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Abstract

We present a solver for arithmetic and membership constraints over real numbers,
for computer assisted learning (CAL) in math. The solver works as a rewrite system.
What makes it novel are the proposed rewriting rules that go beyond simple algebraic
reductions. Instead they work at high abstraction level and use some knowledge about
the functions behaviour to shortcut solving steps. Designed with pedagogic concerns,
they are useful to produce step-by-step solutions that look like ones worked out by
students. In this way the solver may be more advantageous in some learning environments
than sophisticated mathematical software, which is certainly the choice for scientific
applications and advanced algebraic manipulations. The proposed solver is correct
and although it is complete for a relevant set of problems arising in high-school math
curricula, it is incomplete in general. Indeed, this is inherent to the addressed problem.
A prototype is being developed in Prolog for a specific application domain, reusing some
modules of Demomath [14] for symbolic manipulation of sets and exact arithmetic, that
employ CLP(Q) and CLP(R) to some extent. This work is part of AGILMAT project
in which a web application to automatically generate and solve math drills is being
developed.

1 Introduction

The fast growth of the Internet has fostered a significant breakthrough in CAL. Sophisticated
web-based learning environments are being developed also for math education, some offering
authoring facilities for teachers to create courseware, assignments and exams, some being
used for training, assessment and contests [9, 4, 7, 15, 16]. Teachers are urged to develop
innovative learning scenarios. Nevertheless, designing courseware material for e-learning is
often quite time-consuming, even when teachers may count on e-learning authoring tools [6,
15]. It is worth observing that a large number, if not the majority, of e-learning tools that
create math drills are oriented for the generation of multiple choice questions. Some of these
applications may support interaction with computer algebra or other mathematical systems
to reduce the effort of writing a solver [15].

∗Work partially supported by Fundação para a Ciência e Tecnologia (FCT) and Program POSI, co-financed
by EC fund FEDER, under project AGILMAT (contract POSI/CHS/48565/2002).
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Nevertheless, what seems to be the most current practice is to write a full implementation
of an ad-hoc solving (or decision) procedure for each problem template [6, 15]. The problems
each template yields very often look like quite simple manipulations of a basic pattern.
Advances in computer technology shall therefore be exploited to develop really interactive,
re-usable and customizable contents. In the spirit of ActiveMath, the LeActiveMath
project targets an innovative third-generation e-learning system: user-adaptive, interactive,
web-based environment and employing intelligent technologies [9, 4]. Also, in the MowGli
project XML-based tools are developed to enhance accessibility, searching, retrieving, and
elaboration of mathematical knowledgement over the Web [7].

Our project – AGILMAT – whose full title is Automatic Generation of Interactive
Drills for Mathematics Learning1, aims at the design and implementation of a system to
automatically generate and solve math exercises. Along the lines of our former simple
prototype Demomath2, the study of algebraic algorithms taught at high-school and of the
way they condition the drills that may be created and solved automatically plays a major
role in AGILMAT [14]. The form of exercises is described by grammars. For instance, a
grammar that characterizes a wide range of the function expressions that may be found in
high school textbooks and whose zeros and domains can be exactly computed was proposed
in [14]. Several other problems depend on this central issue, as for instance, the analytic
study of monotonicity, concavity and convexity of real-valued functions, so that its interest
goes far beyond the problem itself. Algebra and Infinitesimal Calculus at pre-College levels
are the major applications domains of our work. By imposing extra conditions on the more
generic grammars through constraints, users may cast exercises to different curricula or level
of education almost for free. For example, for Demomath, the teacher/user may make the
system produce very distinct expressions for the exercises, by filling in a sequence of forms
to define user constraints, in a web browser.

Experiments with Demomath gave us fundamental support to continue using Constraint
Logic Programming languages, namely Prolog-based ones, to develop core modules of AG-
ILMAT: the exercise generators and the solvers. Whereas computer algebra systems are
quite adequate for exploratory learning, they would not work well for our target application.
In particular, our experience with Maple3 has shown that the algebraic simplifications it
does are troublesome. Additional constraints must be imposed on the expressions that arise
in the exercises, to avoid inconsistencies in explanations. For instance, it is not possible
to pretty print 3(x2 + 5) in Maple since it will naturally yield 3x2 + 15. By a similar
reason, we would better not ask the student to find the domain of a rational function defined
by f(x) = (x − 1)2/(x − 1), because that expression would be printed as f(x) = x − 1,
and hence 1 belongs to domain of the latter but not of the former one. This incorrect
and misleading behaviour of mathematical software and the resulting disadvantages in some
learning environments are discussed also in [2]. In addition, we need great, if not full, control
of the system, to be able to produce explanations.

Logic Programming based languages offer natural support for implementing symbolic
representations and to do symbolic manipulations. Declarativeness is of help to specify the
form of the expressions and of the problem templates. Moreover, for some problems in
mathematics, we have to do exact computations and present the results in simplified forms.
As we mentioned already, to achieve re-usability, the application shall be well parametrized

1http://www.ncc.up.pt/AGILMAT/.
2http://www.ncc.up.pt/~apt/demomath.html. It shall not be viewed as a prototype of a user-friendly

CAL system.
3with Maple V. The release version now is Maple 9.5 (www.maplesoft.com).
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to easily cater for different curricula or user-defined constraints. CLP seems to offer the right
expressiveness to encode this kind of control in an elegant way through constraints [1, 3, 8].

The solver we implemented for Demomath followed a fairly ad-hoc strategy for solv-
ing arithmetic constraints, quite close to simple algebraic manipulation. This renders the
program large and makes it difficult to extend it to present step-by-step resolutions, with
pedagogic interest. In this paper we present a novel approach for solving arithmetic and
also membership constraints, founded on a deeper analysis of the problem. By reasoning on
a higher abstraction level we show how we may achieve a much more concise and modular
solver. The new solver is being implemented in Prolog using CLP(Q) and CLP(R) [5, 13, 12].

The paper is organized as follows. We first recall some basic notions of real-valued
functions that are needed in the paper. In Section 3 we introduce our representation for
problems and constraints and show how to convert between membership and arithmetic
constraints. Section 4 is devoted to the presentation of the solver as a rewrite system. The
solver is complete for a family of problems involving functions described by the grammar
given in the paper, which extends the one proposed in [14].

2 Some Notation and Mathematical Background

In this section we recall some notions about real-valued functions that are used in the paper
and we introduce some notation. R stands for the set of the real numbers, a, b, c, k for real
constants, f, g, h for generic real-valued functions over R, and x, y, z for real valued variables.
As usual, Df is the domain of function f , i.e., the subset of R for which f is defined and
f(Df ) = {f(x) : x ∈ Df} is the image (a.k.a., range) of f . The restriction of f to D ⊆ Df is
represented by f |D and f−1 is the inverse of function f whenever it exists. A function f is a
strictly monotonic on D ⊆ Df if and only if it either strictly increases or strictly decreases
on D. We also call f a monotonic increasing or a monotonic decreasing function. If f is
strictly monotonic over D, then f |D is invertible.

A function f such that f(x) = f(−x) for all x ∈ R, is called even. When f(x) = −f(−x),
for all x ∈ R, then f is called odd.

Table 1 shows the basic functions usually studied in math at high school, if we exclude
the trigonometric functions (sine, cosine, tangent, co-tangent), generic polynomial functions
polan,...,a0

: x 7→ ∑n
i=0 aix

i and the quadratic function pola,b,c : x 7→ ax2 + bx + c.

The composition, sum, difference, product and quotient of functions (herein represented
by ◦, +, −, ×, /) are also studied, which enable the use and construction of more complex
functions. They are given by f ◦ g : x 7→ f(g(x)) and f � g : x 7→ f(x) � g(x), for
� ∈ {+,−,×, /}, with Df◦g = Dg ∩ {x : g(x) ∈ Df}, Df�g = Df ∩ Dg for � ∈ {+,−,×}
and Df/g = Df ∩ Dg \ {x : g(x) = 0}. The functions ck × f and ck/f are particular cases of
these, and c−1 × f is written also −f . We note also that although pk = ck × id, we are going
to keep all three as basic functions, an usual practice in high school. Table 1 is seen as useful
domain knowledge that students learn and thus the solver shall also refer to. Working as a
knowledge base, it may be extended if appropriate and also reduced. As in Demomath, the
interface of AGILMAT system will make tools available for users to configure the solvers
and generators. In particular, we may prevent some rewriting rules from being used by
imposing constraints on the type of functions addressed in the exercises.
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f Df f(Df ) Behavior in Df Inverse function

id : x 7→ x R R strictly increases, odd id−1 = id
ck : x 7→ k R {k} constant, even —

pk : x 7→ kx, k 6= 0 R R strictly increases if k > 0 p−1
k : x 7→ 1

kx
strictly decreases if k < 0
odd

pola,b : x 7→ ax + b R R strictly increases if a > 0 pol−1
a,b : x 7→ 1

ax − b
a

strictly decreases if a < 0
odd if b = 0

pow2n+1 : x 7→ x2n+1 R R strictly increases, odd pow−1
2n+1=rad2n+1

pow2n : x 7→ x2n R R+
0 symmetric w.r.t. x = 0 (pow2n|R+

0

)−1 = rad2n

pow2n|R+

0

strictly increases

even

rad2n+1 : x 7→ 2n+1
√

x R R strictly increases rad−1
2n+1 = pow2n+1

odd

rad2n : x 7→ 2n
√

x R+
0 R+

0 strictly increases rad−1
2n = pow2n|R+

0

abs : x 7→ |x| R R+
0 symmetric w.r.t. x = 0 (abs|

R
+

0

)−1 = id|
R

+

0

abs|
R

+

0

strictly increases

even
expa : x 7→ ax R R+ strictly increases if a > 1 exp−1

a = loga

strictly decreases if 0 < a < 1
loga : x 7→ loga x R+ R strictly increases if a > 1 log−1

a = expa

strictly decreases if 0 < a < 1

Table 1: Some basic functions, their domain, range, behavior and inverse.
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3 Constraints and Problems

We would like to solve problems that may involve arithmetic and membership constraints,
because both types coexist in some math problems. For example, if the problem was to find
all x ∈ R such that

√
x − 2 ≥ 1 and g(x) /∈ {1,−3, 4} for g : x 7→ x2 − 2x + 1. We define

atomic and complex constraints as follows.

Definition 1 We call f(x) P k an atomic arithmetic constraint, iff f is a real valued
function on reals, k ∈ R a constant, and P∈ {=, 6=, >,<,≤,≥}. If P∈ {∈, /∈}, then
f(x) P S is called an atomic membership constraint, for S ⊆ R (we would rather write S
instead of k to make clear that S is a set). The conjunction and disjunction of a finite
number of constraints in the variable x is a (complex) constraint, denoted C(x).

This form for atomic arithmetic constraints is generic enough since f(x) P g(x) may be
written as (f − g)(x) P 0, whenever g is a non-constant function. We often write C instead
of C(x), omitting the variable, which shall cause no confusion. Each problem must involve
a unique variable.

The inverse of the binary relation P is denoted by P−1, for P∈ {=, 6=,≤,≥, >,<}.
Clearly, ≤−1 is ≥, <−1 is >, and =−1 is = and 6=−1 is 6=. We now go through our
representation for problems and problems in solved form.

Definition 2 The problem of finding all x ∈ D that satisfy the constraint C(x) is denoted
by a tuple 〈C(x), x,D〉. A problem is in solved form iff it is defined as 〈x ∈ D,x,D〉. In this
case D is called the solution set of the problem. To refer to a particular problem P , we shall
associate a label to the representation, writing P : 〈C(x), x,D〉, and denote the solution set
of P by sols(P ).

3.1 Membership versus arithmetic constraints

It is important to be able to convert membership to arithmetic constraints and reciprocally.
For that purpose we have two particular representations for sets.

Definition 3 We say that a set is in a canonical form if it is either ∅ or the union of a
finite sequence S1, . . . , Sn of non-empty intervals and/or finite sets of R, that are pairwise
disjoint and such that sup(Si) ≤ inf(Si+1) for all 1 ≤ i < n and if sup(Si) = inf(Si+1) then
sup(Si) /∈ Si and inf(Si+1) /∈ Si+1. The infimum and supremum of each set may be −∞
and +∞. A constraining set is every subset of R that may be written in canonical form.

Although constraining sets do not fully represent all subsets of R, they cater for the most
frequent types of sets that occur in math exercises, if the trigonometric functions are not
involved. In the near future, we plan to extend them to deal with solution sets for constraints
that involve also trigonometric functions. It is worthwhile noting that for the success of CAL
applications we do not need cover all sorts of exercises that a teacher may invent and propose
in a classroom. Neither this would be theoretically possible in general.

Example 1 The set ([−3,−1[∪{2, 17} ∪ [8, 11[∪]11, 14[) \ {10} is a constraining set and
[−3,−1[∪{2} ∪ [8, 10[∪]10, 11[∪]11, 14[∪{17} is the same set presented in canonical form.
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This canonical form is like a picture of the set represented in the real axis. The following
form, which we call the reduced normal form is the one we need to get a more compact
arithmetic representation of each constraining set, which is relevant for CAL. The reduced
normal form is unique.

Definition 4 We say that a constraining set is in reduced normal form (rnf, for short) if it
is either R, ∅, a finite non-empty set, ∪n

i=1Si, (∪n
i=1Si) \Sn+1, R \ Sn+1, ((∪n

i=1Si) \Sn+1)∪
Sn+2, or (∪n

i=1Si) ∪ Sn+2, for a finite sequence of non-empty and non-universal intervals
S1, . . . , Sn with sup(Si) < inf(Si+1), for 1 ≤ i < n and Sn+1, Sn+2 non-empty disjoint finite
sets such that Sn+1 ⊂ ∪n

i=1Si and Sn+2 ∩ (Si ∪ {inf(Si), sup(Si)}) = ∅, for every i ≤ n.

Example 2 We may check that

rnf([−3,−1[∪{2, 17} ∪ [8, 11[∪]11, 14[) \ {10})

is (([−3,−1[∪[8, 14[) \ {10, 11}) ∪ {2, 17}.

To transform membership constraints to arithmetic constraints in a straightforward way,
we shall express each set S given in reduced normal form in terms of S k

P’s, for suitable k’s
and P’s.

Definition 5 We use Sk
P to refer to the set {x ∈ R : x P k}, with P∈ {=, 6=, >,<,≤,≥}

and k ∈ R.

E.g., S−3
≥ denotes [−3,+∞[, and S5

< and S2
6= denote ]−∞, 5[ and R \ {2}.

The reduction function is denoted by τ1 and defined as follows. We note that R and ∅
have a double meaning, identifying a set and a name we give to it.

Definition 6 Let τ1 be a map that rewrites sets given in rnf in terms of sets S k
P’s and is

inductively defined by:

• τ1(R) = R, τ1(∅) = ∅, τ1({a1, . . . , an}) = ∪n
i=1S

ai
=

• τ1( [a, b] ) = Sa
≥ ∩Sb

≤, τ1( [a, b[ ) = Sa
≥ ∩Sb

<, τ1( ]a, b] ) = Sa
> ∩Sb

≤, τ1( ]a, b[ ) = Sa
> ∩Sb

<,
τ1( [a,+∞[ ) = Sa

≥, τ1( ]−∞, a] ) = Sa
≤, τ1( ]a,+∞[ ) = Sa

>, τ1( ]−∞, a[ ) = Sa
<, for

a, b ∈ R,

• and, finally, τ1(S \ {a1 . . . , an}) = τ1(S) ∩ (∩n
i=1Sai

6= ) and τ1(∪n
i=1Ai) = ∪n

i=1τ1(Ai).

The conversion map τ1 does a syntactic transformation of the set’s presentation, that
is quite convenient for the subsequent conversion of membership constraints into arithmetic
constraints by τ2.

Definition 7 Let τ2 be a map that rewrites membership constraints f(x) ∈ S, with S given
in terms of Sk

P’s, into arithmetic constraints and that is inductively defined by:

• τ2(f(x) ∈ R) = (f(x) ∈ R), τ2(f(x) ∈ ∅) = (f(x) ∈ ∅), τ2(f(x) ∈ Sk
P) = (f(x) P k),
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• τ2(f(x) ∈ ∪n
i=1Si) = (∨n

i=1τ2(f(x) ∈ Si)) and

• τ2(f(x) ∈ ∩n
i=1Si) = (∧n

i=1τ2(f(x) ∈ Si)).

Moreover, for every given constraining set S (presented in any form) and function f (that
may be id), we shall write Γ(f(x) ∈ S) as an abbreviation of τ2(f(x) ∈ τ1(rnf(S))).

Clearly, τ2(f(x) ∈ τ1(rnf(S))) is an arithmetic constraint that is equivalent to f(x) ∈ S. It
is worth noting that, we consider x ∈ S simpler than Γ(x ∈ S), so that, while specifying the
rewriting rules, we shall distinguish in some situations the cases f = id and f 6= id.

Example 3 If S = [−3,−1[∪[8, 11[∪]11,+∞[), we may rewrite, for instance, Γ(f(x) ∈ S)
as follows

Γ(f(x) ∈ S) = τ2(f(x) ∈ τ1(([−3,−1[∪[8,+∞[) \ {11})) =

= τ2(f(x) ∈ ((S−3
≥ ∩ S−1

< ) ∪ S8
≥) ∩ S11

6= ) =

= τ2(f(x) ∈ (S−3
≥ ∩ S−1

< ) ∪ S8
≥) ∧ (f(x) 6= 11) =

= ((f(x) ≥ −3 ∧ f(x) < −1) ∨ f(x) ≥ 8) ∧ f(x) 6= 11

This translation is used in the solving procedure, if f 6= id. Let us imagine, for example,
that f was rad3 ◦ pol2,−7, i.e., f(x) = 3

√
2x − 7. To solve 〈f(x) ∈ S, x, R〉, for S as above,

students have to translate the membership constraint into an arithmetic one, so that we will
make the solver do the same.

Proposition 1 For all constraining sets S, the problem 〈f(x) ∈ S, x,D〉 is equivalent to
〈Γ(f(x) ∈ S), x,D〉.

The inverse transformation is useful to simplify some arithmetic constraints. Indeed, to
solve, for instance,

(f(x) > 8 ∧ f(x) ≥ −3) ∧ f(x) < 2

clever students first inspect whether this constraint may be simplified. In this particular
case, it is indeed inconsistent, because

(S8
> ∩ S−3

≥ ) ∩ S2
<

should be reduced to ∅. We shall not introduce this inverse map formally, but it will be
implicit in some of the rewriting rules. Clearly, for example, ∧n

i=1(f(x) Pi ki) gets into

f(x) ∈ rnf(∩n
i=1Ski

Pi
) and ∨n

i=1(f(x) Pi ki) into f(x) ∈ rnf(∪n
i=1Ski

Pi
).

3.2 Implementation

Each of these reductions between different set representations was implemented in Prolog
by a predicate. For the implementation we reused a module developed for Demomath for
operating constraining sets in canonical form. As we noted above, the canonical form is like
a picture of the set represented in the real axis, so that, for their Prolog representation we
use ordered lists that look like
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[a(-infty),f(8),i(12),i(17),f(1000),a(1002), a(1002),a(infty)]

meaning ]−∞, 8] ∪ {12, 17} ∪ [1000, 1002[ ∪ ]1002,∞[. It stands for a union of intervals and
of sets of isolated points, a(X) and f(X) mean open and closed at X, respectively, and i(X)

says that X is an isolated point. All set operations with this type of sets are supported by
the package. A set in rnf is represented in Prolog in a simple way, using the same form as
above for denoting each finite set and each union of intervals (or single interval). The main
union and set difference is translated by operators cup and setminus. For instance, for the
Example 2, this yields

[f(-3),a(-1),f(8),a(14)] setminus [i(10),i(11)] cup [i(2),i(17)].

The emptyset is [] and R is translated by [a(-infty),a(infty)]. Some symbolic repre-
sentations were introduced for Sk

P, namely, s(real), s([]), s(K,eq), s(K,lt), s(K,leq),
. . . , and, finally, cap denotes the intersection.

Atomic constraints are represented by terms of the form c(F,Op,SorK) where F rep-
resents a function; Op is a Prolog atom lt,eq,neq,leq,...,in,notin, and SorK is a
set in rnf representation for set constraints or a constant. For constants we use the
arithmetic module define for Demomath that does exact arithmetic. Terms of the form
and([C 1,...,C n]) represent a conjunction of constraints ∧n

i=1Ci and, analogously, terms
of the form or([C 1,...,C n]) represent a disjuntion of constraints ∨n

i=1Ci. Problems are
represented by terms of the form p(C,X,D) where C is a (complex) constraint, X a variable
and D is a set in rnf.

We shall now go on to describe how problems are solved.

4 Solving problems

For all the rewriting rules we shall describe, we assume that in every problem 〈C(x), x,D〉
all expressions that occur on the left-hand side of atomic constraints are defined on D
or a superset of D. This means that one of the first steps in the solving procedure is
the computation of the domain of C(x), that is the set of values of x for which we may
evaluate C(x).

4.1 Computing the domains of the involved expressions

In the implementation of the predicate that computes the domain of a function, the infor-
mation given in Table 1 is translated to clauses and consulted when required. Then, the
domain is computed by actually solving some problems, so that the solving procedure and
domain determination are not independent.

• Df◦g ≡ sols(P ), for P : 〈g(x) ∈ Df , x,Dg〉.

• Df�g ≡ sols(P ) for P : 〈x ∈ Df ∩ Dg, x, R〉, for � ∈ {+,=,×}.

• Df/g ≡ sols(P ) for P : 〈x ∈ Df ∩ Dg ∧ g(x) 6= 0, x, R〉

Actually, these problems give rise to sequences of dependent problems, because this definition
is recursive. For instance, before solving P : 〈g(x) ∈ Df , x,Dg〉, the domains of f and g are
computed.
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Example 4 For instance, to compute the domain of rad2 ◦ pol1,−3 ◦ rad2 ◦ pol1,−1 that is,

of the expression
√√

x − 1 − 3, the solver has to solve P

P : 〈(pol1,−3 ◦ rad2 ◦ pol1,−1)(x) ∈ Drad2
, x, sols(P1)〉

with P1 : 〈(rad2◦pol1,−1)(x) ∈ Dpol1,−3
, x, sols(P2)〉 and P2 such that sols(P2) is Drad2◦pol1,−1

,
and so forth.

Although for the solver we give priority to right association for function composition,
f1 ◦ f2 ◦ · · · ◦ fn ≡ f1 ◦ (f2 ◦ (· · · ◦ fn)), we may also explore in some cases other forms of
unification for ◦. That is, we may also have

Drad2◦pol1,−3◦rad2◦pol1,−1
= D(rad2◦pol1,−3)◦(rad2◦pol1,−1)

although in our opinion this latter association is less intuitive for CAL. Nevertheless, to be
able to have more flexible representations not only for composition, but also for +, −, ×
and /, we will need to go beyond syntactic unification somehow, and support other forms of
matching and unification [11]. Again, in this setting, our goal is not to guarantee that the
system may find common unifiers, but rather that it may do it, firstly for a quite controlled
subset of expressions and secondly with not many manipulations. The reason is that, to be
relevant for CAL applications, the depth of such transformations is somehow small.

4.2 Canonical forms for complex constraints

It is important for CAL that the solving steps remain close to what students would do,
to be interesting to show and explain solutions step-by-step. For this reason, we cannot
manipulate problems and constraints in an arbitrary way. Hence, for example, we need
a solver that can work on both disjunctive and conjunctive constraints. Nevertheless, we
consider that constraints may be put into a canonical form. The idea is to capture at a
surface level constraints that shall be gathered and treated together to get a resolution that
is better from a pedagogical point of view.

Definition 8 A constraint is in a canonical form if it is either atomic or a complex con-
straint in conjunctive canonical form (CCF) or in disjunctive canonical form (DCF). The
constraint ∧n

i=1Ci (resp., ∨n
i=1Ci) where all Ci’s are atomic constraints and n ≥ 1, is called

a simple constraint in CCF (resp,. in DCF). In general, ∧n
i=1Ci is in CCF if it is a simple

CCF constraint or all the Ci’s are non-atomic and in DCF, except possibly C1 that may be
also a simple CCF constraint. Similarly, ∨n

i=1Ci is in DCF if it is a simple DCF constraint
or all the Ci’s are are non-atomic and in CCF, except possibly C1 that may be also a simple
DCF constraint.

For the sake of some generality, we do not introduce any order for the atomic constraints.
However, for CAL, it is convenient that, for instance, in every conjunct and disjunct of atomic
constraints the membership and the arithmetic constraints that have the same left-hand side
f(x) are gathered, for each f . Nevertheless, in the implementation, this is to be dealt with
selectors and strategies for the application of rewriting rules.

We shall describe the solver as a rewriting system [11], with ⇒ denoting the (one-step)
rewriting relation and ⇒+ its transitive irreflexive closure (one or more rewriting steps).

Each rule is represented by
P1 · · · Pn

P
Cond meaning that from P1 · · · Pn we

may obtain P under condition Cond.
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4.3 Rewriting rules

4.3.1 Rewriting ∧- and ∨-constraints

Rule 1 (ConjunctiveDisjunctive) If j ∈ {1, . . . , n} and ∅ 6= I ⊆ {1, . . . , n} then

〈∧n
i=1Ci, x,D〉

〈∧n
i=1,i6=jCi, x, rnf(D ∩ S)〉 if Cj = (x ∈ S)

〈∨n
i=1Ci, x,D〉

〈x ∈ D,x,D〉 if Cj = (x ∈ D)

〈∨n
i=1Ci, x,D〉

〈∨n
i=1,i6=jCi, x,D〉 if Cj = (x ∈ ∅)

〈∧n
i=1Ci, x,D〉 ∀i ∈ I 〈Ci, x,D〉 ⇒+ 〈C ′

i, x,Di〉
〈∧i∈IC

′
i ∧ (∧i∈{1,...,n}\ICi), x,D〉

〈∨n
i=1Ci, x,D〉 ∀i ∈ I 〈Ci, x,D〉 ⇒+ 〈C ′

i, x,Di〉
〈∨i∈IC

′
i ∨ (∨i∈{1,...,n}\ICi), x,D〉

〈∨n
i=1Ci, x,D〉 〈∨i∈ICi, x,D〉 ⇒+ 〈C ′, x,D′〉

〈C ′ ∨ (∨i∈{1,...,n}\ICi), x,D〉

〈∧n
i=1Ci, x,D〉 〈∧i∈ICi, x,D〉 ⇒+ 〈C ′, x,D′〉

〈C ′ ∧ (∧i∈{1,...,n}\ICi), x,D〉

In the conjunctive case, we could have considered

〈∧i∈IC
′
i ∧ (∧i∈{1,...,n}\ICi), x, rnf(D ∩ (∩i∈IDi))〉

and

〈C ′ ∧ (∧i∈{1,...,n}\ICi), x, rnf(D ∩ D′)〉

instead. We decided for the simpler form since if Di ⊂ D for some i, then C ′
i is (x ∈ Di).

Hence, D gets simplified in a subsequent rewriting step. The same applies to D ′ and C ′.

4.3.2 Normalization step

Rule 2 (AggregateNormalize) Let I1 and I2 be finite subsets of N such that either
|I1 ∪ I2| ≥ 2 or I2 6= ∅.

〈(∧i∈I1f(x) Pi ki) ∧ (∧i∈I2f(x) ∈ Si), x,D〉
〈Γ(f(x) ∈ (∩i∈I1Ski

Pi
) ∩ (∩i∈I2Si)), x,D〉 if f 6= id

〈(∧i∈I1x Pi ki) ∧ (∧i∈I2x ∈ Si), x,D〉
〈x ∈ rnf((∩i∈I1Ski

Pi
) ∩ (∩i∈I2Si)), x,D〉
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〈(∨i∈I1f(x) Pi ki) ∨ (∨i∈I2f(x) ∈ Si), x,D〉
〈Γ(f(x) ∈ (∪i∈I1Ski

Pi
) ∪ (∪i∈I2Si)), x,D〉 if f 6= id

〈(∨i∈I1x Pi ki) ∨ (∨i∈I2x ∈ Si), x,D〉
〈x ∈ rnf((∪i∈I1Ski

Pi
) ∪ (∪i∈I2Si)), x,D〉

AggregateNormalize) cannot be applied consecutively, for the solver termination. This
rule aims to simplify several atomic constraints involving the same f(x) and it is useful to
detect inconsistency or validity.

4.3.3 Simple Cases

In some cases, the solver may trivially reach a solved form.

Rule 3 (TrivialSolve)

〈C, x, ∅〉
〈x ∈ ∅, x, ∅〉 if C 6= (x ∈ ∅)

〈x ∈ S, x,D〉
〈x ∈ rnf(D ∩ S), x, rnf(D ∩ S)〉 if S 6= D

〈x /∈ S, x,D〉
〈x ∈ rnf(D \ S), x, rnf(D \ S)〉

〈x P k, x,D〉
〈x ∈ rnf(D ∩ Sk

P), x, rnf(D ∩ Sk
P)〉

〈ck(x) P k′, x,D〉
〈x ∈ D,x,D〉 if k P k′

〈ck(x) P k′, x,D〉
〈x ∈ ∅, x, ∅〉 if k 6P k′

〈f(x) ∈ ∅, x,D〉
〈x ∈ ∅, x, ∅〉 if f 6= id

4.3.4 Shortcuts for solving

In some cases, we may decide that the constraint is valid or inconsistent by performing an
almost straightforward analysis of the problem. Proposition 2 characterizes some of them.

Proposition 2 If k /∈ f(Df ) then 〈(f ◦ g)(x) P k, x,D〉 is either valid (i.e., it is equiv-
alent to 〈x ∈ D,x,D〉) or inconsistent (i.e., it is equivalent to 〈x ∈ ∅, x, ∅〉), for all f ∈
{pow2n, rad2n, abs, expa, pola,b,c}.

In general, we may also try to use some knowledge about the image set to help decide
whether a constraint is trivially valid or inconsistent. This is the idea behind Rule 4, which
is quite relevant in math education.
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Rule 4 (ValidInconsistent) Given generic functions f and g, with f, g 6= id, let E be
such that f(Df ) ⊆ E. Then,

〈(f ◦ g)(x) ∈ S, x,D〉
〈x ∈ D,x,D〉 if E ⊆ S

〈(f ◦ g)(x) ∈ S, x,D〉
〈x ∈ ∅, x, ∅〉 if S ∩ E = ∅

〈(f ◦ g)(x) P k, x,D〉
〈x ∈ D,x,D〉 if E ⊆ Sk

P

〈(f ◦ g)(x) P k, x,D〉
〈x ∈ ∅, x, ∅〉 if Sk

P ∩ E = ∅

If g = id, the same rewriting rules still apply, but it is enough that f(D) ⊆ E. In general, E
may be any set that contains the image of f |g(D).

Rule 4 becomes particularly interesting if either the image of f (or of f |g(D)) is known
or we may “easily” deduce a (non-trivial) superset E of it. Several constructive properties
may be applied for such purpose and the exact meaning of “easily” depends both on which
of them are used in inference and on how deep we let the inference go. For educational
purposes, it may often not go beyond one or two deduction steps, although this may depend
on the goal of the exercise.

Example 5 By employing Rule 4 and considering E = abs(R) = [0,+∞[, the solver straight-
forwardly obtains that the problem

〈(abs ◦ rad3 ◦ pol−1,2)(x) ≤ −4, x, R〉

has no solution, i.e., the constraint | 3
√
−x + 2| ≤ −4 is inconsistent. So, it is rewritten as

〈x ∈ ∅, x, ∅〉. By the same rule, it deduces that

〈(abs ◦ rad3 ◦ pol−1,2)(x) ≥ 0, x, R〉

can be rewritten in solved form 〈x ∈ R, x, R〉.

For a basic implementation of the solver, we may confine the application of this rule
to the cases when the required information is explicitly given in Table 1. However, some
math problems are often solved just with a glance, and, clearly, a brief reasoning. To
translate this, and following a strategy alike the one used by some constraint programming
solvers for propagation, we may implement the solver to perform some inference. Table 2
contains some properties that may be used as inference rules to obtain E , for a given complex
function f . The usual extension of the binary operations and relations over real numbers to
R ∪ {−∞,+∞} is considered.

Some other useful properties state well-known results from Calculus, that students usually
learn in math, and are likely more effective for finding smaller supersets E . For example:

• if Df = R and f is invertible, f(Df ) = Df−1 . This requires that the expression of f−1

can be computed, which is not always possible. For that purpose, it is useful also to
use the identity (f ◦ g)−1 = g−1 ◦ f−1.
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inf(f ± ck) = inf(f) ± k and sup(f ± ck) = sup(f) ± k

inf(−f) = sup(f) and sup(−f) = inf(f)

inf(ck × f) = min(k × inf(f), k × sup(f)) and sup(ck × f) = max(k × inf(f), k × sup(f))

inf(f/ck) = inf((1/ck) × f) and sup(f/ck) = sup((1/ck) × f)

inf(f + g) ≥ inf(f) + inf(g) and sup(f + g) ≤ sup(f) + sup(g)

inf(f − g) ≥ inf(f) − sup(g) and sup(f − g) ≤ sup(f) − inf(g)

inf(f × g) ≥ min{inf(f) × inf(g), inf(f) × sup(g), sup(f) × inf(g), sup(f) × sup(g)}

sup(f × g) ≤ max{inf(f) × inf(g), inf(f) × sup(g), sup(f) × inf(g), sup(f) × sup(g)}

inf(1/g) ≥ 1/ sup(g) and sup(1/g) ≤ 1/ inf(g), if g > 0 or g < 0

Table 2: Estimating bounds of a function’s range: if the minimum and/or maximum values
are defined for f and g, properties can be rephrased in terms of min and max.

• Provided f is continuous, Bolzano theorem gives a way to infer E for f |[a,b]. Indeed,
if f is continuous and monotonic on [a, b] then [min(f(a), f(b)),max(f(a), f(b))] is
the image of f |[a,b]. A similar result holds for any generic interval I if we take
limx→c,x∈I f(x), for each extreme point c of I instead.

• Another important feature is that the image of f ◦ g is the image of f |g(Dg). Therefore,
if Df ⊆ g(Dg), the image of f ◦ g is the image of f . So, if g(Dg) = R, the image of f ◦ g
is f(Df ).

The following is also a simplification rule and the solver needs it to keep the solving
procedure close to what students usually do.

Rule 5 (ReducesToDiscreteSet) If P/∈ {=, 6=} and E is such that f(Df ) ⊆ E then when
Sk

P ∩ E is a finite set

〈(f ◦ g)(x) P k, x,D〉
〈Γ((f ◦ g)(x) ∈ Sk

P ∩ E), x,D〉

and when Sk
P ∩ E = E \ S for a finite set S

〈(f ◦ g)(x) P k, x,D〉
〈Γ((f ◦ g)(x) /∈ S), x,D〉

Actually, E may be any set that contains the image of f |g(D) that is f(g(D)).
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Example 6 By Rule 5, the solver deduces that 〈(abs ◦ rad3 ◦ pol−1,2)(x) ≤ 0, x, R〉 is
equivalent to 〈(abs ◦ rad3 ◦ pol−1,2)(x) = 0, x, R〉 i.e., that | 3

√
−x + 2| ≤ 0 can be rewritten as

| 3
√
−x + 2| = 0. Again, E = abs(R) = [0,+∞[.

We shall now analyse the cases where the solver has to perform some more elaborate
algebraic manipulations. If we do not explicitly state the contrary, g may be id.

4.3.5 Strictly monotonic functions

Rule 6 applies to all functions f that are strictly monotonic, which is the case of pola,b, pk,
pow2n+1, rad2n+1, loga and expa.

Rule 6 (StrictMonotonic) If f is a strictly monotonic and k ∈ f(Df ) then

〈(f ◦ g)(x) P k, x,D〉
〈g(x) P f−1(k), x,D〉 if f is strictly increasing

〈(f ◦ g)(x) P k, x,D〉
〈g(x) P−1 f−1(k), x,D〉 if f is strictly decreasing

where g may be also the identity function id.

It is worth noting that the condition k ∈ f(Df ) imposes no restriction if

f ∈ {pola,b, pk, pow2n+1, rad2n+1, loga},

because f(Df ) = R. Moreover, to apply Rule 6, the expression that defines f−1 has to be
computable. This is the case of all the functions just mentioned and also of expa.

Example 7 By Rule 6, the solver rewrites 〈(rad3 ◦ pol−1,2)(x) ≤ 2, x, R〉 to

〈pol−1,2(x) ≤ 8, x, R〉

and, again, by Rule 6, it obtains

〈x ≥ −6, x, R〉

i.e., 3
√
−x + 2 ≤ 2 ⇔ −x + 2 ≤ 8 ⇔ x ≥ −6. By Rule 3, it finally deduces the solved form

〈x ∈ [ − 6,+∞[, x, [−6,+∞[〉.

4.3.6 Functions symmetric w.r.t. a vertical line

Another relevant class of functions consists of the ones that present some symmetry w.r.t. to
a vertical line and have a strictly monotonic branch.

The graph of f is symmetric w.r.t. x = a iff f(a + x) = f(a − x), for all x such that
a + x ∈ Df . This is equivalent to saying that f(x) = f(2a − x), for all x ∈ Df . It requires
that the domain of f be symmetric w.r.t. x = a, that is, that x ∈ Df iff 2a − x ∈ Df , for
all x.
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Notation. Let us denote Df ∩ Sa
≥ by D≥a

f and define Bδ
a,P by {x ∈ R : |x − a| P δ}.

E.g., B−3
0,≥ = R, B5

0,< = ]−5, 5[, B2
−1,= = {−3, 1}, B0

1,< = ∅.

Rule 7 (AxialSymMonotonicBranch) For f symmetric w.r.t. x = a and strictly mono-
tonic on D≥a

f , and k ∈ f(Df ), let k′ = (f |D≥a

f

)−1(k) − a. Then,

〈(f ◦ g)(x) P k, x,D〉
〈Γ(g(x) ∈ Bk′

a,P), x,D〉 if f |D≥a

f

increases

〈(f ◦ g)(x) P k, x,D〉
〈Γ(g(x) ∈ Bk′

a,P−1), x,D〉 if f |D≥a

f

decreases

Indeed, when the graph of f is symmetric w.r.t. x = a and f is strictly monotonic in D≥a
f ,

the restriction of f to D≥a
f , that we represent by f |D≥a

f

, is a one-to-one function and thus

it is invertible. Although the same holds for f restricted to Df ∩ Sa
≤, this branch is not so

useful for our purpose.

Example 8 By Rule 7, the solver rewrites 〈(pow2 ◦ pol−1,2)(x) < 4, x, R〉 to

〈pol−1,2(x) > −2 ∧ pol−1,2(x) < 2, x, R〉

since (pow2|R+

0

)−1 = rad2, pow2|R+

0

is monotonic increasing and B
√

4
0,< =] − 2, 2[.

4.3.7 Some rule instances

If f is even (i.e., f(x) = f(−x), for all x ∈ R) then D≥0
f is R+

0 and if, in addition, f |
R

+

0

is

strictly monotonic then Rule 7 may be applied. This is the case of abs and pow2n, for n ≥ 1.
It is interesting also to see that, from Table 1 and Rules 6 and 7, we may automatically infer
that, for instance,

〈(pola,b ◦ f)(x) P k, x,D〉
〈f(x) P (k − b)/a, x,D〉 if a > 0.

〈(pola,b ◦ f)(x) P k, x,D〉
〈f(x) P−1 (k − b)/a, x,D〉 if a < 0.

〈(abs ◦ f)(x) P k, x,D〉
〈Γ(f(x) ∈ Bk

0,P), x,D〉 if k ≥ 0.

〈(pown ◦ f)(x) P k, x,D〉
〈f(x) P

n
√

k, x,D〉 if n is odd.

〈(pown ◦ f)(x) P k, x,D〉
〈Γ(f(x) ∈ B

n
√

k
0,P ), x,D〉 if n is even and k ≥ 0.

so that, Rules 6 and 7 are actually quite convenient rule schemes.
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The quadratic function. For the quadratic function pola,b,c : x 7→ ax2 + bx + c, that

is symmetric w.r.t. x = − b
2a and strictly monotonic on D≥−b/(2a)

pola,b,c
= [ − b

2a ,+∞[, we have

pola,b,c|[− b
2a

,+∞[ strictly increasing (resp., decreasing) function iff a > 0 (resp. a < 0).

Students learn the formula giving the roots of a quadratic equation

x =
−b ±

√
b2 − 4ac

2a

and that the roots are real numbers iff ∆ = b2−4ac ≥ 0. They learn how to solve constraints
of form pola,b,c(x) P 0 through the analysis of the function’s graph, its zeros and sign(a).
We may deduce the same laws they learn either directly from Rule 7 or using both Rules 6
and 7. For the latter, we must observe that

pola,b,c = pola,−∆/(4a) ◦ pow2 ◦ pol1,b/(2a).

We have also implemented a specific rule for Quadratic. Indeed, we have

ax2 + bx + c = a

(

x +
b

2a

)2

− b2 − 4ac

4a
= a

(

x +
b

2a

)2

− ∆

4a
.

We also see that pola,b,c(R) = [− ∆
4a ,+∞[ if a > 0 and pola,b,c(R) =]−∞,− ∆

4a ] if a < 0. From

pol−1
a,b,c = pol−1

1,b/(2a) ◦ pow−1
2 ◦ pol−1

a,−∆/(4a)

we have

(pola,b,c|R+

0

)−1(x) = − b

2a
+

√
ax + ∆

|2a|
which is needed in Rule 7. Nevertheless, to explain solutions step-by-step, it may make some
sense to introduce the following reduction step

〈(pola,b,c ◦ g)(x) P k, x,D〉
〈(pola,b,c−k ◦ g)(x) P 0, x,D〉 if k 6= 0.

that students often perform and to write explicitly a rule for tackling (pola,b,c ◦ g)(x) P 0,
instead of using Rule 7.

Rule 8 (Quadratic) Let ∆ = b2 − 4ac and k′ =
√

∆/|2a|.

〈(pola,b,c ◦ g)(x) P k, x,D〉
〈(pola,b,c−k ◦ g)(x) P 0, x,D〉 if k 6= 0.

〈(pola,b,c ◦ g)(x) P 0, x,D〉
〈(Γ(g(x) ∈ Bk′

−b/(2a),P), x,D〉 if ∆ ≥ 0 and a > 0.

〈(pola,b,c ◦ g)(x) P 0, x,D〉
〈(Γ(g(x) ∈ Bk′

−b/(2a),P−1 ), x,D〉 if ∆ ≥ 0 and a < 0.

If ∆ < 0, the solver may apply Rules 4 and 5, with E = pola,b,c(R) = [−∆
4a ,+∞[ if a > 0 and

E = pola,b,c(R) =]−∞,− ∆
4a ] if a < 0. In this case, students often use a less restrictive set E ,

considering that pola,b,c(R) ⊆ R+ = E if a > 0 and pola,b,c(R) ⊆ R− = E if a < 0.
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Example 9 The problem 〈(pol1,2,1 ◦ pow3)(x) ≤ 0, x, R〉 becomes

〈Γ(pow3(x) ∈ {−1}), x, R〉

that is 〈pow3(x) = −1, x, R〉, since ∆ = 0, B0
−1,≤ = {−1}. Then, by Rule 6, the problem is

rewritten to 〈x = −1, x, R〉.

4.3.8 Piecewise functions

A piecewise function f is of form (fi, Di), for i = 1, . . . , n, with n ≥ 2 and is studied
for x ∈ D1

f(x) =











f1(x) for x ∈ D1
...

fn(x) for x ∈ Dn

for n ≥ 2. Piecewise functions are studied in high-school math courses, arising in a natural
way when the abs function is involved in the problems. Usually, the fi’s are no longer
piecewise functions.

Rule 9 (Piecewise) If f is a piecewise and (fi, Di), for i = 1, . . . , n are its branches, then

〈(f ◦ g)(x) P β, x,D〉
〈∨n

i=1((fi ◦ g)(x) P β ∧ g(x) ∈ Di), x,D〉 if β ∈ R or β ⊆ R.

Example 10 The problem 〈f(x) ≤ 7, x, R〉 for

f = ( (rad2 ◦ pol1,−3, [−3,+∞[), (pol1,−6,9, ]−∞,−3[) )

is rewritten as

〈 ((rad2 ◦ pol1,−3)(x) ≤ 7 ∧ x ∈ [−3,+∞[) ∨ (pol1,−6,9(x) ≤ 7 ∧ x ∈]−∞,−3[), x, R 〉

4.3.9 The most complex cases

Constraints that involve f � g, for � ∈ {+,−,×, /} may be hard to solve, and, indeed, they
often render the problem undecidable. Hence, if we want to guarantee that there exists a
solving procedure for the problem, we have to restrict the type of expressions that may arise
in constraints. For the application we have in mind, this is not dramatic at all. On one
hand, what we would like is that the system may help students understand a topic. On the
other hand, the constraints students are asked to solve by hand are usually not too complex
and, hopefully, decidable (if they apply the concepts and results they should master). We
confine to the expressions described by the grammar given in [14]. The grammar given in
Table 3 is a reformulation of that one and includes some minor extensions.
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function → prodexpr | divexpr;
divexpr → prodexpr/prodexpr | ck/prodexpr | primop ◦ divexpr;
prodexpr → factor | factor × prodexpr | primop ◦ prodexpr;
factor → sumexpr | basic | vxip;
sumexpr → pk ◦ sumexpr | abs ◦ sumexpr | radn ◦ sumexpr | pown ◦ sumexpr | bsum;
basic → pola,b | pola,b,c | pola,b,c ◦ pown | pola,b ◦ basic | primop ◦ basic;
vxip → pk ◦ vxip | abs ◦ vxip | radn ◦ vxip | pown ◦ vxip |

expand(pown × (pola,b,c ◦ powm)) | expand(pown × (pola,b ◦ powm));
bsum → pola,b ◦ vquot120 | spbasic | specialbsum |

quot120 + spbasic where dgden(quot120) + deg(spbasic) ≤ 2 |
sumquot120;

vquot120 → pown ◦ vquot120 | radn ◦ vquot120 | abs ◦ vquot120 | quot120 | pola,b ◦ vquot120
quot120 → k/spbasic | spbasic/k | spbasic/spbasic

abs ◦ quot120 | pola,b ◦ quot120;
spbasic → pbasic + pbasic | pbasic + spbasic;
pbasic → basic≤2 | sbasic=1 × sbasic=1;
specialbsum → kradn ◦ spbasic + kradn ◦ spbasic |

kpown ◦ spbasic + kpown ◦ spbasic |
kpown ◦ spbasic + kpow2n ◦ spbasic=1 |
krad2n ◦ spbasic + kradn ◦ spbasic=1 |
krad2 ◦ spbasic + spbasic=1 |
kpow2 ◦ spbasic=1 + spbasic;

sumquot120 → quot120 |
quot120 + sumquot120 if for each subterm f + g, dgden(f) + dgnum(g) ≤ 2

basic → abs | pown | radn | pola,b | pola,b,c | abs ◦ basic | pown ◦ basic | radn ◦ basic |
pola,b ◦ basic | pola,b,c ◦ pown;

kradn → radn | pk ◦ radn;
kpown → pown | pk ◦ pown;
primop → abs | pown | radn | pk;

Table 3: A grammar that describes some functions whose zeros and sign variation may be
computed automatically. Here, function pk is the expansion of ck × id that is, pk : x 7→ k x.
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The main idea underlying it was to characterize expressions for which students may
compute domains and zeros provided they can solve the following problems:

aX + b = 0
aX2 + bX + c = 0
aXn + b = 0

a n
√

X + b = 0
Xn ± Y n = 0, for n ≥ 2 and deg(X), deg(Y ) ≤ 2,
n
√

X ± n
√

Y = 0, for n ≥ 2 and deg(X), deg(Y ) ≤ 2,
X/Y ± Z/T = 0, with deg(XT ) ≤ 2 and deg(Y Z) ≤ 2.

The expressions of a given degree evaluate to polynomials of that degree when simplified
or expanded to get rid of abs and pown, and shall not contain quotients and radicals. For
the latter, the degree is undefined.

Definition 9 The degree of a function is inductively defined by:

deg(abs) = 1

deg(id) = 1

deg(ck) = 0

deg(pown) = n

deg(pola,b) = 1

deg(pola,b,c) = 2

deg(f ◦ g) = deg(f) × deg(g)

deg(f × g) = deg(f) + deg(g)

deg(f ± g) = max{deg(f), deg(g)}
deg(f/g) = deg(radn) = deg(expa) = deg(loga) = ∞

We defined deg(f/g) = deg(radn) = deg(expa) = deg(loga) = ∞ to make the definition
generic, i.e., independent of particular casualities or arrangements of coefficients involved in
expressions.

We introduce also dgden and dgnum to characterize the degree of the denominator and
numerator for some expressions that involve quotients.

dgden(f/g) = dgden(g)

dgden(abs ◦ f) = dgden(f)

dgden(pk ◦ f) = dgden(f)

dgnum(f/g) = dgnum(f)

dgnum(abs ◦ f) = dgnum(f)

dgnum(pk ◦ f) = dgnum(f)
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Rule 10 If f 6= id is strictly monotonic then

〈(f ◦ g)(x) − (f ◦ h)(x) P 0, x,D〉
〈g(x) − h(x) P 0, x,D〉 if f increases

〈(f ◦ g)(x) − (f ◦ h)(x) P 0, x,D〉
〈g(x) − h(x) P−1 0, x,D〉 if f decreases

Rule 11 If f 6= id is an odd function

〈(f ◦ g)(x) + (f ◦ h)(x) P 0, x,D〉
〈(f ◦ g)(x) − (f ◦ (−h))(x) P 0, x,D〉

Rule 12 (ProductByConstant)

〈(ck × f)(x) P k′, x,D〉
〈f(x) P k′/k, x,D〉 if k > 0.

〈(ck × f)(x) P k′, x,D〉
〈f(x) P−1 k′/k, x,D〉 if k < 0.

〈(0× f)(x) P k′, x,D〉
〈0(x) P k′, x,D〉

Rule 13 (ReduceToSameDenominator)

〈(f/g)(x) P k, x,D〉
〈((f − ck × g)/g)(x) P 0, x,D〉 if k 6= 0.

Rule 14 (NullProduct) If � ∈ {×, /} and P∈ {≥, >} then

〈(f � g)(x) P 0, x,D〉
〈(f(x) P 0 ∧ g(x) P 0) ∨ (f(x) P−1 0 ∧ g(x) P−1 0), x,D〉

and if P∈ {≤, <} then

〈(f � g)(x) P 0, x,D〉
〈(f(x) P 0 ∧ g(x) P−1 0) ∨ (f(x) P−1 0 ∧ g(x) P 0), x,D〉

and
〈(f × g)(x) = 0, x,D〉
〈f(x) = 0 ∨ g(x) = 0, x,D〉

〈(f × g)(x) 6= 0, x,D〉
〈f(x) 6= 0 ∧ g(x) 6= 0, x,D〉

〈(f/g)(x) = 0, x,D〉
〈f(x) = 0, x,D〉

〈(f/g)(x) 6= 0, x,D〉
〈f(x) 6= 0, x,D〉
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We note that in 〈(f/g)(x) P 0, x,D〉, we assumed before that D is contained in Df/g, which
justifies the correction of the above rules.

Also, to unify the expressions that are obtained by the solver with the head of the
presented rules, the solver does, in some situations, some arithmetic simplications.

In order to apply the rewriting rules, we have also to perform some controlled algebraic
manipulations. The idea is to limit the number of times an expression may be rewritten to
guarantee termination. The solver needs rules translating the properties of the operations
(commutative, associative, distributive, . . . ). It also needs special rules. In particular, to
get rid of abs and to lift pown and radn

abs ≡ ((id, R+
0 ), (−id, R−))

(ck × pow2n+1) ◦ f ≡ pow2n+1 ◦ ((rad2n+1 ◦ ck) × f)

(ck × rad2n+1) ◦ f ≡ rad2n+1 ◦ ((pow2n+1 ◦ ck) × f)

(ck × rad2n) ◦ f ≡ sign(k)rad2n ◦ ((pow2n ◦ abs ◦ ck) × f)

(ck × pow2n) ◦ f ≡ sign(k)pow2n ◦ ((rad2n ◦ abs ◦ ck) × f)

with sign(k) representing the signal of k. Moreover, we need to manipulate polynomials
addition and multiplication,

polan,...,a0
+ polbm,...,b0 ≡ polan,...,am−1,am+bm,...a0+b0

where n ≥ m and
polan,...,a0

≡ polaj ,...,a0

if aj 6= 0 and ai = 0, for all i > j > 0,

k × polan,...,a0
≡ polkan,...,ka0

,

and we also need to define the product of two polynomials.

5 Conclusions

Applications of CAL to math education require a careful analysis of procedures that students
usually apply to solve math drills to design generic solvers with pedagogic relevance. We
claim that the solver proposed in this paper fulfils this requirement. At the same time,
it is quite generic, for it takes advantage of a declarative approach. The solver is being
implemented in Prolog. We are going also to annotate the rewriting rules to provide
explanations of the exercises in natural language, following ideas of [10].
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