belongs to; 6) if this subgoal is the leader,
the list of its followers; 7) the address of the gener-
ator’s frame on the nondet stack; and 8) the address
of the youngest nondet stack frame that is an an-
cestor of both this generator and all its consumers;
we call this the nearest common ancestor (NCA).

In the code on the right, CallTableRoot,
CallNode1, CallNode2 and CallNode3 are all
pointers to nodes in the call tree at levels 0, 1, 2
and 3 respectively; see Fig. 1. CallTableRoot

points to the global variable generated by the Mer-
cury compiler to serve as the root of the call table
for this procedure. This variable is initialized to NULL, indicating no child nodes yet. The first call to p/5 will cause
lookup insert int to create a hash table in which every entry is NULL, and make the global variable point to it.
lookup insert int will then hash In1, create a new slot in the indicated bucket (or one of its overflow cells in
general) and return the address of the new slot as CallNode1. At later calls, the hash table will exist, and by then
we may have seen the then current value of In1 as well; lookup insert int will perform a lookup if we have and
an insertion if we have not. Either way, it will return the address of the slot selected by In1. The process then gets
repeated with the other input arguments. (The predicates being called are different because Mercury uses different
representations for different types. We hash integers directly but we hash the characters of a string, not its address.)

User-defined types Values of these types consist of a function symbol applied to zero or more arguments. In a
strongly typed language such as Mercury, the type of a variable directly determines the set of function symbols that
variable can be bound to. The data structure we use to represent a function symbol from user-defined types is therefore
a trie. If the function symbol is a constant, we are done. If it has arguments, then lookup insert user processes
them one by one the same way we process the arguments of predicates, using the slot selected by the function symbol
to play the role of the root. In this way, the path in the call table from the root to a leaf node representing a given
subgoal has exactly one trie node or hash table on it for each function symbol in the input arguments of the subgoal;
their order is given by a preorder traversal of those function symbols.

Polymorphic types This scheme works for monomorphic predicates because at each node of the tree, the type of
the value at that node is fixed, and the type determines the mechanism we use to table values of that type (integer hash
table, string hash table or float hash table for builtin types, a trie for user-defined types). For polymorphic predicates
(whose signatures include type variables) the caller passes extra arguments identifying the actual types bound to those
type variables [3]. We first table these arguments, which are terms of a builtin type. Once we have followed the path
from the root to the level of the last of these arguments, we have arrived at what is effectively the root of the table for
a given monomorphic instance of the predicate’s signature, and we proceed as described above.

4.2 The tabling primitives
The subgoal_setup primitive ensures the presence of the subgoal’s subgoal structure. If this is a new subgoal, then
CallNode3will point to a table node containing NULL. In that case, subgoal_setupwill (a) allocate a new subgoal
structure, initializing its fields to reflect the current situation, (b) update the table node pointed to by CallNode3 to
point to this new structure, and (c) return this same pointer as Subgoal. If this is not the first call to this procedure with
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these input arguments, then CallNode3 will point to a table node that contains a pointer to the previously allocated
subgoal structure, so subgoal_setupwill just return this pointer.

subgoal_setup returns not just Subgoal, but also the subgoal’s status. When first created, the status of the
subgoal is set to new. It becomes active when a generator has started work on it and becomes complete once it is
determined that the generator has produced all its answers.

What the transformed procedure body does next depends on the subgoal’s initial status. If the status is active or
complete, the call becomes one of the subgoal’s consumers. If it is new, the call becomes the subgoal’s generator and
executes the original body of the predicate after changing the subgoal’s status to active. When an answer is generated,
we check whether this answer is new. We do this by using get_answer_table to retrieve the root of the answer table
from the subgoal structure, and inserting the output arguments into this table one by one, just as we inserted the input
arguments into the call table. The node on the last level of the answer table thus uniquely identifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table selected by the output argument
values is NULL, then this is the first time we have computed this answer for this subgoal, and the call succeeds.
Otherwise it fails. (To make later calls fail, successful calls to answer_is_not_duplicate replace the tip with a
non-NULL value.) We thus get to the call to new_answer_block only if the answer we just computed is new.

new_answer_block adds a new element to the end of the subgoal’s chronological list of answers, the new element
being a fresh new memory block with room for the given number of output arguments. The call to new_answer_block
is then followed by a call to save_answer for each output argument to fill in the slots of the answer block.

When the last call to save_answer returns, the transformed code of the tabled predicate succeeds. When back-
tracking returns control to the tabled predicate, it will drive the original predicate body to generate more and more
answers. In programs with a finite minimal model, the answer generation will eventually stop, and execution will
enter the second disjunct, which invokes the completion primitive. This will make the answers generated so far for
this subgoal available to any consumers that are waiting for such answers. This may generate more answers for this
subgoal if the original predicate body makes a call, directly or indirectly, to this same subgoal. The completion

primitive will drive this process to a fixed point (see Sect. 4.5) and then mark the subgoal as complete. Having already
returned all answers of this subgoal from the first disjunct, execution fails out of the body of the transformed predicate.

If the initial status of the subgoal is complete, we call return_all_answers, which succeeds once for each
answer in the subgoal’s chronological list of answers. For each answer, the calls to restore_answer pick up the
individual output arguments put there by save_answer.

If the initial status of the subgoal is active, then this call is a consumer but the generator is not known to have all
its answers. We therefore call the suspend primitive. suspend has the same interface as return_all_answers, but
its implementation is much more complicated. We invoke the suspend primitive when we cannot continue computing
along the current branch of the SLD tree. The main task of the suspension operation is therefore to record the state of
the current branch of the SLD tree to allow its exploration later, and then simulate failure of that branch, allowing the
usual process of backtracking to switch execution to the next branch. Sometime later, the completion primitive will
restore the state of this branch of the SLD tree, feed the answers of the subgoal to it, and let the branch compute more
answers if it can.

4.3 Suspension of consumers
The suspend primitive starts by creating a consumer structure and adding it to the current subgoal’s list of con-
sumers. This structure has three fields: a pointer to this subgoal’s subgoal structure (available in suspend’s Subgoal
argument), an indication of which answers this consumer has consumed so far, and the saved state of the consumer.

Making a copy of all the data areas of the Mercury abstract machine (det stack, nondet stack, heap and registers)
would clearly be sufficient to record the state of the SLD branch, but equally clearly it would also be overkill. To
minimize overhead, we want to record only the parts of the state that contain needed information which can change
between the suspension of this SLD branch and any of its subsequent resumptions. For consumer suspensions, the
preserved saved state is as follows.
Registers The special purpose abstract machine registers (maxfr, curfr, the det stack pointer sp, and the return
address register succip) all need to be part of the saved state, but of all the general purpose machine registers used
for parameter passing, the only one that contains live data and thus needs to be saved is the one containing Subgoal.

Heap With Mercury’s conservative collector, heap space is recovered only by garbage collection and never by back-
tracking. This means that a term on the heap will naturally hang around as long as a pointer to it exists, regardless of
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whether that pointer is in a current stack or in a saved copy. Moreover, in the absence of destructive updates, this data
will stay unchanged. This in turn means that, unlike a WAM-based implementation of CAT, Mercury’s implementation
of minimal model tabling does not need to save or restore any part of the heap. This is a big win, since the heap is
typically the largest area. The tradeoff is that we need to save more data from the stacks, because the mapping from
variables to values (the current substitution) is stored entirely in stack slots.

Stacks The way Mercury uses stack slots is a lot closer to the runtime systems of imperative languages than to the
WAM. First of all, there are no links between variables because the mode system does not allow two free variables
to be unified. Binding a variable to a value thus affects only the stack slot holding the variable. Another difference
concerns the timing of parameter passing. If a predicate p makes the call q(A), and the definition of q has a clause
with head q(B), then in Prolog, A would be unified with B at the time of the call, and any unification inside q that
binds B would immediately update A in p’s stack frame. In Mercury, by contrast, there is no information flow between
caller and callee except at call and return. At call, the caller puts the input arguments into abstract machine registers
and the callee picks them up; at return, the callee puts the output arguments into registers and the caller picks them
up. Each invocation puts the values it picks up into a slot of its own stack frame when it next executes a call. The
important point is that the only code that modifies a stack frame fr is the code of the procedure that created fr.

CAT saves the frames on the stacks between the stack frame of the generator (excluded) and the consumer (in-
cluded), and uses the WAM trail to save and restore addresses and values of variables which have been bound since the
creation of a consumer’s generator. (Only trail entries referring to the unsaved parts of the heap and local stack need to
be preserved by copying. Saving those pointing to the saved parts is obviously redundant.) Mercury has no variables
on its heap, but without a mechanism like the trail to guide the selective copying of stack slots which might change
values, it must make sure that suspension saves information in all stack frames that could be modified between the
suspension of a consumer and its resumption by its generator. The deepest frame on the nondet stack that this criterion
requires us to save is the frame of the nearest common ancestor (NCA) of the consumer and the generator. We find
the NCA by initializing two pointers to point to the consumer and generator stack frames, and repeatedly replacing
whichever pointer is higher with the succfr link of the frame it points to, stopping when the two pointers are equal.

Two technical issues deserve to be mentioned. Note that we must save the stack frame of the NCA because the
variable bindings in it may have changed between the suspension and the resumption. Also, it is possible for the
nearest common ancestor of the generator and consumer to be a procedure that lives on the det stack. The expanded
version of this paper [8] gives examples of these situations, motivates the implementation alternatives we chose to
adopt, and argues for the correctness of saving (only) this information for consumers.

4.4 Maintenance of subgoal dependencies and their influence on suspensions
We have described suspension as if consumers will be scheduled only by their nearest generator. This is indeed the
common case, but as explained in Section 3 there are also situations in which subgoals are mutually dependent and
cannot be completed on an individual basis. To handle such cases, Mercury maintains a stack-based approximation
of dependencies between subgoals, in the form of scheduling components. For each scheduling component (a group
subgoals that may depend on each other), its leader is the youngest generator GL for which all consumers younger
than GL are consumers of generators that are not older than GL.

Of all scheduling components, the one of most interest is that on the top of the stack. This is because it is the one
whose consumers will be scheduled first. We call its leader the current leader.

The maintenance of scheduling components is reasonably efficient. Information about the leader of each subgoal
and the leader’s followers is maintained in the subgoal structure (cf. Fig. 1). Besides creation of a new generator
(in which case the generator becomes the new current leader with no followers), this information possibly changes
whenever execution creates a consumer suspension. If the consumer’s generator, G, is the current leader or is younger
than the current leader, no change of leaders takes place. If G is older than the current leader, a coup happens, G

becomes the current leader, and its scheduling component gets updated to contain as its followers the subgoals of all
generators younger than G. In either case, the saved state for the consumer suspension will be till the NCA of the
consumer and the current leader. This generalizes the scheme described in the previous section.

Because a coup can happen even after the state of a consumer has been saved, we also need a mechanism to extend
the saved consumer states. The mechanism we have implemented consists of extending the saved state of all consumers
upon change of leaders. When a coup happens, the saved state of all followers (consumers and generators) of the old
leader is extended to the stack frame of the NCA of each follower and the new leader. Unlike CAT which tries to
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share the trail, heap, and local stack segments it copies [2], in Mercury we have not (yet) implemented a mechanism
to share the copied stack segments. Note, however, that the space problem is not as severe in Mercury as it is in CAT,
because in Mercury there is no trail and no information from the heap is ever copied, which means that heap segments
for consumers are naturally shared.

On failing back to a generator which is a leader, scheduling of answers to all its followers will take place, as
described below. When the scheduling component gets completed, execution will continue with the immediately older
scheduling component, whose leader will then become the current leader.

4.5 Resumption of consumers and completion
The main body of the completion primitive consists of three nested loops: over all subgoals in the current scheduling
component S, over all consumers of these subgoals, and over all answers to be returned to those consumers. The
code in the body of the nested loops arranges for the next unconsumed answer to be returned to a consumer of a
subgoal in S. It does this by restoring the stack segments saved by the suspend primitive, putting the address of the
relevant answer block into the abstract machine register assigned to the return value of suspend, restoring the other
saved abstract machine registers, and branching to the return address stored in suspend’s stack frame. Each consumer
resumption thus simulates a return from the call to suspend.

Since restoring the stack segments from saved states of consumers clobbers the state of the generator that does the
restoring (the leader of S), the completion primitive first saves the leader’s own state, which consists of saving the
nondet stack down to the oldest NCA of the leader generator and any of the consumers it schedules, and saving the det
stack to the point indicated by this nondet frame.

Resumption of a consumer essentially restores the saved branch of the SLD search tree, but restoring its saved
stack segments intact is not a good idea. The reason is that leaving the redoip slots of the restored nondet stack
frames unchanged resumes not just the saved branch of the SLD search tree, but also the departure points of all the
branches going off to its right. Those branches have been explored immediately after the suspension of the consumer,
because suspension involves simulating the failure of the consumer, thus initiating backtracking. When we resume the
consumer to consume an answer, we do not want to explore the exact same alternatives again, since this could lead to
an arbitrary slowdown. We therefore replace all the redoips in saved nondet stack segments to make them point to
the failure handler in the runtime system. This effectively cuts off the right branches, making them fail immediately.
Given the choice between doing this pruning once when the consumer is suspended or once for each time the consumer
is resumed, we obviously choose the former.

This pruning means that when we restore the saved state of a consumer, only the success continuations are left
intact, and thus the only saved stack frames the restored SLD branch can access are those of the consumer’s ancestors.
Any stack frames that are not the consumer’s ancestors have effectively been saved and restored in vain. The advantage
of this approach is that the code to save and restore stack segments is quite fast (has a low constant factor). In addition,
the direct correspondence between the original and saved stack copies makes the code of the pruning operation much
easier to write compared to an approach that would try to remove those unnecessary frames.

When a resumed consumer has consumed all the currently available answers, it fails out of the restored segment
of the nondet stack. We arrange to get control when this happens by setting the redoip of the very oldest frame of
the restored segment to point to the code of the completion primitive. When completion is reentered in this way, it
needs to know that the three-level nested loop has already started and how far it has gone. We therefore store the state
of the nested loop in a global record. When this state indicates that we have returned all answers to all consumers of
subgoals in S, we have reached a fixed point. At this time, we mark all subgoals in S as complete and we reclaim the
memory occupied by the saved states of all their consumers and generators.

4.6 Existential quantification
Mercury supports existential quantification. This construct is usually used to check whether a component of a data
structure possesses a specific property as in the code fragment:

( if some [Element] ( member(Element, List), test(Element) ) then . . . else . . . )

Typically the code inside the quantification may have more than one solution, but the code outside only wants to check
whether a solution exists without caring about the number of solutions or their bindings. One can thus convert a multi
or nondet goal into a det or semidet goal by existentially quantifying all its output variables.
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Mercury implements quantifications of that form using what we call a commit operation, which some Prologs call
a once operation. The operation saves maxfr when it enters the goal and restores it afterward, throwing away all
the stack frames that have been pushed onto the nondet stack in the meantime. The interaction with minimal model
tabling arises from the fact that the discarded stack frames can include the stack frame of a generator. If this happens,
the commit removes all possibility of the generator being backtracked into ever again, which in turn may prevent the
generation of answers and completion of the corresponding subgoal. Without special care, all later calls of that subgoal
will become consumers who will wait forever for the generator to schedule the return of their answers.

To handle such situations, we introduce of a new stack which we call the cut stack. This stack always has one
entry for each currently active existentially quantified goal; new entries are pushed onto it when such a goal is entered
and popped when that goal either succeeds or fails. Each entry contains a pointer to a list of generators. Whenever
a generator is created, it is added to the list in the entry currently on top of the cut stack. When the goal inside the
commit succeeds, the code that pops the cut stack entry checks its list of generators. For all generators whose status
is not complete, we erase all trace of their existence and reset the call table node that points to the generator’s subgoal
structure back to a null pointer. This allows later calls to that subgoal to become new generators.

If the goal inside the commit fails, the failure may have been due to the simulated failure of a consumer inside that
goal. When the state of the consumer is restored, it may well succeed, which means that any decision the program
may have taken based on the initial failure of the goal may be incorrect. When the goal inside the commit fails, we
therefore check whether any of the generators listed in the cut stack entry about to be popped off have a status other
than complete. Any such generator must have consumers whose failure may not be final, so we throw an exception in
preference to computing incorrect results. Note that this can happen only when the leader of the incomplete generator’s
scheduling component is outside the existential quantification.

4.7 Possibly negated contexts
The interaction of tabling with cuts and Prolog-style negation is notoriously tricky. Many implementation papers on
tabling ignore the issue altogether, considering only the definite subset of Prolog. An implementation of tabling for
Mercury cannot duck the issue. Typical Mercury programs rely extensively on if-then-elses, and if-then-elses involve
negation: “if C then T else E” is semantically equivalent to (C ∧ T ) ∨ (¬∃C ∧ E). Of course, operationally the
condition is executed only once. The condition C is a possibly negated context: it is negated only if it has no solutions.
Mercury implements if-then-else using a soft cut: if the condition succeeds, it cuts away the possibility of backtracking
to the else part only.

If C fails, execution should continue at the else part of the if-then-else. This poses a problem for our implementa-
tion of tabling, because the failure of the condition does not necessarily imply that C has no solution: it may also be
due to the suspension of a consumer called (directly or indirectly) somewhere inside C, as in the code below.

p(. . .) :- tg(. . .), ( if ( . . ., tc(. . .), . . . ) then . . . else . . . ), . . .

If tc suspends and is later resumed to consume an answer, the condition may evaluate to true. However, by then the
damage will have been done, because we will have executed the code in the else part.

We have not yet implemented a mechanism that will let us compute the correct answer in such cases, because any
such mechanism would need the ability to transfer the “generator-ship” of the relevant subgoal from the generator of t
to its consumer, or something equivalent. However, we have implemented a mechanism that guarantees that incorrect
answers will not be computed. This mechanism is the possibly-negated-context stack, or pneg stack for short. We
push an entry onto this stack when entering a possibly negated context such as the condition of an if-then-else. The
entry contains a pointer to a list of consumers, which is initially empty. When creating a consumer, we link the
consumer into the list of the top entry on the pneg stack. When we enter the else part of the if-then-else, we search
this list looking for consumers that are suspended. Since suspension simulates failure without necessarily implying
the absence of further solutions, we throw an exception if the search finds such a consumer. If not, we simply pop the
entry of the pneg stack. We also perform the pop on entry to the then part of the if-then-else. Since in that case there
is no risk of committing to the wrong branch of the if-then-else, we do so without looking at the popped entry.

There are two other Mercury constructs that can compute wrong answers if the failure of a goal does not imply
the absence of solutions for it. The first is negation. We handle negation as a special case of if-then-else: ¬G is
equivalent to “if G then fail else true”. The other is the generic all-solutions primitive builtin_aggregate,
which serves as the basic building block for all the user-visible all-solutions predicates, such as solutions/2. The
implementation of builtin_aggregate in the Mercury standard library uses a failure-driven loop. To guard against
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chain cycle
bench size iter XSB XXX YAP Mer XSB XXX YAP Mer
tc lr +- 4K 200 0.62 0.51 0.28 0.58 0.63 0.52 0.28 0.59
tc lr +- 8K 200 1.24 1.05 0.62 1.27 1.27 1.07 0.62 1.30
tc lr +- 16K 200 2.57 2.15 1.51 2.47 2.62 2.12 1.48 2.61
tc lr +- 32K 200 5.25 4.41 3.78 5.23 5.20 4.44 3.78 5.07
tc lr -- 2K 1 2.58 2.46 1.25 3.20 6.22 6.30 2.88 6.24
tc rr -- 2K 1 2.21 2.04 2.94 10.27 6.35 5.85 6.00 27.48

bench XSB XXX YAP Mer
sg i +- 1.21 1.32 0.34 1.05
sg i -- 3.53 3.89 1.07 2.43
sg p +- 83.56 58.17 34.58 32.14
sg p -- 237.58 161.08 77.63 92.64

Table 1: Times (in secs) to execute various versions of transitive closure and same generation

bench cqueen crypt deriv nrev primes qsort queen query tak
iter 60K 30K 1.5M 800K 150K 300K 2K 100K 1K
Mer asm fast.gc 2.01 5.49 17.16 20.49 6.33 6.26 5.59 0.75 0.54
Mer asm fast.gc.mm 3.17 7.10 14.96 18.06 8.84 6.80 6.77 1.01 1.80
YAP 9.15 8.95 11.71 11.62 20.42 15.28 12.31 6.24 12.52
XXX 14.54 10.94 24.72 18.11 31.29 21.91 21.52 17.16 17.85
XSB 23.63 17.68 32.44 44.15 thrashes 32.51 34.26 29.42 23.95

Table 2: Times (in secs) to execute some standard untabled Prolog benchmarks

builtin_aggregate(Closure, ...) mistaking the failure of call(Closure) due to a suspension somewhere
inside Closure as implying the absence of solutions to Closure, we treat the loop body as the condition of an if-
then-else, i.e. we surround it with the code we normally insert at the start of the condition and the start of the else part
(see [8] for the details).

Entries on both the cut stack and the pneg stack contain a field that points to the stack frame of the procedure
invocation that created them, which is of course also responsible for removing them. When saving stack segments or
extending saved stack segments, we save an entry on the cut stack or the pneg stack if the nondet stack frame they
refer to is in the saved segment of the nondet stack.

5 Performance Evaluation
We ran several benchmarks to measure the performance of Mercury with tabling support, but space limitations allow
presenting only some of them here.

Overhead of the minimal model grade We compiled the Mercury compiler in two grades that differ only in that
one supports minimal model tabling. Enabling support for minimal tabling without using it (the compiler has no
minimal model predicates) increases the size of the compiler executable by about 5%. On the standard benchmark
task for the Mercury compiler, compiling six of its own largest modules, moving to a minimal model grade with
full tabling support slows the compiler down by about 25%. (For comparison, enabling debugging leads to a 455%
increase in code size and a 135% increase in execution time.) First of all, it should be mentioned that paying this 25%
cost in time happens only if the user selects a minimal model tabling compilation grade: programs that do not use
tabling at all can use the default asm fast.gc grade and thus not pay any cost whatsoever. Moreover, this 25% is
probably an upper limit. Virtually all of this cost in both space and time is incurred by the extra code we have to insert
around possibly negated contexts; the extra code around commits and the larger size of nondet stack frames have no
measurable overheads (see [8]). If we had an analysis that could determine that tabled predicates are not involved
(directly or indirectly) in a possibly negated context, this overhead could be totally avoided for that context.

Comparison against other implementations of tabling We compared the minimal model grade of Mercury (rotd-
28-07-2005, based on CAT) against XSB (2.7.1, based on the SLG-WAM), the XXX system (derived from XSB
but based on CHAT) and YAP (version in CVS at 28 July 2005, based on SLG-WAM). XSB and XXX use local
scheduling [6], YAP uses batched scheduling; Mercury’s scheduling strategy is similar but not identical to batched
scheduling. All benchmarks were run on an IBM ThinkPad R40 laptop with a 2.0 GHz Pentium4 CPU and 512 Mb of
memory running Linux. All times were obtained by running each benchmark eight times, discarding the lowest and
highest values, and averaging the rest.
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The first set of benchmarks consists of left- and right-recursive versions of transitive closure. In each case, the
edge relation is a chain or a cycle. In a chain of size n, there are n − 1 edges of the form k → k + 1 for 0 ≤ k < n;
in a cycle of size n, there is also an edge n → 0. We use two query forms: the query with the first argument input
and the second output (+-) and the open query with both arguments output (--). The number of solutions is linear in
the size of the data for the +- query and quadratic for --. The second set consists of versions of the same generation
predicate with full indexing (i) or Prolog-style first-argument indexing only (p), with the same two kinds of queries.
Each entry in Table 1 shows how long it takes for a given system to run the specified query on the specified data iter
times (iter=50 for the sg benchmarks). The tables are reset between iterations. In Table 1, each system uses a failure
driven loop or its equivalent to perform the iterations, while in Table 2 they use a tail-recursive driver predicate.

The rows for the +- query on left recursive transitive closure show all runtimes to be linear in the size of the
data, as expected. Also, on left recursion, regardless of query, YAP is fastest, and XSB, XXX and Mercury are pretty
similar. On right recursion, Mercury is slower than the other systems due to saving and restoring stack segments of
consumers, and having to do so more times due to its different scheduling strategy (YAP doesn’t do save/restore). It is
unfortunate that not all systems implement the same scheduling strategy. However, local evaluation (i.e., postponing
the return of answers to the generator until the subgoal is complete) is not compatible with the pruning that Mercury’s
execution model requires in existential quantifications, a construct not properly handled in Prolog systems with tabling.
On the same generation (sg) benchmark, in which consumer suspensions are not created (variant subgoals are only
encountered when the subgoals are completed), Mercury is clearly much faster than XSB and XXX, although it is
still beaten by YAP in three cases out of four. Two reasons why Mercury’s usual speed advantage doesn’t materialize
here are that (1) these benchmarks spend much of their time executing tabling’s primitive operations, which are in C
in all four systems, and (2) the Prolog systems can recover the memory allocated by an iteration by resetting the heap
pointer, whereas in Mercury this can done only by gc.

Table 2 shows the performance of the same four systems on nine standard Prolog benchmarks that do not use
tabling, taken from [7]. (The tenth benchmark from that set, poly, leads to memory exhaustion on XSB and XXX
and a core dump on YAP.) Mercury is clearly the fastest system by far, even when minimal model tabling is enabled
(but not used). It is beaten only on nrev, which is tail recursive in Prolog but not in Mercury, and on deriv, on which
(due to a currently broken optimization) Mercury creates many unnecessary stack frames. While Mercury executed
all nine benchmarks in a total time of 64s (in grade asm fast.gc, which cannot do minimal model tabling) to 69s (in
asm fast.gc.mm, which can), YAP required 108s, XXX 178s and XSB 238s (not counting primes).

It is very difficult to draw detailed conclusions from these small benchmarks, but we can safely say that we suc-
ceeded in our objective of concentrating the costs of tabling on the predicates that use tabling, leaving the performance
of untabled predicates mostly unaffected. We can confidently expect Mercury to be much faster than Prolog systems
on programs in which relatively few consumer suspensions are encountered. The speed of Mercury relative to tabled
Prolog systems on real tabled programs will depend on what fraction of time they spend in tabled predicates.

Our most promising avenues for further improvement are clearly (1) improving the speed of saving and restoring
suspensions and (2) implementing a scheduling strategy that reduces the number of suspensions required.

6 Concluding Remarks
Adapting the implementation of tabling to Mercury has been a challenge because the Mercury abstract machine is
very different from the WAM. We have based our implementation on CAT because it is the only recomputation-
free approach to tabling that does not make assumptions that are invalid in Mercury. However, even CAT required
significant modifications to work properly with Mercury’s stack organization, its mechanisms for managing variable
bindings, and its type-specific data representations. We have described all these in this paper as well as describing
two new mechanisms, the cut and the pneg stack, which allow for safe interaction of tabling with language constructs
such as if-then-else and existential quantification. Finally, note that Mercury also provides new opportunities for
optimization of tabled programs. For example, the strong mode system greatly simplifies variant checking and the
type system allows for a type-tailored design of tabling data structures.

In keeping with Mercury’s orientation towards industrial-scale systems, our design objective was maximum per-
formance on large programs containing some tabled predicates, not maximum performance on the tabled predicates
themselves. The distinction matters, because it requires us to make choices that minimize the impact of tabling on non-
tabled predicates even when these choices slow down tabled execution. We have been broadly successful in achieving
this objective. Since supporting minimal model tabling is optional, programs that do not use it are not affected at all.
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Even in programs that do use tabling, non-tabled predicates only pay the cost of one new mechanism: the one ensuring
the safety of interactions between minimal model tabling and negation.

The results on microbenchmarks focusing on the performance of minimal model tabled predicates themselves
show Mercury to be quite competitive with existing tabling systems. It is faster on some benchmarks, slower on some
others, and quite similar on the rest, even though Mercury currently lacks some obvious optimizations, such as sharing
stack segment extensions among consumers. How the system behaves on real tabled applications, written in Mercury
rather than Prolog, remains to be seen. But one should not underestimate either the difficulty or the importance of
adding proper tabling to a high-performance LP system and the power that this brings to the system.

The system we have described in this paper is available in recent releases-of-the day from the Mercury web site.
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Abstract

By coupling Logic Programming with Relational Databases, we can combine the higher ex-
pressive power of logic with the efficiency and safety of databases in dealing with large amounts
of data. An important drawback of such coupled systems is the fact that, usually, the communi-
cation architecture between both systems is not tight enough to support a completely transparent
use of extensionally (or relationally) defined predicates in the logic program. Such an example is
the cut operation. This operation is used quite often in Prolog programs, both for efficiency and
semantic preservation. However, its use to prune choice-points related to database predicates
is discouraged in existing coupled systems. Typically, SQL queries result sets are kept outside
WAM data structures and the cut implementation leaves the database result set pointer (cursor)
open and the result set data structure allocated in memory, instead of closing the cursor and
deallocating memory. In this work we focus on the transparent use of the cut operation over
database predicates, describing the implementation details in the context of the coupling be-
tween the YapTab system and the MySQL RDBMS. Our approach can be generalised to handle
not only database predicates but also any predicate that requires generic actions upon cuts.

1 Introduction

The similarities between logic based languages, such as Prolog, and relational databases have long
been noted. There is a natural correspondence between relational algebra expressions and Prolog
predicates, and between relational tuples and Prolog facts [7]. The main motivation behind a
deductive database system, based on the marriage of a logic programming language and a relational
database management system (RDBMS), is the combination of the inference capabilities of the
logic language with the ultra-efficient data handling of the RDBMS. The implementation of such
deductive database systems follows the following four general methods [1, 14, 6]: (i) coupling of an
existing logic system implementation to an existing RDBMS; (ii) extending an existing logic system
with some facilities of a RDBMS; (iii) extending an existing RDBMS with some features of a logic
language; and (iv) tightly integrating logic programming techniques with those of RDBMS’s.

An example of a tightly integrated implementation is the Aditi system [15], and examples of
coupled implementations are the Coral [8] and XSB [10] systems. Regarding coupled systems, the
literature usually distinguishes between tightly and loosely coupled systems. This classification is
far from being clear, though. Sometimes the tight or loose adjectives are used regarding the degree
of integration from the programming perspective, while sometimes the terms are used regarding
the transparency of the use of logic predicates defined by database relations.
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The use of explicit SQL queries in logic predicates would characterize a loosely coupled system,
while the specification of database queries transparently in logic syntax would characterize a tightly
coupled system. The usual meaning of the tight and loose terms in the computer industry is,
however, different. Systems are tightly coupled if they cannot function separately and loosely
coupled if they can. Under this definition, the XSB system coupled with a RDBMS results in a
loosely coupled system.

The coupling approach, by keeping the deductive engine separated from the RDBMS, offers
a number of advantages: deductive capabilities can be used with arbitrary RDBMS’s and the
deductive system can profit from future and independent developments of the RDBMS; furthermore,
there are also no extra overheads for programs that do not access data stored in a relational
database. The coupling approach also presents, however, some important drawbacks as compared
with integrated systems. The most relevant is the communication overhead to get external data
from the database server to be unified with logic goals. This overhead is extremely significant and
makes impracticable the use of relation-level access (where SQL queries are generated for each logic
goal) with all but toy applications. View-level access (where relational join operations of logic goals
are executed by the RDBMS) very importantly reduces this communication overhead, particularly
if it allows the efficient use of the RDBMS indices [4].

Another important drawback of loosely or tightly coupled systems is the fact that the com-
munication architecture between both systems is normally based on an interface layer which lacks
important features necessary to improve both the efficiency and the transparent integration of the
logic system and the database system. For instance, the application programming interfaces of
RDBMS’s do not provide adequate mechanisms to send sets of tuples back and forth from the logic
system to the database server, and this has been shown to be crucial to attain good performance [5].

In addition to efficiency concerns, the existing communication architectures between coupled
systems are also not tight enough to support a completely transparent use of relationally defined
predicates in the logic program. Consider, for example, the cut operation. This operation is ex-
tremely used in Prolog programs, both for efficiency and semantic preservation. However, its use
after a database defined predicate can have undesired effects, with the current interface architec-
tures of coupled systems. The undesired effects can be so significant that systems such as XSB
clearly state on the programmers’ manual that cut operations should be used very carefully with
relationally defined predicates [11]:

“The XSB-ODBC interface is limited to using 100 open cursors. When XSB systems use
database accesses in a complicated manner, management of open cursors can be a problem
due to the tuple-at-a-time access of databases from Prolog, and due to leakage of cursors
through cuts and throws. Often, it is more efficient to call the database through set-at-a-time
predicates such as findall/3, and then to backtrack through the returned information.”

In this work we focus on the transparent use of the cut operation over database predicates,
describing the implementation details in the context of the coupling between the YapTab system [9]
and the MySQL RDBMS [16]. YapTab is a tabling system that extends Yap’s engine [12] to support
tabled evaluation for definite programs. The remainder of the paper is organized as follows. First,
we briefly describe the cut semantics of Prolog and the problem arising from its use to prune
database predicates. Next, we present how Yap interfaces MySQL through their C API’s. Then,
we describe the needed extension to the interface architecture in order to deal with pruning for
database predicates. At the end, we outline some conclusions.
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2 Pruning Database Predicates

Ideally, it should be possible to use predicate facts defined extensionally in database relations
exactly as predicate facts defined in a Prolog program. In particular, for the cut operation, it
should be possible to prune predicates independently of how they are defined. In this section we
show why this is a problem for current coupled systems.

2.1 Cut Semantics

Cut is a system built-in predicate that is represented by the symbol ’!’. Its execution results in
pruning all the branches to the right of the cut scope branch. The cut scope branch starts at the
current node and finishes at the node corresponding to the predicate containing the cut.

Figure 1 gives a general overview of cut semantics by illustrating the left to right execution of an
example with cuts. The query goal a(X) leads the computation to the first alternative of predicate
a/1, where !(a) means a cut with scope node a. Predicate b(X) is then called and suppose that
it succeeds in its first alternative binding X with b1. Next, !(a) gets executed and all the right
branches until node a are pruned. As a consequence, the nodes for a and b can be removed.

root

a(X) :- b(X), !, c(X).      b(X) :- ...
a(X) :- ...                 b(X) :- ...
a(X) :- ...                 c(X) :- ...
                                 
                 ?- a(X).

a(X).

root

b(X),!(a),c(X).

a

root

a

b

!(a),c(b1).

root

c(b1).

Figure 1: Cut semantics

2.2 Pruning a Query Result Set

In the coupling interface between a logic system and a database system, logic goals are usually
translated into SQL queries, which are then sent to the database system. To improve performance,
a number of logic goals can be combined on a single SQL query, replacing a relation-level access
for what is known as view-level access. The database system then receives the query, processes it,
and sends the resulting tuples back to the logic system.

MySQL offers two alternatives for sending these resulting tuples to the client program that
generated the query: (i) store the set of tuples on a data structure on the database server side
and send each tuple tuple-at-a-time to the client program; or (ii) store the set of tuples on a data
structure on the client side sending the all set of tuples at once. Logic systems also have two
alternatives to deal with these sets of tuples: (i) use them tuple-at-a-time, exactly as is done for
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normal facts; or (ii) use them set-at-a-time, typically in a Prolog list structure [3]. Building this
list for thousands or millions of tuples can lead to memory allocation problems and is very time
consuming. Furthermore, the transparent use of facts defined in database relations is lost if they
imply a set-at-a-time use.

For tuple-at-a-time, the obvious method of accessing the tuples in the result set of a query is
to use the backtracking mechanism, which iteratively increments the database result set pointer
(cursor) and fetches the current tuple. Using this tuple-at-a-time access, the deallocation of the
data structure holding the result set, whether on the server or on the client side, is performed when
the last tuple on the result set has been reached.

The problem is when, during the tuple-at-a-time navigation, a cut operation occurs before
reaching the last tuple. If this happens, the result set cannot be deallocated. This can cause a lack
of cursors and, more important, a lack of memory due to a number of very large non-deallocated
data structures. Consider the example described in Fig. 1 and assume now that predicate b/1

is a database predicate. The computation of b(X) will query the database for the correspondent
relation and bind X with the first tuple that matches the query. Next, we execute !(a) and, as
mentioned before, it will disable the action of backtracking for node b. The result set with the facts
for b will remain in memory, although it will never be used.

To solve this problem, we propose an extension to the interface architecture that allows to
associate cut procedures with database predicates, in such a way that the system transparently
executes them when a cut operation occurs. With this functionality, we can thus use these pro-
cedures to deallocate the result set for the pruned database predicates and therefore avoid the
problems discussed above. In what follows we briefly describe the Yap interface and then we detail
our approach to extend the interface in order to deal with pruning for database predicates.

3 The C Language Interface to Yap Prolog

Like other Prolog Systems, Yap provides an interface for writing predicates in other programming
languages, such as C, as external modules. An important feature of this interface is how we can
define predicates. Yap distinguishes two kinds of predicates: deterministic predicates, which either
fail or succeed but are not backtrackable, and backtrackable predicates, which can succeed more
than once.

Deterministic predicates are implemented as C functions with no arguments which should re-
turn zero if the predicate fails and a non-zero value otherwise. They are declared with a call to
YAP UserCPredicate(), where the first argument is the name of the predicate, the second the
name of the C function implementing the predicate, and the third is the arity of the predicate.

For backtrackable predicates we need two C functions: one to be executed when the predicate
is first called, and other to be executed on backtracking to provide (possibly) other solutions.
They are similarly declared, but using instead YAP UserBackCPredicate(). When returning the
last solution, we should use YAP cut fail() to denote failure, and YAP cut succeed() to denote
success. The reason for using YAP cut fail() and YAP cut succeed() instead of just returning
a zero or non-zero value, is that otherwise, when backtracking, our function would be indefinitely
called. For a more exhaustive description on how to interface C with Yap please refer to [13].

3.1 Writing Backtrackable Predicates in C

To explain how the C interface works for backtrackable predicates we will use a small example
from the interface between Yap and MySQL. We present the db row(+ResultSet,?ListOfArgs)
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predicate, which fetches tuples from a query result set, tuple-at-a-time through backtracking, and
unifies the list in ListOfArgs with the current tuple. To do so, first a yap mysql.c module should
be created. Next the module should be compiled to a shared object and then loaded under Yap
by executing load foreign files([yap mysql],[],init predicates). After that, the db row/2

predicate becomes available. The code for this module is shown next in Fig. 2.

#include "Yap/YapInterface.h" // header file for the Yap interface to C

void init_predicates() {
YAP_UserBackCPredicate("db_row", c_db_row, c_db_row, 2, 0);

}

int c_db_row(void) { // db_row: ResultSet -> ListOfArgs
int i, arity;
YAP_Term arg_result_set, arg_list_args, head;
MYSQL_ROW row;
MYSQL_RES *result_set;

arg_result_set = YAP_ARG1;
arg_list_args = YAP_ARG2;
result_set = (MYSQL_RES *) YAP_IntOfTerm(arg_result_set);
arity = mysql_num_fields(result_set);
if ((row = mysql_fetch_row(result_set)) != NULL) { // get next tuple
for (i = 0; i < arity; i++) {

head = YAP_HeadOfTerm(arg_list_args);
arg_list_args = YAP_TailOfTerm(arg_list_args);
if (!YAP_Unify(head, YAP_MkAtomTerm(YAP_LookupAtom(row[i]))))
return FALSE;

}
return TRUE;

} else { // no more tuples
mysql_free_result(result_set);
YAP_cut_fail();
return FALSE;

}
}

Figure 2: The C code for the db row/2 predicate

Figure 2 shows some of the key aspects about the Yap interface. The include statement makes
available the macros for interfacing with Yap. The init predicates() procedure tells Yap, by call-
ing YAP UserBackCPredicate(), the predicate defined in the module. The function c db row()

is the implementation in C of the desired predicate. We can define a function for the first time
the predicate is called and another for calls via backtracking. In this example the same function
is used for both calls. Note that this function has no arguments even though the predicate being
defined has two. In fact the arguments of a Prolog predicate written in C are accessed through the
macros YAP ARG1, ..., YAP ARG16 or with YAP A(N) where N is the argument number.

The c db row() function starts by converting the first argument (YAP ARG1) to the correspon-
dent pointer to the query result set (MYSQL RES *). The conversion is done by the YAP IntOfTerm()

macro. It then fetches a tuple from this result set, through mysql fetch row(), and checks if the
last tuple as been already reached. If not, it calls YAP Unify() to attempt the unification of values
in each attribute of the tuple (row[i]) with the respective elements in arg list args. If unification
fails it returns FALSE, otherwise returns TRUE. On the other hand, if the last tuple has been already
reached, it deallocates the result set, as mentioned before, calls YAP cut fail() and returns FALSE.

17



For simplicity of presentation, we omitted type checking procedures over MySQL attributes
that must be done to convert each attribute to the appropriate term in Yap. For some predicates it
is also useful to preserve some data structures across different backtracking calls. This can be done
by calling YAP PRESERVE DATA() to associate such space and by calling YAP PRESERVED DATA() to
get access to it later. With these two macros we can easily share information between backtracking.
This example does not need this preservation, as the cursor is maintained in the result set structure.

3.2 The Yap Implementation of Backtrackable Predicates

In Yap, a backtrackable predicate is compiled using two WAM-like instructions, try userc and
retry userc, as follows:

try_userc c_first arity extra_space
retry_userc c_back arity extra_space

Both instruction have three arguments: the c first and c back arguments are pointers to the
C functions associated with the backtrackable predicate, arity is the arity of the predicate, and
extra space is the memory space used by the YAP PRESERVE DATA() and YAP PRESERVED DATA()

macros.
When Yap executes a try userc instruction it uses the choice point stack to reserve as much

memory as given by the extra space argument, next it allocates and initializes a new choice point
(see Fig. 3), and then it executes the C function pointed by the c first argument. Later, if the
computation backtracks to such choice point, the retry userc instruction gets loaded from the
CP AP choice point field and the C function pointed by the c back argument is then executed.

Choice Point
Data

Predicate
Arguments

Extra Space

...

try_userc

c_first

arity

extra_space

retry_userc

c_back

arity

extra_space

...

Compiled
WAM Code

Choice Point
Stack

CP_AP

Figure 3: Yap support for backtrackable predicates

In order to repeatedly execute the same c back function when backtracking to this choice
point, the retry userc instruction maintains the CP AP field pointing to itself. This is the reason
why we should use YAP cut succeed() or YAP cut fail() when returning the last solution for
the predicate, as otherwise the choice point will remain in the choice point stack and the c back

function will be indefinitely called.
The execution of the YAP PRESERVE DATA() and YAP PRESERVED DATA() macros in the C func-

tions corresponds to calculate the starting position of the reserved space associated with the
extra space argument. For both functions, this is the address of the current choice point pointer
plus its size and the arity of the predicate.
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4 Extending the Yap C Interface to Deal with Pruning

In this section, we discuss how we can solve the problem of pruning database predicates. We consider
two different approaches. In the first approach it is the user that is responsible to specify an action
to be executed just before a cut operation over a database predicate. The second approach is our
original proposal where the system transparently executes a cut procedure when a cut operation
occurs. As we will see, this approach can be used, not only, to handle database predicates but also
to handle any predicate that requires a generic action over a cut.

4.1 Handling Cuts Explicitly

In this approach it is the user that has to explicitly call a predicate to be executed when a cut
operation is performed over special predicates. The idea is as follows: before executing a cut
operation that potentially prunes over databases predicates, the user must execute a predicate that
releases beforehand the result sets for the predicates to be pruned.

Consider again the example from Fig. 1 and assume that b(X) is a database predicate. We might
think of a simple solution: every time a database predicate is first called, we store the pointer for
its result set in a stack frame. Then, we could implement a C predicate, db free result/0 for
example, that deallocates the result set in the top of the stack. Having this, we could adapt the
code for the first clause of predicate a/1 to:

a(X) :- b(X), db_free_result, !, c(X).

To use this approach, the user must be careful to always include a call to db free result/0

before a cut operator. A possible alternative, would be to define a new predicate, db cut/0 for
example, and use it to replace the db free result/0 and the cut.

a(X) :- b(X), db_cut, c(X).

db_cut :- db_free_result, !.

But, unfortunately, this would not work because the cut operator in the db cut/0 definition
will not prune the choice point for b(X) in the first clause of a/1. Another problem with the
db free result/0 approach occurs if we call more than one database predicates before a cut.
Consider the following definition for the predicate a/1, where b1/1 and b2/1 are database predi-
cates.

a(X) :- b1(X), b2(Y), db_free_result, !, c(X).

The db free result/0 will only deallocate the result set for b2/1, leaving the result set for
b1/1 pending. A possible solution for this problem is to mark beforehand the range of predicates
to protect. We can thus implement a C predicate, db cut mark/0 for example, that marks were to
cut to, and change the db cut/0 predicate to call recursively the db free result/0 predicate for
all the result sets within the mark left by the last db cut mark/0 predicate.

a(X) :- db_cut_mark, b1(X), b2(Y), db_cut, !, c(X).

This final solution solves the problem of cursor leaks when pruning database predicates. How-
ever, in this approach the transparency in the use of relationally defined predicates is lost. The
user has to explicitly include extra annotations in the code to control the range of predicates to
cut.
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4.2 Handling Cuts Transparently

We next present our approach to handle cuts transparently. As we shall see, this requires minor
changes to the Yap interface and engine. First, we have extended the procedure used to declare
backtrackable predicates, YAP UserBackCPredicate(), to include an extra C function. Remember
that for backtrackable predicates we used two C functions: one to be executed when the predicate
is first called, and another to be executed upon backtracking. The extra function is where the
user should declare the function to be executed in case of a cut, which for database predicates will
involve the deallocation of the result set. Declaring and implementing this extra function is the
only thing we need to do to take advantage of this approach. Thus, from the user’s point of view,
dealing with standard predicates or relationally defined predicates is then equivalent.

With this extra C function, the compiled code for a backtrackable predicate now includes a new
WAM-like instruction, cut userc, which is used to store the pointer to the extra C function, the
c cut argument.

try_userc c_first arity extra_space
retry_userc c_back arity extra_space
cut_userc c_cut arity extra_space

When Yap executes a try userc instruction it now also allocates space for a cut frame data
structure (see Fig. 4). This data structure includes two fields: CF previous is a pointer to the
previous cut frame on stack and CF inst is a pointer to the cut userc instruction in the compiled
code for the predicate. A top cut frame variable, TOP CF, always points to the youngest cut frame
on stack. Frames form a linked list through the CF previous field.

...

try_userc

c_first

arity

extra_space

retry_userc

c_back

arity

extraspace

Compiled
WAM Code

Choice Point
Stack

extra_space

Predicate
Arguments

CP_AP

Choice Point
Data

Extra Space

Cut Frame
cut_userc

c_cut

arity

extraspaceextra_space

...

CF_inst

CF_previous

TOP_CF

Figure 4: Yap support for handling cuts transparently with backtrackable predicates

By putting the cut frame structure below the associated choice point, we can easily detect the
predicates being pruned when a cut operation occurs. To do so, we extended the implementation of
the cut operation to start by executing a new userc cut check() procedure (see Fig. 5). Remember
that a cut operation receives as argument the choice point to cut to. Thus, starting from the TOP CF

variable and going through the cut frames, we can check if a cut frame will be pruned. If so, we
load the cut userc instruction stored in the correspondent CF inst field in order to execute the cut
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function pointed by the c cut argument. In fact, in our implementation, the cut userc instruction
is never executed. As an optimization, the CF inst field points directly to the cut function.

void userc_cut_check(choiceptr cp_to_cut_to) {
while (TOP_CF < cp_to_cut_to) {
execute_c_function(TOP_CF->CF_inst);
TOP_CF = TOP_CF->CF_previous;

}
return;

}

Figure 5: The pseudo-code for the userc cut check() procedure

The process described above is done before executing the original code for the cut instruction,
that is, before updating the global registry B (pointer to the current choice point on stack). This
is important to prevent the following situation. If the cut function executes a YapCallProlog()

macro to call the Prolog engine from C, this might has the side-effect of allocating new choice points
on stack. Thus, if we had updated the B register beforehand, we will potentially overwrite the cut
frames stored in the pruned choice points and avoid the possibility of executing the correspondent
cut functions.

As a final remark, note that the cut function can also call the YAP PRESERVED DATA() macro
to access the data store in the extra space. We thus need to access the extra space from the cut
frames. This is why we store the cut frames above the extra space. The starting address of the
extra space is thus obtained by adding to the pointer of the current cut frame its size.

To show how the extended interface can be used to handle cuts transparently, we next present
in Fig. 6 the code for generalising the db row/2 predicate to perform the cursor closing upon a cut.

First, we need to define the function to be executed when a cut operation occurs. An important
observation is that this function will be called from the cut instruction, and thus it will not be
able to access the Prolog arguments, YAP ARG1 and YAP ARG2, as described for the c db row()

function. However, we need to access the pointer to the correspondent result set in order to
deallocate it. To solve this, we can use the YAP PRESERVE DATA() macro to preserve the pointer
to the result set. As this only needs to be done when the predicate is first called, we defined
a different function for this case. The YAP UserBackCPredicate() macro was thus changed to
include a cut function, c db row cut(), and to use a different function when the predicate is first
called, c db row first(). The c db row() function is the same as before (see Fig. 2). The last
argument of the YAP UserBackCPredicate() macro defines the size of the extra space for the
YAP PRESERVE DATA() and YAP PRESERVED DATA() macros.

The c db row first() function is an extension of the c db row() function. The only difference
is that it uses the YAP PRESERVE DATA() macro to store the pointer to the given result set in the
extra space for the current choice point. On the other hand, the c db row cut() function uses the
YAP PRESERVED DATA() macro to be able to deallocate the result set when a cut operation occurs.
With these two small extensions, the db row/2 predicate is now protect against cuts and can be
safely pruned by further cut operations.

5 Concluding Remarks

We discussed the problem of pruning database predicates in logic programming with relational
database coupled systems. The existing communication architectures between coupled systems

21



void init_predicates() {
YAP_UserBackCPredicate("db_row", c_db_row_first, c_db_row,

c_db_row_cut, 2, sizeof(MYSQL_RES *));
}

int c_db_row_first(void) {
MYSQL_RES **extra_space;
... // the same as for the c_db_row function
result_set = (MYSQL_RES *) YAP_IntOfTerm(arg_result_set);
YAP_PRESERVE_DATA(extra_space, MYSQL_RES *); // initialize the extra space
*extra_space = result_set; // store the pointer to the result set
... // the same as for the c_db_row function

}

int c_db_row(void) {
... // the same as before

}

void c_db_row_cut(void) {
MYSQL_RES **extra_space, *result_set;

YAP_PRESERVED_DATA(extra_space, MYSQL_RES *);
result_set = *extra_space; // get the pointer to the result set
mysql_free_result(result_set);
return;

}

Figure 6: The C code for protecting the db row/2 predicate against cuts

either do not handle cuts or rely on the user to explicitly protect the database predicates from
potential cut operations. This is a relevant problem as the existing coupling architectures between
a logic system and a RDBMS do not deallocate result sets upon a cut operation over and extensional
predicates. We tested a simple program were a cut was executed over a large database extensional
predicate, using XSB and Ciao Prolog [2] coupled to MySQL and we rapidly reached memory
overflow because of non-deallocated result sets.

In this work, we proposed a new approach where pruning operators can be used independently
of the predicates being pruned, whether they are defined extensionally in database relations or as
Prolog facts. In our proposal the Prolog engine transparently executes a user-defined function when
a cut operation occurs. To do so, we have extended the Yap interface to include an extra C function
when declaring backtrackable predicates. This extra function is where the user defines the actions
to be executed when a cut operation prunes the predicate. The Prolog engine then transparently
executes the function when a cut operation prunes over the predicate. Thus, from the user’s point
of view, it only needs to declare that function once when defining the predicate. This approach is
applicable to any predicate that requires protection against pruning.
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Abstract

Certain aspects of functional programming provide syntactic convenience, such as having
a designated implicit output argument, which allows function call nesting and sometimes re-
sults in more compact code. Functional programming also sometimes allows a more direct
encoding of lazy evaluation, with its ability to deal with infinite data structures. We present
a syntactic functional extension of Prolog covering function application, predefined evaluable
functors, functional definitions, quoting, and lazy evaluation. The extension is also composable
with higher-order features. We also highlight the Ciao features which help implementation and
present some data on the overhead of using lazy evaluation with respect to eager evaluation.

Keywords: Declarative Languages, Logic Programming, Functional Programming, Logic-Functional
Programming, Lazy Evaluation.

1 Introduction

Logic Programming offers a number of features, such as nondeterminism and partially instantiated
data structures, that give it expressive power beyond that of functional programming. However,
certain aspects of functional programming provide in turn syntactic convenience. This includes
for example having a syntactically designated output argument, which allows the usual form of
function call nesting and sometimes results in more compact code. Also, lazy evaluation, which
brings the ability to deal with infinite (non-recursive) data structures [22, 1], while subsumed by
logic programming features such as delay declarations, enjoys a more direct encoding in functional
programming. Bringing this syntactic convenience to logic programming can result in a more
compact program representation in certain cases and is therefore a desirable objective.

With this objective in mind, in this paper we present a design for an extensive functional
syntactic layer for logic programs and its implementation in the Ciao system [4].1 While the
idea of adding functional features to logic programming systems is clearly not new [2, 3, 21], and
there are currently a good number of systems which integrate functions into some form of logic
programming, such as Oz [16] and Mercury [25] (developed simultaneously and independently from
Ciao), or perform a full integration of functional and logic programming, such as Curry [15, 20], we
feel that our proposal and its implementation has peculiarities which make it interesting in itself,
for its application to standard Prolog systems or otherwise.

1The design described herein actually includes some minor changes with respect to the current version which will

be available in the upcoming release of Ciao.
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Our target system, Ciao, offers a complete Prolog system, supporting ISO-Prolog, with a novel
modular design [9] which allows both restricting and extending the language. This design has
allowed us to add functional features to it completely at the source (Prolog) level, and without
modifying at all the compiler or the low-level machinery. The implementation is made by means
of a number of Ciao packages [9], i.e., through the same extension mechanism by which other
syntactic and semantic extensions are supported in Ciao, including constraints, objects, feature
terms/records, persistence, several control rules, etc., giving Ciao its multi-paradigm flavor. How-
ever, our approach to the implementation of functions is actually also relatively straightforward
to implement in any modern Prolog system [14]. We will highlight the Ciao features which make
implementation in our view smoother and more orthogonal with the upfront intention of contribut-
ing if possible to the design of other logic programming systems, which is certainly an important
objective of Ciao.

The rest of the paper is organized as follows: first, we discuss in Section 2 our general approach
to integrating functional notation in a logic programming system. Section 3 presents how we
implemented this approach in Ciao. Section 4 shows an example of the use of lazy evaluation, and
how it is achieved by our implementation. Section 5 presents some experimental results. We come
to a close in Section 6 with our conclusions.

2 Functional Notation in Ciao

2.1 Basic Concepts and Notation

Our notion of functional notation for logic programming departs in a number of ways from previous
proposals. The fundamental one is that functional notation simply provides syntactic sugar for
defining and using predicates as if they were functions, but they can still retain the power of
predicates. In this model, any function definition is in fact defining a predicate, and any predicate
can be used as a function. The predicate associated with a function has the same name and one
more argument, meant as the place holder for the result of the function. This argument is by
default added to the right, i.e., it is the last argument, but can be defined otherwise by using the
appropriate declaration. The syntax extensions provided for functional notation are the following:

Function applications Any term preceded by the ~ operator is a function application, as can
be seen in the goal write(~arg(1,T)), which is equivalent to the sequence arg(1,T,A),

write(A). To use a predicate argument other than the last as the return argument, a dec-
laration like “:- fun_return functor(~,_,_).” can be used, so that ~functor(f,2) is
evaluated to f(_,_) (where functor/3 is the standard ISO-Prolog builtin). This defini-
tion of the return argument can also be done on the fly in each invocation in the following
way: ~functor(~,f,2). Functors can be declared as evaluable (i.e., being in calls in func-
tional syntax) by using the declaration function/1. This allows avoiding the need to use
the ~ operator. Thus, “:- function arg/2.” allows writing write(arg(1,T)) instead
of write(~arg(1,T)) as above. This declaration can be combined with the previous one:
“:- function functor(~,_,_).”. Note that all these declarations, as is customary in
Ciao, are local to the module where they are included. Finally, the ~ operator does not need
to be used within a functional definition (see below) for the functor being defined.

Predefined evaluable functors In addition to functors declared with the declaration function/1,
several functors are evaluable by default, those being:
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• All the functors understood by is/2. Thus, it is possible to use write(A+B) to de-
note T is A+B, write(T). This feature can be disabled by a declaration :- function

arith(false) (and reverted by using true instead of false).

• The functors used for disjunctive and conditional expressions, (|)/2 and (?)/2. A dis-
junctive expression has the form (V1|V2), and its value when first evaluated is V1, and
on backtracking V2. A conditional expression has the form (Cond ? V1), or more com-
monly (Cond ? V1 | V2), and its value, if the execution of Cond as a goal succeeds, is V1,
otherwise in the first form it causes backtracking, and on the second form its value is V2.
Due to operator precedences, a nested expression (Cond1 ? V1 | Cond2 ? V2 | V3) is
evaluated as (Cond1 ? V1 | (Cond2 ? V2 | V3)).

Functional definitions A functional definition is composed of one of more functional clauses. A
functional clause is written using the binary operator :=, as in

opposite(red) := green.

Functional clauses can also have a body, which is executed before the result value is computed.
It can serve as a guard for the clause or to provide the equivalent of where-clauses in functional
languages:

fact(0) := 1.

fact(N) := N * fact(--N) :- N > 0.

In a functional clause, the defined function does not need to be preceded by ~. Note that
guards can often be defined more compactly using conditional expressions:

fact(N) := N = 0 ? 1

| N > 0 ? N * fact(--N).

The translation of functional clauses defining recursive predicates maintains the tail recursion
of the equivalent predicate, thus allowing the usual compiler optimizations.

Quoting functors In clause heads (independently of whether they are defined as predicates or
functions) functors can be prevented from being evaluated by using the (^)/1 prefix operator
(read as “quote”), as in

pair(A,B) := ^(A-B).

Note that this just prevents the evaluation of the principal functor of the enclosed term, not
the possible occurrences of other evaluable functors inside.

Scoping When using function applications inside the goal arguments of meta-predicates, there is
an ambiguity as they could be evaluated either in the scope of the outer execution or the
in the scope of the inner execution. The chosen behavior is by default to evaluate function
applications in the scope of the outer execution, and if they should be evaluated in the inner
scope, the goal containing the function application needs to be escaped with the (^^)/1 prefix
operator, as in findall(X, (d(Y), ^^(X = ~f(Y)+1)), L) (which could also be written as
findall(X, ^^ (d(Y), X = ~f(Y)+1), L)).

Laziness Lazy evaluation is a program evaluation technique used particularly in functional lan-
guages. When using lazy evaluation, an expression is not evaluated as soon as it is assigned,
but rather when the evaluator is forced to produce the value of the expression. The when,
freeze, or block control primitives present in many modern logic programming systems are
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more powerful than lazy evaluation. However, they lack the simplicity of use and cleaner se-
mantics of functional lazy evaluation. In our design, a function (or predicate) can be declared
as lazy via the declarations: “:- lazy function function_name/N.”. (or, equivalently
in predicate version, “:- lazy pred_name/M.”, where M = N + 1). In order to achieve
the intended behavior, the execution of each function declared as lazy is suspended until the
return value of the function is needed.

Definition of real functions In the previous scheme, functions are (at least by default) not
forced to provide a single solution for their result, and, furthermore, they can be partial,
producing a failure when no solution can be found. A predicate defined as a function can
be declared to behave as a real function using the declaration “:- funct name/N.”. Such
predicates are then converted automatically to real functions by adding pruning operators
and a number of Ciao assertions [23] which pose (and check) additional restrictions such
as determinacy, modedness, etc., so that the semantics will be the same as in traditional
functional programming.

2.2 Examples

We now illustrate the use of the functionality introduced above through examples. The following
example defines a simple unary function der(X) which returns the derivative of a polynomial
arithmetic expression:

der(x) := 1.

der(C) := 0 :- number(C).

der(^(A + B)) := ^(der(A) + der(B)).

der(^(C * A)) := ^(C * der(A)) :- number(C).

der(^(x ** N)) := ^(N * ^(x ** (N - 1))) :- integer(N), N > 0.

Note that the code is a bit obfuscated because it uses frequently evaluable functors which need
to be quoted. This quoting can be prevented by including the directive mentioned above to make
functors understood by is/2 not evaluable. Thus, the arithmetic evaluation in the last clause needs
to be explicitly requested. The new program follows:

:- function(arith(false)).

der(x) := 1.

der(C) := 0 :- number(C).

der(A + B) := der(A) + der(B).

der(C * A) := C * der(A) :- number(C).

der(x ** N) := N * x ** ~(N - 1) :- integer(N), N > 0.

Both of the previous code fragments translate to the following code:

der(x, 1).

der(C, 0) :-

number(C).

der(A + B, X + Y) :-

der(A, X),

der(B, Y).

der(C * A, C * X) :-

number(C),
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der(A, X).

der(x ** N, N * x ** N1) :-

integer(N),

N > 0,

N1 is N - 1.

Note that with our solution the programmer may use der/2 as a function or as a predicate
indistinctly.

As a simple example of the use of lazy evaluation consider the following definition of a function
which returns the (potentially) infinite list of integers starting with a given one:

:- lazy function nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

One of the nice features of functional notation is that it allows writing regular types (used in
Ciao assertions [23] and checked by the preprocessor) in a very compact way:

color := red | blue | green.

list := [] | [_ | list].

list_of(T) := [] | [~T | list_of(T)].

which are equivalent to (note the use of higher-order in the third example, to which we will refer
again later):

color(red). color(blue). color(green).

list([]). list([_|T]) :- list(T).

list_of(_, []). list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

3 Implementation Details

As mentioned previously, certain Ciao Prolog features have simplified its extension to handle func-
tional notation. In the following we sketch the features of Ciao we used and then how we applied
them for our needs.

3.1 Code Translations in Ciao

Traditionally, Prolog systems have included the possibility of changing the syntax of the source code
by the use of the op/3 builtin/directive. Furthermore, in many Prolog systems it is also possible
to define expansions of the source code (essentially, a very rich form of “macros”) by allowing the
user to define (or extend) a predicate typically called term expansion/2 [24, 12]. This is usually
how, e.g., definite clause grammars (DCG’s) are typically implemented.

However, these features, in their original form, pose many problems for modular compilation
or even for creating sensible standalone executables. First, the definitions of the operators and,
specially, expansions are global, affecting a number of files. Furthermore, which files are affected
cannot be determined statically, because these features are implemented as a side-effect, rather
than a declaration, and they are meant to be active after they are read by the code processor
(top-level, compiler, etc.) and remain active from then on. As a result, it is impossible by looking
at a source code file to know if it will be affected by expansions or definitions of operators, which
may completely change what the compiler really sees.

In order to solve these problems, these features were redesigned in Ciao, so that it is still possible
to define source translations and operators, but such translations are local to the module or user
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file defining them. Also, these features are implemented in a way that has a well-defined behavior
in the context of a stand-alone compiler (and this has been applied in the Ciao compiler, ciaoc [8]).
In particular, the directive load compilation module/1 allows separating code that will be used
at compilation time (e.g., the code used for translations) from code which will be used at run-time.
It loads the module defined by its argument into the compiler.

In addition, in order to make the task of writing expansions easier, the effects usually achieved
through term expansion/2 can be obtained in Ciao by means of four different, more specialized
directives, which, again, affect only the current module.

The solutions we provided to implement functions in Ciao are based on the possibility of defin-
ing these source translations. In particular, we have used the directives add sentence trans/1

(to define sentence translations) and add goal trans/1 (to define goal translations). A sentence
translation is a predicate which will be called by the compiler to possibly convert each term read
by the compiler to a new term, which will be used by the compiler in place of the original term.
A goal translation is a predicate which will be called by the compiler to possibly convert each goal
present in the clauses of the current text to another goal to replace the original one. Note the pro-
posed model can be implemented in other Prolog systems using similarly using term expansion/2

and operator declarations, but that having operators and syntactic transformation predicates lo-
cal to modules makes it scalable and amenable to combination with other packages and syntactic
extensions.

3.2 Ciao Packages

Packages in Ciao are libraries which define extensions to the language, and have a well defined and
repetitive structure. These libraries typically consist of a main source file which defines only some
declarations (operator declarations, declarations loading other modules into the compiler or the
module using the extension, etc.). This file is meant to be included as part of the file using the
library, since, because of their local effect, such directives must be part of the code of the module
which uses the library. Any auxiliary code needed at compile-time (e.g., translations) is included
in a separate module which is to be loaded into the compiler via a load compilation module/1

directive placed in the main file. Also, any auxiliary code to be used at run-time is placed in
another module, and the corresponding use module declaration is also placed in the include file.

In our implementation of functional notation in Ciao we have provided two packages: one for the
bare function features without lazy evaluation, and an additional one to provide the lazy evaluation
features. The reason for this is that in many cases the lazy evaluation features are not needed and
thus the translation procedure is simplified.

3.3 The Ciao Implementation of Functional Extensions

To translate the functional definitions, we have used as mentioned above the add sentence trans/1

directive to provide a translation procedure which transforms each functional clause to a predicate
clause, adding to the function head the output argument, in order to convert it to the predicate
head. This translation procedure also deals with functional applications in heads, as well as with
function directives.

On the other hand, we have used the add goal trans/1 directive to provide a translation
procedure for dealing with function applications in bodies. The rationale to using a goal translation
is that each function application inside a goal will be replaced by a variable, and the goal will be
preceded by a call to the predicate which implements the function in order to provide a value for
that variable.
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An additional sentence translation is provided to handle the lazy directives. The translation of
a lazy function into a predicate is done in two steps. First, the function is converted into a predicate
using the procedure explained above. Then, the resulting predicate is transformed to suspend its
execution until the value of the output variable is needed. This suspension is achieved by the
use of the freeze/1 control primitive that many modern logic programming systems implement
quite efficiently [11] (block or when declarations can obviously also be used, but we explain the
transformation in terms of freeze because it is more widespread). This translation will rename
the original predicate to an internal name and add a bridge predicate with the original name which
invokes the internal predicate through a call to freeze/1. This will delay the execution of the
internal predicate until its result is required, which will be detected as a binding (i.e., demand) of
its output variable. The following section will provide a detailed example of the translation of a
lazy function. The implementation with block is even simpler since no bridge predicate is needed.

We show below, for reference, the main files for the Ciao library packages functions:
% functions.pl

:- include(library(’functions/ops’)).

:- load_compilation_module(library(’functions/functionstr’)).

:- add_sentence_trans(defunc/3).

:- add_goal_trans(defunc_goal/3).

and lazy (which will usually be used in conjunction with the first one):
% lazy.pl

:- include(library(’lazy/ops’)).

:- use_module(library(freeze)).

:- load_compilation_module(library(’lazy/lazytr’)).

:- add_sentence_trans(lazy_sentence_translation/3).

The Ciao system source provides the actual detailed coding along the lines described above.

4 Lazy Functions: an Example

In this section we show an example of the use of lazy evaluation, and how a lazy function is
translated by our Ciao package.

Figure 1 shows in the first row the definition of a lazy function which returns the infinite list
of Fibonacci numbers, in the second row its translation into a lazy predicate2 (by the functions

package) and in the third row the expansion of that predicate to emulate lazy evaluation (where
fiblist $$lazy$$ stands for a fresh predicate name).

In the fiblist function defined, any element in the resulting infinite list of Fibonacci numbers
can be referenced, as for example, nth(X, ~fiblist, Value). The other functions used in the
definition are tail/2, which is defined as lazy and returns the tail of a list; zipWith/3, which is also
defined as lazy and returns a list whose elements are computed by a function having as arguments
the successive elements in the lists provided as second and third argument;3 and add/2, defined as
add(X,Y) := X + Y.

Note that the zipWith/3 function (respectively the zipWith/4 predicate) is in fact a higher-
order function (resp. predicate). Ciao provides in its standard library a package to support higher-
order [7, 5, 10], which together with the functions and lazy packages (and, optionally, the type
inference and checking provided by the Ciao preprocessor [18]) basically provide all the functionality
present in modern functional languages.

2The :- lazy function fiblist/0. declaration is converted into a :- lazy fiblist/1. declaration.
3It has the same semantics as the zipWith function in Haskell.
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:- lazy function fiblist/0.

fiblist := [0, 1 | ~zipWith(add, FibL, ~tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.

fiblist([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).

fiblist(X) :-

freeze(X, ’fiblist_$$lazy$$’(X)).

’fiblist_$$lazy$$’([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).

Figure 1: Code translation for a fibonacci function, to be evaluated lazily.

5 Some Performance Measurements

Since the functional extensions proposed simply provide a syntactic bridge between functions and
predicates, there are only a limited number of performance issues worth discussing. For the case
of real functions, it is well known that performance gains can be obtained from the knowledge of
a certain function or predicate being moded (e.g., for a function all arguments being ground on
input and the “designated output” argument being ground on output), determinate, non-failing,
etc. [26, 17, 19]. In Ciao this information can in general (i.e., for any predicate or function) be
inferred by the Ciao preprocessor or declared with Ciao assertions [18, 23]. As mentioned before,
for declared “real” (func) functions, the corresponding information is added automatically. Some
results on current Ciao performance when this information is available are presented in [19].

In the case of lazy evaluation of functions, the main goal of the technique presented herein is not
really any increase in performance, but achieving new functionality and convenience through the
use of code translations and delay declarations. However, while there have also been some studies
of the overhead introduced by delay declarations, it is interesting to see how this overhead affects
our implementation of lazy evaluation by observing its performance. Consider the nat/2 function
in Figure 2, a simple function which returns a list with the first N numbers from an (infinite) list
of natural numbers.

:- function nat/1.

nat(N) := ~take(N, nums_from(0)).

:- lazy function nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

:- function nat/1.

:- function nats/2.

nat(X) := nats(0, X).

nats(X, Max) := X > Max ? []

| [X | nats(X+1, Max)].

Figure 2: Lazy and eager versions of function nat(X).
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Function take/2 in turn returns the list of the first N elements in the input list. This nat(N)
function cannot be directly executed eagerly due to the infinite list provided by the nums from(X)

function, so that, in order to compare time and memory results between lazy and eager evaluation,
an equivalent version of that function is provided.

Table 1 reflects the time and memory overhead of the lazy evaluation version of nat(X) and
that of the equivalent version executed eagerly. As a further example, Table 2 shows the results for
a quicksort function executed lazily in comparison to the eager version of this algorithm. All the
results were obtained by averaging ten runs on a medium-loaded Pentium IV Xeon 2.0Ghz with two
processors, 4Gb of RAM memory, running Fedora Core 2.0, and with the translation of Figure 1.

Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.030 1503.2 0.002 491.2

100 elements 0.276 10863.2 0.016 1211.2

1000 elements 3.584 104463.0 0.149 8411.2

2000 elements 6.105 208463.2 0.297 16411.2

5000 elements 17.836 520463.0 0.749 40411.2

10000 elements 33.698 1040463.0 1.277 80411.2

Table 1: Performance for nat/2 (time in ms. and heap sizes in bytes).

Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.091 3680.0 0.032 1640.0

100 elements 0.946 37420.0 0.322 17090.0

1000 elements 13.303 459420.0 5.032 253330.0

5000 elements 58.369 2525990.0 31.291 1600530.0

15000 elements 229.756 8273340.0 107.193 5436780.0

20000 elements 311.833 11344800.0 146.160 7395100.0

Table 2: Performance for qsort/2 (time in ms. and heap sizes in bytes).

We can observe that there is certainly an impact on the execution time when functions are
evaluated lazily, but even with this version the results are quite acceptable if we take into account
that the execution of the predicate does really suspend. Related to memory consumption we
show heap sizes, without garbage collection (in order to observe the raw memory consumption
rate). Lazy evaluation implies as expected some memory overhead due to the need to copy (freeze)
program goals into the heap. Also, while comparing with standard lazy functional programming
implementations is beyond the scope of this paper, some simple tests done for sanity check purposes
(with HUGS) show that the results are comparable, our implementation being for example slower
on nat but faster on qsort, presumably due to the different optimizations being performed by the
compilers.

An example when lazy evaluation can be a better option than eager evaluation in terms of
performance and not only convenience is found in a concurrent or distributed system environment
(such as, e.g., [13]), and in the case of Ciao also within the active modules framework [4, 6]. The
example in Figure 3 uses a function, defined in an active module, which returns a big amount of data.
Function test/0 in module module1 needs to execute function squares/1, in (active, i.e., remote)
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module module2, which will return a very long list (which could be infinite for our purposes). If
squares/1 were executed eagerly then the entire list would be returned, to immediately execute the
takeWhile/2 function with the entire list. takeWhile/2 returns the first elements of a (possibly
infinite) list while the specified condition is true. But creating the entire initial list is very wasteful
in terms of time and memory requirements. In order to solve this problem, the squares/1 function
could be moved to module module1 and merged with takeWhile/2 (or, also, they could exchange a
size parameter). But rearranging the program is not always possible and may perhaps complicate
other aspects of the overall program design.

But if the squares/1 function is evaluated lazily, it is possible to keep the definitions unchanged
and in different modules, so that there will be a smaller time and memory penalty for generating
and storing the intermediate result. As more values are needed by the takeWhile/2 function, more
values in the list returned by squares/1 are built (in this example, only while the new generated
value is less than 10000), considerably reducing the time and memory consumption that the eager
evaluation would take.

:- module(module1, [test/1], [functions, lazy, hiord,actmods]).

:- use_module(library(’actmods/webbased_locate’)).

:- use_active_module(module2, [squares/2]).

:- function takeWhile/2.

takeWhile(P, [H|T]) := P(H) ? [H | takeWhile(P, T)]

| [].

:- function test/0.

test := takeWhile(condition, squares).

condition(X) :- X < 10000.

:- module(module2, [squares/1], [functions, lazy, hiord]).

:- lazy function squares/0.

squares := map_lazy(take(1000000, nums_from(0)), square).

:- lazy function map_lazy/2.

map_lazy([], _) := [].

map_lazy([X|Xs], P) := [~P(X) | map_lazy(Xs, P)].

:- function take/2.

take(0, _) := [].

take(X, [H|T]) := [H | take(X-1, T)] :- X > 0.

:- lazy function nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

:- function square/1.

square(X) := X * X.

Figure 3: A distributed (active module) application using lazy evaluation.
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6 Conclusions

We have presented a functional extension of Prolog, which includes the possibility of evaluating
functions lazily. The proposed approach has been implemented in Ciao and is used now throughout
the libraries and other system code (including the preprocessor and documenter) as well as in a
number of applications written by the users of the system.

The performance of the package has been tested with several examples. As expected, evaluating
functions lazily implies some overhead (and also additional memory consumption) with respect to
eager evaluation. This justifies letting the user choose via annotations for which functions or
predicates lazy evaluation is desired. In any case, the main advantage of lazy evaluation is to
make it easy to work with infinite (non-periodic) data structures in the manner that is familiar to
functional programmers.
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Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2), 2005.

[19] J. Morales, M. Carro, and M. Hermenegildo. Improving the Compilation of Prolog to C Using Moded
Types and Determinism Information. In Proceedings of the Sixth International Symposium on Practical
Aspects of Declarative Languages, number 3507 in LNCS, pages 86–103, Heidelberg, Germany, June
2004. Springer-Verlag.
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Abstract

This paper introduces an architecture for generic constraint implementations based on variable views
and range iterators. Views allow, for example, to scale, translate, and negate variables. The paper
shows how to make constraint implementations generic and how to reuse a single generic implementation
with different views for different constraints. Applications of views exemplify their usefulness and
their potential for simplifying constraint implementations. We introduce domain operations compatible
with views based on range iterators. The paper evaluates different implementation techniques for the
presented architecture.

1 Introduction
A challenging aspect in developing and extending a constraint programming system is implementing a com-
prehensive set of constraints. Ideally, a system should provide simple, expressive, and efficient abstractions
that ease development and reuse of constraint implementations.

This paper contributes a new architecture based on variable views and range iterators. The architecture
comprises an additional level of abstraction to decouple variable implementations from propagators (as con-
straint implementations). Propagators compute generically with variable views instead of variables. Views
support operations like scaling, translation, and negation of variables. For example, a simple generic propa-
gator for linear equality ∑k

i=1 xi = c can be used with a scale-view xi = ai · yi to obtain an implementation of
∑k

i=1 ai · yi = c. Variable views assist in implementing propagators on a higher level of abstraction.
Range iterators support powerful and efficient domain operations on variables and variable views. The

operations can access and modify multiple values of a variable domain simultaneously. Range iterators are
efficient as they help avoiding temporary data structures. They simplify propagators by serving as adaptors
between variables and propagator datastructures.

The architecture is carefully separated from its implementation. Two different implementation ap-
proaches are presented and evaluated. An implementation using parametric polymorphism (such as tem-
plates in C++) is shown to not incur any runtime cost. The architecture can be used for arbitrary constraint
programming systems and has been fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint programming systems.
Sect. 3 introduces variable views and exemplifies their use. Sect. 4 introduces iterator-based domain oper-
ations that are applied to views in the following section. Variable views for set constraints are discussed
in Sect. 6. In Sect. 7 implementation approaches for views and iterators are presented, followed by their
evaluation in Sect. 8. The last section concludes.
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2 Constraint Programming Systems
This section introduces the model for finite domain constraint programming systems considered in this paper
and relates it to existing systems.

Variables and propagators. Finite domain constraint programming systems offer services to support con-
straint propagation and search. In this paper we are only concerned with variables used for constraint prop-
agation. We assume that a constraint is implemented by a propagator. A propagator maintains a collection
of variables and performs constraint propagation by executing operations on them. In the following we con-
sider finite domain variables and propagators. A finite domain variable x has an associated domain dom(x)
being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operations provided by the variable.
These operations return information about the domain or update the domain. In addition, they handle failure
(the domain becomes empty) and control propagation.

Value operations. A value operation on a variable involves a single integer as result or argument. We
assume that a variable x with D = dom(x) provides the following value operations: x.getmin() returns minD,
x.getmax() returns maxD, x.adjmin(n) updates dom(x) to {m ∈D | m≥ n}, x.adjmax(n) updates dom(x) to
{m∈D |m≤ n}, and x.excval(n) updates dom(x) to {m∈D |m 6= n}. These operations are typical for finite
domain constraint programming systems like Choco [6], ILOG Solver [9, 11, 4], Eclipse [1], Mozart [8],
and Sicstus [5]. Some systems provide additional operations such as for assigning values.

Domain operations. A domain operation supports simultaneous access or update of multiple values of
a variable domain. In many systems this is provided by supporting an abstract set-datatype for variable
domains, as for example in Choco [6], Eclipse [1], Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only
allows access by iterating over the values of a variable domain.

Subscription. When a propagator p is created, it subscribes to its variables. Subscription guarantees that
p is executed whenever the domain of one of its variables changes according to an event. An event describes
when the propagator requires execution: e = fix when dom(x) becomes a singleton, e = min if mindom(x)
changes, e = max if maxdom(x) changes, and e = any if dom(x) changes. For more on events, see for
example [13].

Range and value sequences. Range notation [n .. m] is used for the set of integers {l ∈ Z | n≤ l ≤ m}. A
range sequence ranges(I) for a finite integer set I ⊆ Z is the shortest sequence s = 〈[n1 .. m1] , . . . , [nk .. mk]〉
such that I is covered (set(s) = I, where set(s) is defined as

⋃k
i=1 [ni .. mi]) and the ranges are ordered by

their smallest elements (ni ≤ ni+1 for 1≤ i < k). The above range sequence is also written as 〈[ni .. mi]〉
k
i=1.

Clearly, a range sequence is unique, none of its ranges is empty, and mi +1 < ni+1 for 1≤ i < k.
A value sequence values(I) for a finite set of integers I ⊆Z is the shortest sequence s = 〈n1, . . . ,nk〉 (also

written as 〈ni〉
k
i=1) such that I is covered (set(s) = I, where set(s) =

⋃k
i=1 ni) and that the values are ordered

(ni ≤ ni+1 for 1≤ i < k). Again, this sequence is unique and has no duplicate values.

3 Variable Views with Value Operations
This section introduces variable views with value operations. The full design with domain operations and a
discussion of their properties follows in Sect. 5.
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Example 1 (Smart n-Queens) Consider the well-known finite domain constraint model for n-Queens using
three alldifferent constraints: each queen is represented by a variable x i (0≤ i < n) with domain {0, . . . ,n−
1}. The constraints state that the values of all xi, the values of all xi− i, and the values of all xi + i must be
pairwise different for 0≤ i < n.

If the used constraint programming system lacks versions of alldifferent supporting that the values of
xi + ci are different, the user must resort to using additional variables yi and constraints yi = xi + ci and the
single constraint that the yi are different. This approach is clearly not very efficient: it triples the number of
variables and requires additional 2n binary constraints.

Systems with this extension of alldifferent must implement two very similar versions of the same propa-
gator. This is tedious and increases the amount of code that requires maintenance. In the following we make
propagators generic: the same propagator can be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by operations on variable
views. A variable view (view for short) implements the same operations as a variable. A view stores a
reference to a variable. Invoking an operation on the view executes the appropriate operation on the view’s
variable. Multiple variants of a propagator can be obtained by instantiating the single generic propagator
with multiple different variable views.

Offset-views. For an offset-view v = voffset(x,c) for a variable x and an integer c, performing an operation
on v results in performing an operation on x+ c. The operations on the offset-view are:

v.getmin() := x.getmin()+ c v.getmax() := x.getmax()+ c
v.adjmin(n) := x.adjmin(n− c) v.adjmax(n) := x.adjmax(n− c)
v.excval(n) := x.excval(n− c)

To obtain both alldifferent propagators required by Example 1, also an identity-view is needed. An
operation on an identity-view vid(x) for a variable x performs the same operation on x. That is, identity-
views turn variables into views to comply with propagators now computing with views.

Obtaining the two variants of alldifferent is straightforward: the propagator is made generic with respect
to which view it uses. Using the propagator with both an identity-view and an offset-view yields the required
propagators.

Sect. 7 discusses how views can be implemented whereas this section focuses on the architecture only.
However, to give some intuition, in C++ for example, propagators can be made generic by implementing them
as templates with the used view as template argument. Instantiating the generic propagator then amounts to
instantiating the corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offset-views can be used for any imple-
mentation of alldifferent using value operations. This includes the naive version propagating when variables
become assigned or the bounds-consistent version [10].

Scale-views. In the above example, views allow to reuse the same propagator for variants of a constraint,
avoiding duplication of code and effort. In the following, views can also simplify the implementation of
propagators.

Example 2 (Linear inequalities) A common constraint is linear inequality ∑n
i=1 ai · xi ≤ c (equality and

disequality is similar) with integers ai and c and variables xi. In the following we restrict the ai to be
positive.

A typical bounds-propagator executes for 1≤ j ≤ n:

x j.adjmax(d(c− l j)/a je) with l j = ∑n
i=1,i6= j ai · xi.getmin()
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Quite often, models feature the special case ai = 1 for 1≤ i≤ n. For this case, it is sufficient to execute
for 1≤ j ≤ n:

x j.adjmax(c− l j) with l j = ∑n
i=1,i6= j xi.getmin()

As this case is common, a system should optimize it. An optimized version requires less space (no a i
required) and less time (no multiplication, division, and rounding). But, a more interesting question is: can
one just implement the simple propagator and get the full version by using views?

With scale-views, the simple implementation can be used in both cases. A scale-view v = vscale(a,x)
for a positive integer a > 0 and a variable x defines operations for a · x:

v.getmin() := a · x.getmin() v.getmax() := a · x.getmax()
v.adjmin(n) := x.adjmin(dn/ae) v.adjmax(n) := x.adjmax(bn/ac)
v.excval(n) := if n mod a = 0 then x.excval(n/a)

From the simpler implementation the special case (identity-views) and the general case (scale-views)
can be obtained. Multiplication, division, and rounding is separated from actually propagating the inequality
constraint. Views hence support separation of concerns and can simplify the implementation of propagators.
In particular, multiplication, division, and rounding need to be implemented only once for the scale-view:
any generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and ternary variants of commonly
used constraints. This optimization reduces the overhead with respect to both time and memory as no array
is needed.

Example 3 (Binary linear inequality) Consider a propagator for v1 + v2 ≤ c with views v1 and v2 propagat-
ing as described in Example 2. With scale-views v1 = vscale(a1,x1) and v2 = vscale(a2,x2) the propagator
also implements a1 · x1 +a2 · x2 ≤ c provided that a1,a2 > 0. However, x1− x2 ≤ c cannot be obtained with
scale-views. Even if scale-views allowed negative constants, it would be inefficient to multiply, divide, and
round to just achieve negation.

A minus-view v = vminus(x) for a variable x provides operations such that v behaves as −x. Its op-
erations reflect that the smallest possible value for x is the largest possible value for −x and vice versa:

v.getmin() :=−x.getmax() v.getmax() :=−x.getmin()
v.adjmin(n) := x.adjmax(−n) v.adjmax(n) := x.adjmin(−n)
v.excval(n) := x.excval(−n)

With minus-views, x1−x2 ≤ c can be obtained from an implementation of v1 +v2 ≤ c with v1 = vid(x1)
and v2 = vminus(x2). With an offset-view it is actually sufficient to implement v1 +v2 ≤ 0. Then x1 +x2 ≤ c
can be implemented by an identity-view vid(x1) for v1 and an offset-view voffset(x2,−c) for v2. But again,
given just v1 + v2 ≤ 0, an implementation for x1− x2 ≤ c with c 6= 0 cannot be obtained.

Derived views. It is unnecessarily restrictive to define views in terms of variables. The actual requirement
for a view is that its variable provides the same operations. It is straightforward to make views generic
themselves: views can be defined in terms of other views. The only exception are identity-views as they
serve the very purpose of casting a variable into a view. Views such as offset, scale, and minus are called
derived views: they are derived from some other view.

With derived views being defined in terms of views, the first step to use a derived view is to turn a
variable into a view by an identity-view. For example, a minus-view v for the variable x is obtained from a
minus-view and an identity-view: v = vminus(vid(x)).
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Example 4 (Binary linear inequality reconsidered) With the help of offset-views, minus-views, and scale-
views, all possible variants of binary linear inequalities can now be obtained from a propagator for v1 +
v2 ≤ 0. For example, a · x1− x2 ≤ c with a > 0 can be obtained with v1 = vscale(a,vid(x1)) and v2 =
vminus(voffset(vid(x2),c)) or v2 = voffset(vminus(vid(x2)),−c).

Scale-views reconsidered. The coefficient of a scale-view is restricted to be positive. Allowing arbitrary
non-zero constants a in a scale-view s = vscale(a,x) requires to take the signedness of a into account. This
can be seen for the following two operations (the others are similar):

s.getmin() := if a < 0 then a · x.getmax() else a · x.getmin()
s.adjmax(n) := if a < 0 then x.adjmin(bn/ac) else x.adjmax(bn/ac)

This extension might be inefficient. Consider Example 2: inside the loop implementing propagation on
all views, the decision whether the coefficient in question is positive or negative must be made. For modern
computers, conditionals — in particular in tight loops — can reduce performance considerably. A more
efficient way is to restrict scale-views to positive coefficients and use an additional minus-view for cases
where negative coefficients are required.
Example 5 (Linear inequalities reconsidered) An efficient way to implement a propagator for linear in-
equality distinguishes positive and negative variables as in ∑n

i=1 xi +∑m
i=1−yi ≤ c.

The propagator is simple: it consists of two parts, one for the xi and one for the yi. Both parts share
the same implementation used with different views. To propagate to the x i, identity-views are used. To
propagate to the yi, minus-views are used. Arbitrary coefficients are obtained from scale-views as shown
above.

The example shows that it can be useful to make parts of a propagator generic and reuse these parts
with different views. Puget presents in [10] an algorithm for the bounds-consistent alldifferent. The paper
presents only an algorithm for adjusting the upper bounds of the variables x i and states that the lower bounds
can be adjusted by using the same algorithm on variables yi where yi =−xi. With views, this technique for
simplifying the presentation of an algorithm readily carries over to its implementation: the implementation
can be reused together with minus-views.

Another aspect in the design of scale-views is numerical precision: for large a the values occurring
in computations with a scale-view vscale(a,v) can exceed the range of normal integer computations. A
system can provide several scale-views that differ in which numerical datatype is used for computation. For
example, a system can provide a scale-view that computes with normal integers or with double-precision
floating point numbers.

Constant-views. Derived views exploit that views do not need to be implemented in terms of variables.
This can be taken to the extreme in that a view has no access at all to a variable. A constant-view v = vcon(c)
for an integer c provides operations such that v behaves as a variable x being equal to c:

v.getmin() := c v.getmax() := c
v.adjmin(n) := if n > c then fail v.adjmax(n) := if n < c then fail
v.excval(n) := if n = c then fail

Example 6 (Ternary linear inequalities) Another optimization for linear constraints are ternary variants.
Given a propagator for v1 +v2 +v3 ≤ c and using a constant-view vcon(0) for one of the views vi, all binary
variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over to linear equalities and disequalities), views support
many optimized special cases from just two implementations (the general n-ary case and the ternary case).
These implementations are simple as they do not need to consider coefficients.
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Events. The handling of events in subscribing to a variable is straightforward. Clearly, for a constant-
view subscription does nothing. For all but the minus-view the events on the variable and the events on the
derived view coincide. If v′ = vminus(v), then a change of the minimum of v corresponds to a change of the
maximum of v′ and vice versa.

4 Domain Operations and Range Iterators
Today’s constraint programming systems support domain operations either only for access or by means of
an explicitly represented abstract datatype. In this paper, we propose domain operations based on range
iterators. These operations are shown to be simple, expressive, and efficient. Additionally, range iterators
are essential for views as presented in Sect. 5.

Range iterators. A range iterator r for a range sequence s = 〈[ni .. mi]〉
k
i=1 allows to iterate over s: each

of the [ni .. mi] can be obtained in sequential order but only one at a time. A range iterator r provides the
following operations: r.done() tests whether all ranges have been iterated, r.next() moves to the next range,
and r.min() and r.max() return the minimum and maximum value for the current range. By set(r) we refer
to the set defined by an iterator r (which must coincide with set(s)).

A possible implementation of a range iterator r for s maintains an index ir which is initially ir = 1, the
operations can then be defined as:

r.done() := ir > k r.next() := (ir← ir +1)
r.min() := nir r.max() := mir

A range iterator hides its implementation. Iteration can be by position as above, but it can also be by
traversing a list. The latter is particularly interesting if variable domains are implemented as lists of ranges
themselves.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated twice, a fresh
iterator is needed. If iteration is cheap, a reset-operation for an iterator can be provided so that multiple
iterations are supported by the same iterator. For more expensive iterators, a solution is discussed later.

Domain operations. Variables are extended with operations to access and modify their domains with
range iterators. For a variable x, the operation x.getdom() returns a range iterator for ranges(dom(x)).
For a range iterator r the operation x.setdom(r) updates dom(x) to set(r) provided that set(r) ⊆ dom(x).
The responsibility for ensuring that set(r) ⊆ dom(x) is left to the programmer and hence requires careful
consideration. Later richer (and safe) domain operations are introduced. The operation x.setdom(r) is
generic with respect to r: any range iterator can be used.

Domain operations can offer a substantial improvement over value operations, if many values need to be
removed from a variable domain simultaneously. Assume a typical implementation of a variable domain D
which organizes ranges(D) = 〈[ni .. mi]〉

k
i=1 as a linked-list. Removing a single element from D takes O(k)

time and might increase the length of the linked-list by one (introducing an additional hole). Hence, in the
worst case, removing l elements takes O(l(k+ l)) time. With domain operations based on iterators, removal
takes O(k + l) time.

Range iterators serve as simplistic abstract datatype to describe finite sets of integers. However, they
provide some essential advantages over an explicit set representation. First, any range iterator regardless
of its implementation can be used to update the domain of a variable. This turns out to allow for simple,
efficient, and expressive updates of variable domains. Second, no costly memory management is required
to maintain a range iterator as it provides access to only one range at a time. Third, iterators are essential in
providing domain operations on variable views as will be discussed in Sect. 5.
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Intersection iterators. Let us consider intersection as an example for computing with range iterators.
Intersection is computed by an intersection iterator r (returned by iinter(a,b)) taking two range iterators a
and b as input where set(r) = set(a)∩ set(b). The intersection iterator maintains integers n and m for storing
the smallest and largest value of its current range. When initialized, the next operation is executed once.
The operations for access are obvious: r.min() returns n and r.max() returns m. The other operations are:

r.done() := a.done()∨b.done()
r.next() := if a.done()∨b.done() then return

repeat
while ¬a.done()∧ (a.max() < b.min()) do a.next()
if a.done() then return
while ¬b.done()∧ (b.max() < a.min()) do b.next()
if b.done() then return

until a.max()≥ b.min()
n←max(a.min(),b.min()); m←min(a.max(),b.max())
if a.max() < b.max() then a.next() else b.next()

The repeat-loop iterates a and b until their ranges overlap. The tests whether a or b are done ensure that
no operation is performed on a done iterator. The remainder computes the resulting range and prepares for
computing a next range.

The iterators a and b can be arbitrary iterators (again, the intersection iterator is generic), so it is easy
to obtain an iterator that computes the intersection of three iterators by using two intersection iterators.
Intersection is but one example for a generic iterator, other useful iterators are for example: r = iunion(a,b)
for iterating the union of a and b (set(r) = set(a)∪set(b)) and r = iminus(a,b) for iterating the set difference
of a and b (set(r) = set(a)\ set(b)).

Example 7 (Propagating equality) Consider a propagator that implements domain-consistent equality: x =
y (assuming that x and y are variables, views are discussed later). The propagator can be implemented as
follows: get range iterators for x and y by rx = x.getdom() and ry = y.getdom(), create an intersection
iterator ri = iinter(rx,ry), update one of the variable domains by x.setdom(ri), and copy the domain from x
to y by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators it is better to actually create an
intermediate representation of the range sequence computed by an iterator. The intermediate representation
can be reused as often as needed. This is achieved by a cache-iterator: it takes an arbitrary range iterator
as input, iterates it completely, and stores the obtained ranges in an array. Its actual operations then use the
array. The cache-iterator also implements a reset operation as discussed above. By this, the possibly costly
input iterator is used only once, while the cache-iterator can be used as often as needed.

Richer domain operations. With the help of iterators, richer domain operations are effortless. For a
variable x and a range iterator r, the operation x.adjdom(r) replaces dom(x) by dom(x)∩ set(r), whereas
x.excdom(r) replaces dom(x) by dom(x)\ set(r):

x.adjdom(r) := x.setdom(iinter(x.getdom(),r))
x.excdom(r) := x.setdom(iminus(x.getdom(),r))
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Value versus range iterators. Another design choice is to base domain operations on value iterators:
iterate values rather than ranges of a set. This is not efficient: a value sequence is considerably longer than
a range sequence (in particular for the common case of a singleton range sequence).

For implementing propagators, however, it can be simpler to iterate values. This can be achieved by a
range-to-value iterator. A value iterator v has the operations v.done(), v.next(), and v.val() to access the
current value. A range-to-value iterator takes a range iterator as input and returns a value iterator iterating
the values of the range sequence. The inverse is a value-to-range iterator: it takes as input a value iterator
and returns the corresponding range iterator. For a value-to-range iterator it is helpful to allow duplicates in
the increasing value sequence. This iterator has many applications, as is explained below.

Iterators as adaptors. Global constraints are typically implemented by a propagator computing over some
involved data structure, such as for example a variable-value graph for domain-consistent all-distinct [12].
After propagation, the new variable domains must be transferred from the data structure to the variables.
This can be achieved by using a range or value iterator as adaptor. The adaptor operates on the data structure
and iterates the value or range sequence for a particular variable. The iterator (together with a value-to-range
iterator for a value iterator) then can be passed to the appropriate domain operation.

5 Variable Views with Domain Operations
This section discusses domain operations for variable views using iterators.

Identity and constant views. Domain operations for identity-views and constant-views are straightfor-
ward. The domain operations for an identity-view v = vid(x) use the domain operations on x: v.getdom() :=
x.getdom() and v.setdom(r) := x.setdom(r). For a constant-view v = vcon(c), the operation v.getdom() re-
turns an iterator for the singleton range sequence 〈[c .. c]〉. The operation v.setdom(r) just checks whether
the range sequence of r is empty.

Derived views. Domain operations for an offset-view voffset(v,c) are provided by an offset-iterator. The
operations of an offset-iterator o for a range iterator r and an integer c (created by ioffset(r,c)) are as follows:

o.min() := r.min()+ c o.max() := r.max()+ c
o.done() := r.done() o.next() := r.next()

The domain operations for an offset view v = voffset(x,c) are as follows:
v.getdom() := ioffset(x.getdom(),c) v.setdom(r) := x.setdom(ioffset(r,−c))

For minus-views we just give the range sequence as iteration is obvious. For a given range sequence
〈[ni .. mi]〉

k
i=1, the negative sequence is obtained by reversal and sign change as 〈[−mk−i+1 .. −nk−i+1]〉

k
i=1.

The same iterator for this sequence can be used both for setdom and getdom operations. Note that the iterator
is quite complicated as it changes direction of the range sequence, possible implementations are discussed
in Sect. 7.

Assume a scale-view s = vscale(a,v) with a > 0 and 〈[ni .. mi]〉
k
i=1 being a range sequence for v. If

a = 1, the range sequence remains unchanged. Otherwise, the corresponding range sequence for s is
〈{a ·n1},{a · (n1 +1)}, . . . ,{a ·m1}, . . . ,{a ·nk},{a · (nk +1)}, . . . ,{a ·mk}〉.

Assume that 〈[ni .. mi]〉
k
i=1 is a range sequence for s. Then the ranges [dni/ae .. bmi/ac] for 1 ≤ i ≤ k

correspond to the required variable domain for v, however they do not necessarily form a range sequence
as the ranges might be empty, overlapping, or adjacent. Iterating the range sequence is simple by skipping
empty ranges and conjoining overlapping or adjacent ranges.
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Consistency. An important issue is how views affect the consistency of a propagator. Let us first consider
all views except scale-views. These views compute bijections on the values as well as on the ranges of a
domain D. A bounds (domain) consistent propagator for a constraint C with variables x1, . . . ,xn establishes
bounds (domain) consistency for the constraint C with all the variables replaced by vk(xk) (if vk computes
the view of xk).

Scale-views only compute bijections on values: a range does not remain a range after multiplication.
This implies that bounds consistent propagators do not establish bounds consistency on scale-views. Con-
sider for example a bounds consistent propagator for alldifferent. With x,y,z ∈ {1,2}, alldifferent(4x,4y,4z)
cannot detect failure, while alldifferent(x,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

6 Views for Set Constraints
Views and iterators readily carry over to other constraint domains. This section shows how to apply them to
finite sets.

Finite sets. Most systems approximate domains of finite set variables by a greatest lower and least upper
bound [3]: dom(x) = (glb, lub). The fundamental operations are similar to domain operations on finite
domain variables: x.glb() returns glb(x), x.lub() returns lub(x), x.adjglb(D) updates dom(x) to (glb(x)∪
D, lub(x)), and x.adjlub(D) updates dom(x) to (glb(x), lub(x)∩D).

All these operations take sets as arguments, so iterators play an important role here. In fact, range
iterators provide exactly the operations that set propagators need: union, intersection, and complement.
Most propagators thus do not require temporary datastructures.

As before, propagators now operate on views. In addition to the identity view, the following derived
views make propagators more generic. As for finite domains, constant-views – like the empty set, the
universe, or some arbitrary set – help derive binary propagators from ternary ones. For example, s1∩ s2 = s3
implements set disjointness if s3 is the constant empty set. With a complement-view, s1 = s2 \ s3 can be
implemented as s1 = s2∩ s3

Cross-domain views. With finite domain and set constraints in a single system, cross-domain views come
into play. The most obvious cross-domain view is a finite domain variable viewed as singleton set. Using
generic propagators, this immediately leads to domain-connecting constraints like x ∈ s (using {x} ⊆ s), or
s = {x1, . . . ,xk} (using s = {x1}] · · ·]{xk}).

For cross-domain views, variable subscription handles the different sets of events. For instance, if a
finite domain variable x has an any event, all propagators subscribed to upper-bound-change events of a
singleton-view of x must be executed.

Cross-domain views can support more than one implementation for the same variable type. Set variables,
for example, can be implemented with lower and upper bounds or with their full domain using ROBDDs [7].
A cross-domain view allows lower/upper bound propagators to operate on ROBDD-based sets, reusing
propagators for which no efficient BDD representation exists.

7 Implementation
The presented architecture can be implemented as an orthogonal layer of abstraction for any constraint
programming system. This section presents the fundamental mechanisms necessary for iterators and views.
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Polymorphism. The implementation of generic propagators, views, and iterators requires polymorphism:
propagators operate on different views, domain operations and iterators on different iterators. Both subtype
polymorphism (through inheritance in Java, inheritance and virtual methods in C++) and parametric poly-
morphism (through templates in C++, generics in Java, polymorphic functions in ML or Haskell) can be
used.

In C++, parametric polymorphism through templates is resolved at compile-time, and the generated code
is monomorphic. This enables the compiler to perform aggressive optimizations, in particular inlining. The
hope is that the additional layer of abstraction can be optimized away entirely. Some ML compilers also
apply monomorphization, so similar results could be achieved. Java generics are compiled into casts and
virtual method calls, probably not gaining much efficiency.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantiation can only happen
at compile-time. Hence, either C++ must be used for modeling, or all potentially required propagator variants
must be provided by explicit instantiation. For n-ary constraints like linear inequality, this can be a real
limitation, as all arrays must be monomorphic (only a single kind of view per array is allowed). The same
holds true for n-ary set constraints, where especially constant-views for the empty set or the universe would
come in handy.

A compromise is to use template-based polymorphism whenever possible and only resort to subtype
polymorphism when necessary. This can be achieved by instantiating all propagators with special views that
can be subclassed, and having an operation to construct such a view from an identity view. In Gecode, we
currently only use template-based polymorphism. This makes the system very efficient, as will be analyzed
in the next section.

For the instantiation of templates as well as for inlining, the code that should be instantiated or inlined
must be available at compile time of the code that uses it. This is why most of the actual code in Gecode
resides in C++ header files, slowing down compilation of the system. On the interface level however, no
templates are used, such that the header files needed for using the library are reasonably small.

System requirements. Variable views and range iterators can be added as an orthogonal extension to
existing systems. While value operations are not critical as discussed in Sect. 2, depending on which domain
operations a system provides, efficiency can differ. In the worst case, domain operations need to be translated
into value operations. This would decrease efficiency considerably, however intermediate computations on
range iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequences required for the minus-iterator. One
approach to implement reversal is to extend all iterators such that they can iterate both backwards and
forwards. Another approach is similar to a cache-iterator: store the ranges generated from the input iterator
in an array and iterate in reverse order from the array. In Gecode, we have chosen so far the latter approach
due to its simplicity. We are going to explore also the former approach: as variable domains in Gecode are
provided as doubly-linked lists, iteration in both directions can be provided efficiently.

8 Analysis and Evaluation
This section analyzes the impact different implementations of iterators and views have on efficiency. Two
aspects are evaluated: compile-time polymorphism versus run-time polymorphism, and iterators versus
temporary data structures.

The experiments use the Gecode C++ constraint programming library [2]. All tests were carried out on
a Intel Pentium IV with 2.8GHz and 1GB of RAM, running Linux. Runtimes are the average of 25 runs,
with a coefficient of deviation less than 2.5% for all benchmarks. The optimized column gives the time
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Table 1: Runtime comparison
Benchmark optimized virtual temporary

time in ms relative %
Alpha 90.50 147.20 103.00
Donald 0.79 124.10 100.00
Golomb 10 (bound) 314.00 173.20 101.70
Golomb 10 (domain) 512.80 138.40 100.50
Magic Sequence 500 270.60 173.50 102.80
Magic Square 6 0.96 149.00 102.30
Partition 32 4 881.20 179.70 102.40
Photo 116.84 141.50 103.50
Queens 100 1.75 146.90 100.00
Crew 5.20 — 159.40
Golf 8-4-9 356.00 — 196.90
Hamming 20-3-32 1 539.60 — 163.00
Steiner 9 110.80 — 226.10

in milliseconds of the optimized system, the other columns are relative to optimized. The examples used
are standard benchmarks, the first group using only integer constraints, the second group using mainly set
constraints.

Code inspection. A thorough inspection of the code generated by several C++ compilers shows that they
actually perform the optimizations we consider essential. Operations on both views and iterators are inlined
entirely and thus implemented in the most efficient way. The abstractions do not impose a runtime penalty
(compared to a system without views and iterators).

Templates versus virtual methods. As the previous section suggested, in C++, compile-time polymor-
phism using templates is far more efficient than virtual method calls. To evaluate this, we changed the basic
operations of finite domain views into virtual methods. The required changes are rather involved, so we
did not try the same for iterators and set views. The numbers give an idea of how much more efficient a
template-based implementation is. Table 1 shows the results in column virtual. Virtual method calls cause a
runtime overhead between 25% and 80%.

Temporary datastructures. One important claim is that iterators are advantageous because they avoid
temporary datastructures. Table 1 shows in column temporary that computing temporary datastructures
has limited impact on finite domain variables (about 3%), but considerable impact for set constraints (59%
to 126% overhead). Temporary datastructures have been emulated by wrapping all iterators in a cache-
iterator as described in Sect. 4.

9 Conclusion
The paper has introduced an architecture decoupling propagators from variables based on views and range
iterators. We have argued how to make propagators generic, simpler, and reusable with views for different
constraints. We have introduced range iterators as abstractions for efficient domain operations compatible
with views. The architecture has been shown to be applicable to finite domain and finite set constraints.
Using parametric polymorphism for views and iterators leads to an efficient implementation that incurs no
runtime cost.
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Abstract

In a classical paper of D.H.D. Warren, the higher-order extensions of Prolog were ques-
tioned as they do not really provide more expressive power than meta-programming predicates.
Without disputing this argumentation in the context of a Logic Programming system without
modules, we show that the situation is different in a closed module system. By closed we mean
the property that the Module system is able to prevent any call to the private predicates of
a module from the other modules, in particular through meta-programming predicates. We
show that this property necessitates to distinguish the execution of a term (meta-programming
predicate call) from the execution of a closure (higher-order). We propose a module system
for Constraint Logic Programming with a notion of closures inspired from Linear Concurrent
Constraint programming. This module system is quite simple and pretty independent of a
precise language (it is currently implemented for GNU-Prolog). Although this system can be
seen as a simple layer of syntactic sugar, it does provide a discipline for naming predicates and
hiding code, making possible the development of libraries and facilitating the safe re-use of ex-
isting code. Furthermore we provide the module system with logical and operational semantics.
This formal setting is used in the paper to compare our approach to the other module systems
proposed for Prolog, which generally do not ensure full implementation hiding.

1 Introduction

It is often easier to work with a small number of concepts in mind. Thus to be written, large
programs must be divided into small parts. Although this can be done in any language, a suitable
module system helps the segmentation of programs by forcing the programmer to clearly define
the limits and the interface of each block. Hence many errors can be avoided, the compiler being
in charge of verifying that the calls between modules respect the declared interfaces. Moreover
such divisions facilitate the understanding of a program by external programmers and improve the
reusability of the code.

The context of our work is the design of a fully bootstrapped implementation of a Linear
logic Concurrent Constraint (LCC) [11, 24] programming language called SiLCC, for “SiLCC is
Linear Concurrent Constraint programming”. The purpose of the present paper is to present the
theoretical and practical choices we made for its module system. For the sake of simplicity and
because we think, as Leroy [16], that “modular programming has little to do with the particulars of
any programming language” we will present our module system in the formal setting of Constraint
Logic Programs (CLP) [15] rather than in the more general setting of LCC.

The purpose of a module system is not unique and it is important to list the different purposes
a module system may serve:
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Implementation Hiding. A programmer should have the possibility to protect his code from
the intrusion from other modules. This means that it should be possible to restrict the access of a
module (i.e. calls, dynamic assertions/retractions, syntax modifications, global variable assignments
etc ...) from extra-modular code. In the following, we will say that a module system that ensures
implementation hiding is a closed module system, on the contrary a system that allows any call
from a module to another will be called open.

Separation of name space. In large flat (i.e. without modules) system, name clashes are
frequent and disturbing. Indeed, to be certain to avoid such clashes, the programmer is constrained
to systematically prefix the name of his predicates. A module system has to avoid such clashes
automatically.

Separate compilation. It should be possible to compile in an independent way each module of
a program. In particular, standard libraries must be compiled once for all.

Bootstrapping. One of the most original aspects of SiLCC is the realization of a completely boot-
strapped implementation of a constraint language from a small kernel (LCC with constraints over
labeled graphs and linear logic constraints providing imperative features). Modules are essential to
the bootstrap of such a complex language.

Furthermore, the design of a module system for Prolog needs to meet some other requirements:

Simplicity. The module system should be simple enough not to restrict the use of Prolog for rapid
prototyping, in particular:

• the conciseness of Prolog should be preserved, avoiding too many module-related declarations;

• meta-programming predicates such as the call predicate should be fully supported;

• new concepts should be limited in order to be adopted by classical Prolog programmers.

Semantics. The module system should come with a formal semantics from which one can derive
its properties.

Simple implementation. We want the module system to be easy to code and to port onto
different logic languages, ranging from GNU-Prolog to SiLCC.

Modularity in the context of Logic Programming has been considerably studied, and there
has been some standardization attempts [14]. In order to define a notion of module that captures
important aspects such as import/export and implementation hiding, the logical approaches rely on
an extension of the underlying logic. For example, one can cite extensions with nested implications
[17], meta-logic [2] or second order predicates [8]. Some other approaches, such as contextual
Logic Programming [19], or object-oriented extensions [20], go even further in the direction of fully
dynamic module systems.

Other proposals add constructs for declaring and handling a notion of static modules. On the
one hand, there are algebraic approaches defining module calculi on sets of program clauses, such
as the module calculus of O’Keefe [21], or of Bugliesi, Lamma and Mello [4], or the calculus of
Sanella and Wallen [23] inspired from functional programming. On the other hand, the so-called
syntactic approaches deal mainly with the alphabet of symbols. This approach is criticized in
[21, 23] for its lack of logical semantics. Nevertheless syntactic module systems are often chosen
for their simplicity and compatibility with existing code. For instance, the existing code of OEFAI
CLP(q,r) [12] or a Prolog implementation of CHR [25] should be ported as libraries in a modular
system. Most of current modular Prolog systems, such as SICStus [26], SWI [28], ECLiPSe [1],
XSB [22], Ciao [3, 6, 5], fall into this category. None of them however ensures every purpose we
have exposed previously. For example, the popular system SICStus does not provide any kind of
implementation hiding.
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In this paper, we show that closures are needed to ensure code protection in a predicate-
based syntactic module system. We propose a closed module system which distinguishes meta-
programming predicates from closures. We give an operational semantics which is used to prove
the properties of the module system, and to compare the different existing systems. Furthermore
we provide a logical semantics with a translation of pure modular constraint logic programs into
ordinary CLP programs with a simple module constraint system. The rest of the paper is organized
as follows. The next section defines the syntax and operational semantics of modular constraint
logic programs (MCLP) with meta-calls and closures, and shows that the module system satisfies
the implementation hiding property. Section 3 presents an equivalent logical semantics. Then,
in section 4, we discuss some pragmatic aspects of our module system. Finally we compare our
proposal with existing syntactic module systems and conclude.

2 Modular Constraint Logic Programs

2.1 Syntax

In this section, we define the formal syntax of modular constraint logic programs, which is used
in the following section to formally define their operational semantics. The simplified syntax (in
Typewritter letters used by the programmer adopts some conventions explained in Sec. 4. In
particular, the syntactic distinction between constraints, atoms and closures in goals, and the
systematic prefixing of predicates are only used here for the sake of conceptual simplicity.

We thus consider the following disjoint alphabets of symbols given with their arity:
• V a countable set of variables (of arity 0) denoted by x, y . . . ;
• ΣF a set of constant (of arity 0) and function symbols;
• ΣC a set of constraint predicate symbols containing = /2 and true/0;
• ΣP a set of program predicate symbols containing call/2, closure/3 and apply/2 ;
• ΣM a set of module names (of arity 0), noted µ,...

Furthermore, we assume a coercion relation P

!: ΣF × ΣP to interpret function symbols as
predicate symbols. In classical Prolog systems, where function symbols are not distinguished from
predicate symbols, this relation is just the identity. We consider the usual sets of terms, formed
over V and ΣF , of atomic constraints, formed with predicate symbols in ΣC and terms, and of
atoms, formed with predicate symbols in ΣP and terms. In addition, atoms prefixed by a module
name, noted µ :A, are called prefixed atoms. For the sake of simplicity, we do not describe here the
conventions (given in Sect. 4) that are used for prefixing automatically the atoms given without
module names in a clause or a goal.

Definition 2.1 A closure is an atom of the form closure(x, µ :A, z) where x and z are variables,
µ :A is a prefixed atom. The application of a closure associated to a variable z to an argument x
is the atom apply(z, x)

The closure closure(x, µ : A, z) associates to variable z a prefixed atom µ : A in which the
variable x is abstracted. It is worth noticing that this notion of closure is simpler than the one of
Warren [27], because only atoms are abstracted, and this is sufficient for the purpose of modular
programming.

Definition 2.2 A MCLP clause is a formula of the form

A0 ← c1, . . . , cl|κ1, . . . , κn|µ1 :A1, . . . , µm :Am.

where the κi’s are closures, the µi : Ai’s are prefixed atoms, and the ci’s are atomic constraints.
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Definition 2.3 A MCLP module is a tuple (µ,Dµ, Iµ) where µ ∈ ΣM is the name of the module,
Dµ is a set of clauses, called its implementation, and Iµ ⊂ ΣP is the set of public predicates, called
the interface of the module. The predicates not in Iµ are called private in µ. A MCLP Program

P is a set of modules whose names are distinct.

The import/export declarations described in Sect. 4 are just facilities for automatically prefixing
the predicates of the used modules. However, it is important for the implementation hiding property
that the visibility rules for predicates refer only to the module interface.

Definition 2.4 A MCLP goal is a formula

c1, . . . , cl| 〈ν1 − κ1〉 , . . . , 〈νn − κn〉 |
〈

ν ′
1 − µ1 :A1

〉

, . . . ,
〈

ν ′
m − µm :Am

〉

where the ci’s are atomic constraints, the κi are closures, the (µi :Ai)’s are prefixed atoms and both
the νi’s and the ν ′

i’s are module names called calling contexts.

In the following, 〈ν − (κ1, . . . , κn)〉 denotes the sequences of closures (〈ν − κ1〉 , . . . , 〈ν − κn〉)
and similarly for sequence of atoms with context.

Definition 2.5 A pure MCLP construct (goal, clause, module or program) is an MCLP construct
containing no call, closure or apply predicates.

The following example will illustrate the difference between a meta-call and the application of
a closure in a module.

Example 2.6 Let us consider the classical implementation of the findall/3 predicate:

findall(X,G,_) :- call(G), asserta(found(X)), fail.

findall(_,_,L) :- collect([],L).

collect(S,L) :- retract(found(X)), collect([X|S],L).

collect(L,L).

The use of call in this implementation does not prevent intrusion from another module with a goal
like findall(X,retract(found(X)),L). On the other hand, an implementation of findall using
closures and apply instead of call as below

findall(C,_) :- apply(C,X), asserta(found(X)), fail.

findall(_,L) :- collect([],L).

ensures the protection of the code. For instance, the clauses retracted by the closure in the goal
(closure(X,retract(found(X)),C), findall(C,L)). will be safely retracted in the calling mod-
ule, and not in the called module.

2.2 Operational Semantics

Let P be a MCLP program defined over some constraint system X . The transition relation −→ on
goals is defined as the least relation satisfying the rules in table 1, where θ is a renaming substitution
with fresh variables. A successful derivation for a goal G is a finite sequence of transitions from G
which ends with a goal containing no atom, only constraints (the computed answer) and closures.

The modular CSLD resolution rule is a restriction of the classical CSLD rule for CLP [15]. The
additional condition (ν =µ) ∨ (p ∈ Iµ) imposes that µ :p(~t) can be executed only if, either the call
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Modular
CSLD

(µ,Dµ, Iµ)∈P (ν =µ)∨(p ∈ Iµ)

(p(~s)←c′|k|β)θ∈Dµ X |= ∃(c ∧ ~s=~t ∧ c′)

(c|K|γ,
〈

ν − µ :p(~t)
〉

, γ′) −→ (c, ~s=~t, c′|K, 〈µ− k〉 |γ, 〈µ− β〉 , γ ′)

Call
X |= ∃(c ∧ t=f(~x)) f P

! p

(c|K|γ, 〈ν − µ :call(t)〉 , γ ′) −→ (c, t=f(~x)|K|γ, 〈ν − µ :p(~x)〉 , γ ′)

Apply

X |= c⇒ z=y

(c|κ1, 〈µ− closure(x, µ′ :A, z)〉 , κ2|γ, 〈ν − ν :apply(y, t)〉 , γ ′) −→
(c|κ1, 〈µ− closure(x, µ′ :A, z)〉 , κ2|γ, 〈µ− µ′ :A[x\t]〉 , γ ′)

Table 1: Transition relation for MCLP goals with calls and closures.

is made from inside the module (i.e. from the calling context µ), or the predicate p is a public
predicate in µ. Moreover, this rule propagates the new calling context to the atoms and the closures
of the body of the selected clause.

The call rule defines the operational semantics of meta-calls. It is worth noting that this rule
does not change the calling context, which is necessary to guarantee the implementation hiding.
This definition of call does not handle the meta-call of conjunctions of atoms nor the meta-call of
a constraint. These calls can be emulated however, by supposing (’,’/2 P

! and/2) and by adding
the clause (and(x, y)← µ :call(x), µ :call(y)) to the implementation of any module µ.

In this formal semantics of meta-calls, the goal (c| 〈µ− ν :call(t, s)〉) may succeed if the argument
of call is a free variable. Indeed in such a case, there will be one transition for each predicate visible
in the calling context. A failure would not be a better solution however, as it would violate the
independence of the selection strategy. This can be seen for instance with the goal (X=true,
call(X)), where the left-to-right selection strategy would lead to the computed answer X=true,
whereas a right-to-left strategy would lead to a failure. The proper way to handle such errors would
be to raise an exception, which is not formalized here.

The apply rule allows the invocation of a closure collected by a previous predicate call. In
practice, it looks for the closure associated to the closure variable (formally checks the equality of
variables z=y), and applies the closure to the argument in the closure context.

Example 2.7 Closures can be used to define general iterator predicates for data structures. In a
module defining some data structure, it is possible to define the binary predicates forall/2 that
check that every element of a data structure passed in the first argument, verifies a property passed
as a closure in the second argument. For instance, in a library for lists, such iterators can be defined
as follows:

:-module(lists, [..., forall/2]).

forall([], C).

forall([X|T], C) :- apply(C, X), forall(T, Z).

On the other hand, if we employed a meta-call instead of a closure, as below, the called predicate
would fail as it is not visible in the lists module.

forall([], P).

53



forall([H| T], P):- G=..[P, H], call(G), forall(T, P).

2.3 Implementation Hiding

Intuitively, the implementation hiding property states that in order to execute the predicate of a
module, one has to pass through a public predicate of this module. Formally, this property can be
stated as follows:

Definition 2.8 (Implementation Hiding) The operational semantics of MCLP programs sat-
isfies the implementation hiding property if, whenever an atom or a closure with context 〈ν −X〉
resolves in a goal 〈µ− Y 〉, then either µ = ν, or X is of the form µ :p(~t) and p is public in µ.

Proposition 2.9 The operational semantics of MCLP programs satisfies the implementation hid-
ing property.

3 Logical Semantics

3.1 Modules as a Constraint System M

To a given MCLP program P, one can associate a simple module constraint system M, in which
the constraint allow(ν, µ, p) that states that the predicate p of module µ can be called in module
ν, is defined by the following axiom schemas:

ν ∈ ΣM p ∈ ΣP

M |= allow(ν, ν, p)

ν, µ ∈ ΣM (µ,Dµ, Iµ) ∈ P p ∈ Iµ

M |= allow(ν, µ, p)

This constraint system depends solely on the interface of the different modules that composes the
program P, and not on its implementation.

3.2 Pure MCLP programs

Pure MCLP programs can be given a logical semantics equivalent to their operational semantics,
obtained by a simple translation of pure MCLP(X ) programs into ordinary CLP(M,X ) programs.
This translation can be used for the implementation, and shows that the module system can be
viewed as simple syntactic sugar. The alphabet Σ̇P of the associated CLP(M,X ) program, is
constructed by associating one and only one predicate symbol ṗ ∈ Σ̇P of arity n + 2 to each
predicate symbol p ∈ ΣP of arity n. Let us consider the translations Π and Π〈〉 of MCLP programs
and MCLP goals respectively, given in table 2.

Proposition 3.1 (Soundness) Let P and (c|γ) be a pure MCLP program and a pure MCLP goal

if
(

(c|γ)
P
−→ (d|γ′)

)

then

(

(c|Π〈〉(γ))
Π(P)
−−−→ (d, allow(y, µ, p), y = ν|Π〈〉(γ′))

)

for some ν, µ, p and such that y is not free in d.

Proposition 3.2 (Completeness) Let P and (c|γ) be pure MCLP program and goal

if

(

(c|Π〈〉(γ′))
Π(P)
−−−−→ (d|α)

)

then
(

(c|γ)
P
−−→ (d′|γ′′)

)

where Π〈〉(γ′′)=γ′ and d′=(d, allow(y, µ, p), y=ν) for some ν, µ, p and such that y is not free in d.

54



Π(
⋃

{(µ,Dµ, Iµ)}) =
⋃

{Πµ(Dµ)}

Πµ (
⋃

{(A← c|α)}) =
⋃

{Πµ(A← c|α)}

Πµ

(

p0(~t)← c|α
)

= ṗ0(y, µ,~t)← allow(µ, y, p0), c|Πµ(α)
Πµ(A,A′) = Πµ(A),Πµ(A′)

Πµ(ν :p(~t)) = ṗ(µ, ν,~t)

Π〈〉 (γ, γ′) = Π〈〉 (γ) ,Π〈〉 (γ′)

Π〈〉
(〈

ν − µ :p(~t)
〉)

= ṗ(ν, µ,~t)

Table 2: Formal translation of MCLP(X ) to CLP(M,X )

The simplicity of this logical semantics for our module system is due to the fact that we do not
impose (as in Java) to import explicitly a module in order to use it. Hence every module can be
translated in a way independent of each other. This advocates the use of public/private directives
in modules instead of import directives for defining visibility rules (the import directive described
in Sec 4.3 is only used for the automatic prefixing of predicate names).

3.3 Closures

The logical semantics of closures is obviously beyond the scope of first-order CLP programs. A
natural setting for giving a logical account to closures is higher-order logic, as used higher-order
extensions of Prolog such as lambda-Prolog with modules [18], or more recently Hiord [7].

Nevertheless, the restricted form of closures we use in this paper can also be defined in Linear
logic Concurrent Constraint (LCC) programming languages [11] as mere syntactic sugar, as follows:

closure(x,A, z) ≡ !∀x.((arg(z, x))→ A) apply(t, z) ≡ arg(z, t)

In this definition, a closure is an LCC agent which waits for its argument given in a token (linear
logic constraint) arg(z, x) that is posted by the apply agent. The logical semantics of LCC in Linear
Logic thus provides a logical semantics for MCLP programs with closures, in which the semantics
of the module system is given by the module constraint system defined above. This is the logical
semantics we use for SiLCC and its module system.

4 Pragmatic Aspects

In practice, we deal with a set of atoms defined as in ISO Prolog [10] to represent function symbols,
predicate symbols and module names. In this chapter, the term atom has thus a different meaning
than in the previous sections, and we will use the term predicate to refer to the atomic propositions
as defined in Sect. 2.

4.1 Defining a Module

A module is a set of clauses and directives contained in a single file named with the name of the
module and a .pl extension. The file must begin with a module/2 declaration which specifies the
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name of the module and its interface. The name of the module is an atom, whereas its interface
must be either a list of predicate specifications of the form Functor/Arity for representing the set
of public predicates, or a ’ ’ denoting the fact that all the predicates of the module are public.

4.2 Visibility

The formal semantics proposed in Sect. 2 (or 3) clearly define the visibility of predicates from a
particular module. The predicates which can be called from a module are the predicates defined in
that module plus all public predicates of any module. A call is either a module-prefixed predicate
(in the form module:p(X1,..., XN)) or a non-prefixed predicate. If a not fully prefixed predicate
occurs, the compiler assumes that this call is implicitly made inside the module. In other words,
in the module module the predicate p(X 1, ..., X n) stands for module:p(X 1, ..., X n).

4.3 Using a Module

The use of a module consists in the import of some publmic predicates of a module to the current
one. The programmer can use a module by means of the use module/2 declaration where the
first argument is the name of the module used, and the second argument is the list of imported
predicates, [Functor/Arity, ...]. The purpose of this argument is to consider these predicates
as predicates of the current module, without needing to prefix them. use module(m, [p/1]) is
nothing but a shortcut to force the loading of a module m and to avoid typing clauses such as
p(x):-m:p(x) for each predicate p imported from the module m.

4.4 The Default Module

In our module system we allow the compilation of classical Prolog files without module declaration.
The code belonging to such files is considered to belong to the special module user. This module
is public and access to this module is never controlled by the system. Our system is thus able to
execute old GNU-Prolog files. Moreover this module is the default module of every call made from
the top level.

4.5 Packages

Despite the fact that the module system we have defined strongly limits conflicts of predicate names,
its distributed use leads quickly to a new conflict problem: the conflict of module names. To avoid
that, a notion of package similar to the Java language has been introduced. A package is defined
as a sequence of atoms separate by slashes. The notion of module name is extended to an atom or
a pair package - atom separated by a slash.

For sake of conciseness, the directive import/1 has been added to import module names. For
example, the use of :-import(oefai/clpr) indicates to the system that the atom clpr refers to
the module clpr belonging to the package oefai. In the same way, with :-import(oefai/ ), the
user can import all modules of the package oefai. The import of two modules with the same name
is however forbidden.

4.6 About the Implementation

The actual implementation of our module system consists of a layer, written in Prolog, on the top
of GNU Prolog RH [9], a version of GNU Prolog extended with coroutines and attributed variables.
This layer is composed of:
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a preprocessor that converts modular code into non-modular code ;

a library to handle dynamic calls and dynamical module loading;

a new top-level, that interprets modular programs and is able to dynamically load modules.

Attributed variables are used to represent closures, and are useful to protect them from a “reverse
engineering” approach, as they forbid the user to hack the internal representation of closures. This
is the only reason to use attributed variables in the implementation of the module system.

As explained in [27], application of closures can be compiled slightly more efficently than dy-
namic calls. Indeed a closure can be represented by a pointer to the code of the corresponding
predicate, whereas a dynamic call needs to access a hash table. Our prototype does not include
this optimization yet.

5 Comparison with other Module Systems

5.1 SICStus Prolog.

In SICStus [26], all predicates are public (formally for all module (µ,Dµ, Iµ)∈P we have Iµ =ΣP ).
On the other hand, this system does not provide any kind of implementation hiding. Thanks to
the meta predicate directive, that allows to explicitly declare meta-predicates, the system is able
to implicitly add the calling context to meta-data. The principal defect of this approach is thus
the abandonment of the principle of implementation hiding.

5.2 ECLiPSe.

ECLiPSe [1] proposes an intermediary solution. In fact it provides two different predicates to invoke
meta-calls. The first one :/2 behaves as call for a prefixed atom according to our operational
semantics, whereas the second one @/2 does not make any visibility test. It provides also a directive
tool/1, (analogous to the meta predicate directive) that allows the implicit addition of the calling
context as argument of the meta-predicate. Hence the programmer employs :/2 for common use
and @/2 for meta-predicates. This solution has the advantage of limiting the unauthorized calls
made in a unconscious way. Nonetheless, as beforehand, it is not possible to ensure the hiding of
any predicate.

5.3 SWI Prolog.

For meta programming, SWI Prolog [28] uses a slightly different semantics from the one proposed
in Sect 2.2. In fact, SWI handles two distinct calling contexts. The former, that we call static
context, plays the role of the calling context in a modular CSLD transition. The latter, that we call
dynamic context, plays the role of the calling context in a call transition. By default the dynamic
context is the same that the static context. However, for a meta-predicate, the dynamic context
is the context of the goal that calls it. In SWI, predicates with this behavior are called “module
transparent” and are declared with the directive module transparent/1. By declaring forall/2

as “module transparent”, SWI-Prolog executes the example 2.7 as expected.

Nonetheless, a dynamic call does not behave as a static one. Therefore with a “module trans-
parent” predicate, the two goals p(x) and (G=p(x), call(G)) do not call p/1 in the same module.
The former makes the call in the static context, whereas the latter makes it in the dynamic context.

Moreover, these conventions do not provide a code protection as strong as we want. For instance,
the use of the implementation of the findall/3 predicate (defined in the example 2.6) does not
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work better either in SWI, all assertion/retraction being made in the calling module instead of the
called module.

5.4 Ciao Prolog.

Conceptually, Ciao Prolog [3] adopts a closed module system. In order to allow the manipula-
tion of meta-data through the module system, it provides an advanced version of the directive
meta predicate/1. Before calling the meta-predicates, the system compiles on the fly meta-data
following a method analoguous to the one presented in Sect. 3. Since this compilation is done before
the call of the meta-predicate, the system is knows the calling context in which the meta-data must
be called, to obtain the expected result. The meta-predicate handles then a compiled version of
the meta-data that is possible to invoke with the predicate call/1. As far as the system does not
document any predicate (except call/1) able to create or manipulate such compiled meta-data,
the implementation hiding property is preserved.

Although not clearly stated in the manual, Ciao Prolog does make a distinction between terms
and higher-order data (i.e. compiled versions of goal). However, instead of hiding these objects
behind a directive, we propose to manipulate closures as first-class citizens.

5.5 XSB

The XSB system [22] is also considered as a syntactic system, but follows a quite different approach.
In fact, this system belongs to the class of atom-based systems, rather than predicate-based. The
main difference is that XSB modularizes function symbols too. Hence two compound terms con-
structed in two different modules can not be unified. In a module, it is possible however to import
public symbols from another module, the system considers then that the two modules share the
same symbols. The semantics of the call/1 predicate is hence very simple: the meta-call of a term
corresponds to the call of the predicate of the same symbol and arity as the module where the term
has been created.

However, this solution mainly moves the problem to the construction of the terms. Indeed in
XSB, the terms constructed with =../2, functor/2 and read/1 are supposed to belong to the
module user. As a consequence, the system does not respect anymore the independence of the
selection strategy. For instance, in a module different form user, the goal (functor(X,foo,1),
X=foo( )) fails, whereas (X=foo( ), functor(X,foo,1)) succeeds.

6 Conclusion

In a classical paper of D.H.D. Warren [27], the higher-order extensions of Prolog were questioned
as they do not really provide more expressive power than meta-programming predicates. We
have shown here that the situation is different in the context of logic programs with modules,
and that the protection of private module predicates necessitates to distinguish between term
calls (meta-programming) and closures (higher-order). The module system we propose is close
to the one of Ciao Prolog in its implementation, but has the advantage of revealing the need for
closures, and of positioning them w.r.t. meta-programming predicates in the framework of formal
operational semantics. Furthermore, an equivalent logical semantics has been provided for pure
modular programs.

Our module system has been implemented in GNU-Prolog. Some existing code has been ported
as libraries using the module system, such as for instance an implementation of CHR [25]. This
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modularization of CHR provides an example of intensive use of the module system allowing the
development of several layers of constraint solvers in CHR. Other libraries have been developed with
this closed module system for the development of SiLCC. One can quote a dynamic lexer-parser
allowing modular redefinitions of the syntax with a powerful generalization of the directive op/3.
This library belongs to the bootstrap libraries of our on-going implementation of SiLCC.

As for future work, we can mention the possible implementation of so-called functors [16] al-
lowing the static instantiation of parameterized modules, and the investigation of object-oriented
programming features with modules and global variables in CLP.

Acknowledgements.

We are grateful to Sumit Kumar for a preliminary work he did on this topic, during his summer 2003 intern-

ship at INRIA. We thank also Emmanuel Coquery and Sylvain Soliman for valuable discussion on the subject.

and to Daniel de Rauglaudre and Olivier Bouissou for their comments and help in the implementation.

References

[1] A. Aggoun and al. ECLiPSe User Manual Release 5.2, 1993 – 2001.

[2] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Meta for modularising logic programming.
In META-92: Third International Workshop on Meta Programming in Logic, pages 105–119,
Berlin, Heidelberg, 1992. Springer-Verlag.

[3] F. Bueno, D. C. Gras, M. Carro, M. V. Hermenegildo, P. Lopez-Garca, and G. Puebla. The
ciao Prolog system. reference manual. Technical Report CLIP 3/97-1.10#5, University of
Madrid, 1997-2004.

[4] M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journal of Logic
Programmming, 19/20:443–502, 1994.

[5] D. Cabeza. An Extensible, Global Analysis Friendly Logic Programming System. PhD thesis,
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Abstract

Constrained path problems have to do with finding paths in graphs subject to constraints. One way of
constraining the graph is by enforcing reachability on nodes. For instance, it may be required that a node
reaches a particular set of nodes by respecting some restrictions like visiting a particular set of nodes or
edges and using less than a certain amount of resources. The reachability constraints of this paper were
suggested by a practical problem regarding mission planning in the context of an industrial project.

We deal with this problem by using concurrent constraint programming where the problem is solved
by interleaving Propagation and Labeling. In this paper, we define a propagator which we call Reacha-
bility that implements a generalized reachability constraint on a directed graph g. Given a source node
source in g, we can identify three parts in the Reachability constraint: (1) the relation between each
node of g and the set of nodes that it reaches, (2) the association of each pair of nodes 〈source, i〉 with
its set of cut nodes, and (3) the association of each pair of nodes 〈source, i〉 with its set of bridges.

We show the effectiveness of our Reachability propagator by applying it to the Simple Path problem
with mandatory nodes. We do an experimental evaluation of Reachability that shows that it provides
strong pruning, obtaining solutions with very little search. Furthermore, we show that Reachability is
also useful for defining a good labeling strategy and dealing with ordering constraints among manda-
tory nodes. These experimental results give evidence that Reachability is a useful primitive for solving
constrained path problems over graphs.

1 Introduction
Constrained path problems have to do with finding paths in graphs subject to constraints. One way of
constraining the graph is by enforcing reachability on nodes. For instance, it may be required that a node
reaches a particular set of nodes by respecting some restrictions like visiting a particular set of nodes or
edges and using less than a certain amount of resources. We have instances of this problem in Vehicle
routing [14, 4, 9] and Bioinformatics[7].

An approach to solve this problem is by using Concurrent Constraint Programming (CCP) [18, 13]. In
CCP, we solve the problem by interleaving two processes: propagation and labeling. In Propagation, we
are interested in filtering the domains of a set of finite domain variables according to the semantics of the
constraints that have to be respected. In Labeling, we are interested in specifying which alternative should
be selected when searching for the solution.

Our goal is to implement so-called Constrained Path Propagators (CPPs) for achieving global consis-
tency [6]. In this paper, we define a propagator which we call Reachability that implements a generalized
reachability constraint on a directed graph g. Given a source node source in g, we can identify three parts
in the Reachability constraint: (1) the relation between each node of g and the set of nodes that it reaches,
(2) the association of each pair of nodes 〈source, i〉 with its set of cut nodes, and (3) the association of each
pair of nodes 〈source, i〉 with its set of bridges.
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Figure 1: Relaxing Simple Path with mandatory nodes by eliminating the optional nodes

Our contribution is a propagator that is suitable for solving the Simple Path problem with mandatory
nodes [19, 3]. This problem consists in finding a simple path in a directed graph containing a set of manda-
tory nodes. A simple path is a path where each node is visited once. Certainly, this problem can be trivially
solved if the graph has no cycles since in that case there is only one order in which we can visit the manda-
tory nodes [19]. However, if the graph has cycles the problem is NP complete since we can easily reduce
the Hamiltonian Path problem [10, 5] to this problem.

Notice however that we can not trivially reduce Simple Path with mandatory nodes to Hamiltonian
path. One could think that optional nodes (i.e. nodes that are not mandatory) can be eliminated in favor
of new edges as a preprocessing step, which finds a path between each pair of mandatory nodes. However,
the problem is that the paths that are precomputed may share nodes. This may lead to violations of the
requirement that a node should be visited only once.

In figure 1, we illustrate this situation. Mandatory nodes are in solid lines. In the second graph we have
eliminated the optional nodes by connecting each pair of mandatory nodes depending on whether there is
a path between them. However, we observe that the second graph has a simple path going from node 1 to
node 4 (visiting all the mandatory nodes) while the first one does not. Indeed, the simple path in the second
graph is not a valid solution to the original problem since it implies that node 3 is visited twice.

The other reason that makes the elimination of optional nodes difficult is that finding k pairwise disjoint
paths between k pairs of nodes 〈s1, d1〉,〈s2, d2〉,...,〈sk, dk〉 is NP complete [20].

In general, we can say that the set of optional nodes that can be used when going from a mandatory node
a to a mandatory node b depends on the path that has been traversed before reaching a. This is because the
optional nodes used in the path going from the source to a can not be used in the path going from a to b.

From our experimental measurements in Section 4, we observe that the suitability of Reachability for
dealing with Simple Path with mandatory nodes is based on the following aspects:

• The strong pruning that Reachability performs. Due to the computation of cut nodes and bridges (i.e.,
nodes and edges that are present in all the paths going from a given node to another), Reachability is
able to discover non-viable successors early on.

• The information that Reachability provides for implementing smart labeling strategies. By labeling
strategy we mean the way the search tree is created, i.e., which constraint is used for branching.
Reachability associates each node with the set of nodes that it reaches. This information can be used
to guide the search in a smart way. For instance, one of our observations is that, when choosing first
the node i that reaches the most nodes and selecting as a successor of i first a node that i reaches, we
obtain paths that minimize the use of optional nodes.

An additional feature of Reachability is its suitability for imposing ordering constraints among manda-
tory nodes (which is a common issue in routing problems). In fact, it might be the case that we have to visit
the nodes of the graph in a particular (partial) order. Taking into account that a node a reaches a node b if
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there is a path going from node a to node b, we force a node i to be visited before a node j by imposing that
i reaches j and j does not reach i. We have performed experiments that show that Reachability takes the
most advantage of this information to avoid branches in the search tree with no solution.

The structure of the paper is as follows: first, we introduce Reachability by presenting its semantics and
deriving pruning rules in a systematic way. Then, we show how we can model Simple Path with mandatory
nodes in terms of Reachability. Finally, we show examples that demonstrate the performance of Reachability
for this type of problem, and elaborate on some works that are related to our approach.

2 The reachability propagator
2.1 Reachability constraint
The Reachability Constraint is defined as follows:

Reachability(g, source, rn, cn, be) ≡ ∀i∈N .

rn(i) = Reach(g, i)∧
cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(1)

Where:

• g is a graph whose set of nodes is a subset of N .

• source is a node of g.

• rn(i) is the set of nodes that i reaches.

• cn(i) is the set of nodes appearing in all paths going from source to i.

• be(i) is the set of edges appearing in all paths going from source to i.

• Reach, Paths, CutNodes and Bridges are functions that can be formally defined as follows:

j ∈ Reach(g, i) ↔ ∃p.p ∈ Paths(g, i, j) (2)

p ∈ Paths(g, i, j) ↔
p = 〈k1, ..., kh〉 ∈ nodes(g)h ∧ k1 = i ∧ kh = j∧
∀1≤f<h.〈kf , kf+1〉 ∈ edges(g)

(3)

k ∈ CutNodes(g, i, j) ↔ ∀p∈Paths(g,i,j).k ∈ nodes(p) (4)

e ∈ Bridges(g, i, j) ↔ ∀p∈Paths(g,i,j).e ∈ edges(p) (5)

The above definition of Reachability implies the following properties which are crucial for the pruning
that Reachability performs. These properties define relations between the functions rn, cn, be, nodes and
edges. These relations can then be used for pruning, as we show in section 2.2.

1. If 〈i, j〉 is an edge of g, then i reaches j.

∀〈i,j〉∈edges(g).j ∈ rn(i) (6)
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2. If i reaches j, then i reaches all the nodes that j reaches.

∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) (7)

3. If source reaches i and j is a cut node between source and i in g, then j is reached from source and
j reaches i:

∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) (8)

4. Reached nodes, cut nodes and bridges are nodes and edges of g:

∀i∈N .rn(i) ⊆ nodes(g) (9) ∀i∈N .cn(i) ⊆ nodes(g) (10) ∀i∈N .be(i) ⊆ edges(g) (11)

2.2 Pruning rules
We implement the constraint in Equation 1 with the propagator

Reachability(G,Source,RN,CN,BE) (12)

In this propagator we have that:

• G is a graph variable (i.e., a variable whose domain is a set of graphs [8]). The upper bound of G

(max(G)) is the greatest graph to which G can be instantiated, and its lower bound (min(G)) is
the smallest graph to which G can be instantiated. So, i ∈ nodes(G) means i ∈ nodes(min(G))
and i 6∈ nodes(G) means i 6∈ nodes(max(G)) (the same applies for edges). In what follows,
{〈N1, E1〉#〈N2, E2〉} will denote a graph variable whose lower bound is 〈N1, E1〉 and upper bound
is 〈N2, E2〉. I.e., if g = 〈n, e〉 is the graph that G approximates, then N1 ⊆ n ⊆ N2 and E1 ⊆ e ⊆ E2.

• Source is an integer representing the source in the graph.

• RN(i) is a Finite Integer Set (FS) [11] variable associated with the set of nodes that can be reached
from node i. The upper bound of this variable (max(RN(i))) is the set of nodes that could be reached
from node i (i.e., nodes that are not in the upper bound are nodes that are known to be unreachable
from i). The lower bound (min(RN(i))) is the set of nodes that are known to be reachable from node
i. In what follows {S1#S2} will denote a FS variable whose lower bound is the set S1 and upper
bound is the set S2.

• CN(i) is a FS variable associated with the set of nodes that are included in every path going from
Source to i.

• BE(i) is a FS variable associated with the set of edges that are included in every path going from
Source to i.

The definition of Reachability and its derived properties give place to a set of propagation rules. We
show here the most representative ones. The others are given in [16]. A propagation rule is defined as C

A

where C is a condition and A is an action. If C is true, the pruning defined by A can be performed.

• From (6) ∀〈i,j〉∈edges(g).j ∈ rn(i) we obtain:

〈i, j〉 ∈ edges(min(G))

j ∈ min(RN(i))
(13)

64



• From (7) ∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) we obtain:

j ∈ min(RN(i)) ∧ k ∈ min(RN(j))

k ∈ min(RN(i))
(14)

• From (8)∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) we obtain:

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

j ∈ min(RN(Source))
(15)

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

i ∈ min(RN(j))
(16)

• From (1)∀i∈N .rn(i) = Reach(g, i) we obtain:

j 6∈ Reach(max(G), i)

j 6∈ max(RN(i))
(17)

• From (1)∀i∈rn(source).cn(i) = CutNodes(g, source, i) we obtain:

j ∈ CutNodes(max(G), Source, i)

j ∈ min(CN(i))
(18)

• From (1)∀i∈rn(source).be(i) = Bridges(g, source, i) we obtain:

e ∈ Bridges(max(G), Source, i)

e ∈ min(BE(i))
(19)

• From (9) ∀i∈N .rn(i) ⊆ nodes(g), (10)∀i∈N .cn(i) ⊆ nodes(g) and (11)∀i∈N .be(i) ⊆ edges(g) we
obtain:

k ∈ min(RN(i))

k ∈ nodes(min(G))
(20) k ∈ min(CN(i))

k ∈ nodes(min(G))
(21) e ∈ min(BE(i))

e ∈ edges(min(G))
(22)

2.3 Implementation of Reachability
Reachability has been implemented using a message passing approach [21] on top of the multi-paradigm
programming language Oz [12]. In [15], we discuss the implementation of Reachability in detail. In this
section we will simply refer to some of the functions that are used in the implementatin of Reachability:

In our pruning rules we have three functions:

• Reach that is O(N + E) since it is basically a call to DFS [5].

• CutNodes whose algorithm is based on the following definition:

k ∈ CutNodes(g, i, j) ↔ j 6∈ Reach(RemoveNode(g, k), i) (23)

So, checking whether a node is a cut node is O(N + E). Notice that we assume that RemoveNode

returns the same graph when k 6∈ nodes(g).
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• Bridges whose algorithm is based on the following definition:

e ∈ Bridges(g, i, j) ↔ j 6∈ Reach(RemoveEdge(g, e), i) (24)

So, checking whether an edge is a bridge is O(N + E). Notice that we assume that RemoveEdge

returns the same graph when e 6∈ edges(g).

The computation of cut nodes and bridges in each propagation step implies running DFS per each po-
tential cut node and per each potential bridge. However, we take advantage of the fact that the cut nodes
and the bridges are part of the tree returned by DFS (assuming that the destination node is reached from the
source). In fact, this means that both the computation of cut nodes and the computation of bridges have the
same complexity since the number of edges in the DFS tree is proportional to the number of nodes. I.e.,
updating CN /BE after removing a set of edges from the upper bound of G is O(N ∗ (N + E)) 1.

As explained in [15], we do not compute cut nodes and bridges each time an edge is removed since this
certainly leads to a considerably amount of unnecessary computation. This is due to the fact that the set of
cut nodes/bridges evolves monotonically. What we actually do is to consider all the removals at once and
make one computation of cut nodes and bridges per set of edges removed.

3 Solving Simple Path with mandatory nodes with Reachability
In this section we will elaborate on the important role that Reachability can play in solving Simple Path
with mandatory nodes. This problem consists in finding a simple path in a directed graph containing a set
of mandatory nodes. A simple path is a path where each node is visited once. I.e., given a directed graph g,
a source node source, a destination node dest, and a set of mandatory nodes mandnodes, we want to find
a path in g that goes from source to dest, going through mandnodes and visiting each node only once.

The contribution of Reachability consists in discovering nodes/edges that are part of the path early on.
This information is obtained by computing the cut nodes and bridges in each labeling step. Let us consider
the following two cases 2:

• Consider the graph variable on the left of Figure 2. Assume that node 1 reaches node 9. This infor-
mation is enough to infer that node 5 belongs to the graph, node 1 reaches node 5, and node 5 reaches
node 9.

Figure 2: Discovering cut nodes

1Notice that the notion of cut node that we have presented does not correspond to the notion of articulation point. An articulation
point is a node whose removal increases the number of strongly connected components. A cut node, in our definition, does not
necessarily have this property.

2In Figures 2 and 3, nodes and edges that belong to the lower bound of the graph variable are in solid line. For instance, the
graph variable on the left side of Figure 2 is a graph variable whose lower bound is the graph 〈{1, 5}, ∅〉, and whose upper bound
is the graph 〈{1, 2, 3, 4, 5, 6, 7, 8, 9}, {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 5〉, 〈3, 5〉, 〈4, 5〉, 〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈6, 9〉, 〈7, 9〉, 〈8, 9〉}〉.
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• Consider the graph variable on the left of Figure 3. Assume that node 1 reaches node 5. This infor-
mation is enough to infer that edges 〈1, 2〉, 〈2, 3〉,〈3, 4〉 and 〈4, 5〉 are in the graph, which implies that
node 1 reaches nodes 1,2,3,4,5, node 2 at least reaches nodes 2,3,4,5, node 3 at least reaches nodes
3,4,5 and node 4 at least reaches nodes 4,5.

Figure 3: Discovering bridges

Notice that Hamiltonian Path (i.e., the problem where we have to find a simple path between two nodes
containing all the nodes of the graph [10, 5]) can be reduced to Simple Path with mandatory nodes by
defining the set of mandatory nodes as nodes(g) − {source, dest}.

The above definition of Simple Path with mandatory nodes can be formally defined as follows:

SPMN(g, source, dest,mandnodes, p) ↔
p ∈ Paths(g, source, dest)∧
NoCycle(p)∧
mandnodes ⊂ nodes(p)

(25)

SPMN stands for “Simple Path with mandatory nodes”. NoCycle(p) states that p is a simple path
(i.e., a path where no node is visited twice). This definition of Simple Path with mandatory nodes implies
the following property:

Reachability(p, source, rn, cn, be) ∧ dest ∈ rn(source) ∧ cn(dest) ⊇ mandnodes (26)

This is because the destination is reached by the source and the path contains the mandatory nodes. This
derived property and the fact that we can implement SPMN in terms of the AllDiff constraint [17] and the
NoCycle constraint [4] suggest the two approaches for Simple Path with mandatory nodes summarized in
Table 1 (which are compared in the next section). In the first approach, we basically consider AllDiff and
NoCycle. In the second approach we additionally consider Reachability.

Notice that, even though the computation of bridges plays a crucial role in the pruning that Reachability
performs, we do not use the be argument in the second approach. In fact be can play an important role in
solving Constrained Euler Path problems (i.e., problems where the objective is to find a path visiting a set
of edges by respecting some additional constraints).

Approach 1 Approach 2
SPMN(g, source, dest,mandnodes, p) SPMN(g, source, dest,mandnodes, p)

Reachability(p, source, rn, cn, be)
dest ∈ rn(source)
cn(dest) ⊇ mandnodes

Table 1: Two approaches for solving Simple Path with mandatory nodes
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4 Experimental results
In this section we present a set of experiments that show that Reachability is suitable for Simple Path
with mandatory nodes. I.e., in our experiments Approach 2 (in Table 1) outperforms Approach 1. These
experiments also show that Simple Path with mandatory nodes tends to be harder when the number of
optional nodes increases if they are uniformly distributed in the graph. We have also observed that the
labeling strategy that we implement with Reachability tends to minimize the use of optional nodes (which
is a common need when the resources are limited).

In Table 2, we define the instances on which we made the tests of Table 4. The id of the destination is
also the size of the graph. The column Order is true for the instances whose mandatory nodes are visited in
the order given. Notice that SPMN 52Order b has no solution. The time, in Table 4, is measured in seconds.
The number of failures means the number of failed alternatives tried before getting the solution.

Figure 4: SPMN 22:A path from 1 to 22 visiting 4 7
10 16 18 21

Figure 5: SPMN 22full:A path from 1 to 22 visiting
all the nodes

Figure 6: SPMN 52a:A path from 1 to 52 visiting 11 13 24 39 45

In our experiments, we have made five types of tests: using SPMN without Reachability (column
“SPMN”), using SPMN and Reachability but without computing cut nodes nor bridges (column “SPMN+R”),
using SPMN and Reachability but without computing bridges (column “SPMN+R+CN”), using SPMN and
Reachability but without computing cut nodes (column “SPMN+R+BE”), and using SPMN and Reachability
(column “SPMN+R+CN+BE”).

As it can be observed in Table 4, we were not able to get a solution for SPMN 22 in less than 30 minutes
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Figure 7: SPMN 52full:A path from 1 to 52 visiting all the nodes

Name Figure Source Destination Mand. Nodes Order

SPMN 22 4 1 22 4 7 10 16 18 21 false

SPMN 22full 5 1 22 all false

SPMN 52a 6 1 52 11 13 24 39 45 false

SPMN 52b 6 1 52 4 5 7 13 16 19 22 false

24 29 33 36 39 44 45 49

SPMN 52full 7 1 52 all false

SPMN 52Order a 6 1 52 45 39 24 13 11 true

SPMN 52Order b 6 1 52 11 13 24 39 45 true

Table 2: Simple Path with mandatory nodes instances

Opt. Nodes Failures Time

5 30 89

10 42 129

15 158 514

20 210 693

25 330 1152

32 101 399

37 100 402

42 731 3518

47 598 3046

Table 3: Performance
with respect to optional
nodes

without using Reachability. In fact, we did not even try to solve SPMN 52b without it. However, even
though the number of failures is still inferior, the use of Reachability does not save too much time when
dealing with mandatory nodes only. This is due to the fact that we are basing our implementation of SPMN
on two things: the use AllDiff [17] (that lets us efficiently remove branches when there is no possibility of
associating different successors to the nodes) and the use NoCycle [4] (that avoids re-visiting nodes).

The reason why SPMN does not perform well with optional nodes is because we are no longer able to
impose the global AllDiff constrain on the successors of the nodes since we do not know a priori which
nodes are going to be used. In fact, one thing that we observed is that the problem tends to be harder to solve
when the number of optional nodes increases. In Table 3, all the tests were performed using Reachability on
the graph of 52 nodes.

Even though, in SPMN 22, the benefit caused by the computation of bridges is not that significant, we
were not able to obtain a solution for SPMN 52b in less than 30 minutes, while we obtained a solution in 402
seconds by computing bridges. So, even though the computation of bridges is costly, that computation pays
off in most of the cases. Nevertheless, cut nodes should be computed in order to profit from the computation
of bridges.
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Problem SPMN SPMN+R SPMN+R+CN SPMN+R+BE SPMN+R+CN+BE

Instance Figure Failures Time Failures Time Failures Time Failures Time Failures Time

SPMN 22 4 +130000 +1800 91 6.81 40 6.55 70 13.76 13 4.45

SPMN 22full 5 213 1.44 19 0.95 0 0.42 19 2.76 0 1.22

SPMN 52b +900 +1800 +700 +1800 +1000 +1800 100 402

SPMN 52full 7 3012 143 774 765 3 8.51 +700 1800 3 45.03

SPMN 52Order a 6 +12000 +1800 51 46.33 55 81 27 97 16 57.07

SPMN 52Order b +12000 +1800 +1500 +1800 81 157 +400 +1800 41 117

Table 4: Simple Path with mandatory nodes tests

4.1 Labeling strategy
Reachability provides interesting information for implementing smart labeling strategies due to the fact that
it associates each node with the set of nodes that it reaches. This information can be used to guide the search
in a smart way. For instance, we observed that, when choosing first the node that reaches the most nodes,
we obtain paths that minimize the use of optional nodes (as it can be observed in 6).

4.2 Imposing order on nodes
An additional feature of Reachability is the suitability for imposing dependencies on nodes (which is a
common issue in routing problems). In fact, it might be the case that we have to visit the nodes of the graph
in a particular (partial) order.

Our way of forcing a node i to be visited before a node j is by imposing that i reaches j and j does not
reach i. The tests on the instances SPMN 52Order a and SPMN 52Order b show that Reachability takes
the most advantage of this information to avoid branches in the search tree with no solution. Notice that
we are able to solve SPMN 52Order a (which is an extension of SPMN 52a) in 57.07 seconds. We are also
able to detect the inconsistency of SPMN 52Order b in 117 seconds.

5 Related work
• The cycle constraint of CHIP [1, 2] cycle(N, [S1, ..., Sn]) models the problem of finding N distinct

circuits in a directed graph in such a way that each node is visited exactly once. Certainly, Hamiltonian
Path can be implemented using this constraint. In fact, [2] shows how this constraint can be used to
deal with the Euler knight problem (which is an application of Hamiltonian Path). However, this
constraint only covers the case where we are to visit all the nodes of the graph, which is a specific
case of Simple Path with mandatory nodes.

• [19] suggests some algorithms for discovering mandatory nodes and non-viable edges in directed
acyclic graphs. These algorithms are extended by [3] in order to address directed graphs in general
with the notion of strongly connected components and condensed graphs. Nevertheless, examples
like SPMN 52a represent tough scenarios for this approach since almost all the nodes are in the same
strongly connected component.

• CP(Graph) introduces a new computation domain focussed on graphs including a new type of vari-
able, graph domain variables, as well as constraints over these variables and their propagators [7,
8]. CP(Graph) also introduces node variables and edge variables, and is integrated with the finite
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domain and finite set computation domain. Consistency techniques have been developed, graph
constraints have been built over the kernel constraints and global constraints have been proposed.
Path(p, s, d,maxlength) is one of these global constraints. This constraint is satisfied if p is a sim-
ple path from s to d of length at most maxlength. Certainly, Simple Path with mandatory nodes can
be implemented in terms of Path. However, we still have to compare the performance of Reachability
with respect to this approach.

6 Conclusion and future work
We presented Reachability: a constrained path propagator that can be used for speeding up constrained path
solver. After introducing its semantics and pruning rules, we showed how the use of Reachability can speed
up a standard approach for dealing with Simple Path with mandatory nodes.

Our experiments show that the gain is increased with the presence of optional nodes. This is basically
because we are no longer able to apply the global AllDiff since we do not know a priori which nodes
participate in the path.

From our observations, we infer that the suitability of Reachability is based on the strong pruning that
it performs and the information that it provides for implementing smart labeling strategies. We also found
that Reachability is appropriate for imposing dependencies on nodes. Certainly, we still have to see whether
our conclusions apply to other types of graphs.

It is important to remark that both the computation of cut nodes and the computation of bridges play
an essential role in the performance of Reachability. The reason is that each one is able to prune when the
other can not. Notice that Figure 2 is a context where the computation of bridges cannot infer anything since
there is no bridge. Similarly, Figure 3 represents a context where the computation of bridges discovers more
information than the computation of cut nodes.

A drawback of our approach is that each time we compute cut nodes and bridges from scratch, so one
of our next tasks is to overcome this limitation. I.e., given a graph g, how can we use the fact that the set
of cut nodes between i and j is s for recomputing the set of cut nodes between i and j after the removal of
some edges? We believe that a dynamic algorithm for computing cut nodes and bridges will improve our
performance in a radical way.

As mentioned before, the implementation of Reachability was suggested by a practical problem re-
garding mission planning in the context of an industrial project. Our future work will concentrate on
making propagators like Reachability suitable for non-monotonic environments (i.e., environments where
constraints can be removed). Instead of starting from scratch when such changes take place, the pruning
previously performed can be used to repair the current pruning.
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