
The Mob Core Language and
Abstract Machine

Hervé Paulino Lúıs Lopes

Technical Report Series: DCC-2005-05

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150-180 Porto, Portugal

Tel: +351+226078830 – Fax: +351+226003654
http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

The Mob Core Language and Abstract Machine

Hervé Paulino ∗ Lúıs Lopes †

Abstract

Most current mobile agent systems are based on programming languages whose semantics
are difficult to prove correct as they lack an adequate underlying formal theory. In recent years,
the development of the theory of concurrent systems, namely of process calculi, has allowed for
the first time the modeling of mobile agent systems. Languages directly based on process calculi
are, however, very low-level and it is desirable to provide the programmer with higher level
abstractions, while keeping the semantics of the base calculus.

In a series of two technical reports we present a scripting language for programming mobile
agents called Mob. In this first report we describe the language’s syntax and semantics. Mob
is service-oriented, meaning that agents act both as servers and as clients of services and that
this coupling is done dynamically at run-time. The language is implemented on top of a process
calculus which allows us to prove that the framework is sound by encoding its semantics into
the underlying calculus. This provides a form of language security not available to other mobile
agent languages developed using a more ah-doc approach.

Keywords: Mobile Computations, Service-Oriented, Process-Calculus, Programming Language,
Run-Time System.

1 Introduction and Motivation

Mobile agents are computations that have the ability to travel to multiple locations in a network, by
saving their state and restoring it in a new host. This paradigm greatly enhances the productivity of
each computing element in the network and creates a powerful computing environment, focusing on
local interaction. In fact, mobile agents move towards the resources (e.g., data, servers) and interact
locally unlike the usual communication paradigms (e.g., client-server), that require costly remote
sessions to be maintained.

Programming languages for mobile agents come in two flavors: those designed by hand and those based
on formal systems. In the first set we have systems such as Aglets [6], Mole [13] and Voyager [3] that
mostly extend Java classes to define an agent’s behavior. Providing a demonstrably sound semantics
for these systems is rather difficult given the gap between the implementation and an adequate formal
model. Moreover, since it is not possible to access the state of the Java Virtual Machine (JVM) these
systems have a hard time implementing autonomous mobile agents, which occasionally have to move
between sites carrying their state and resuming their execution upon arrival to their destination.
Another approach, still in the same set, is that of scripting languages such as D’Agents [4] or Ara [9],
that fully support agent migration but require specific virtual machine support.

Languages in the second set are based on formal systems, mostly some form or extension of the
π-calculus [5, 8]. This process calculus provides the theoretical framework upon which researchers
can build solid specifications for programming languages. Languages can thus be proved correct by
design relative to some base calculus with a well established theory. Examples of such languages have
been implemented in recent years, namely, JoCaml [2], TyCO [14], X-Klaim [1], Nomadic Pict [17],

∗DI - FCT, Universidade Nova de Lisboa, e-mail : herve@di.fct.unl.pt
†DCC - FC, Universidade do Porto, e-mail: lblopes@ncc.up.pt

2

Acute [10] and Alice [12]. Although process calculi are ideal formal tools for the development of
mobile agent frameworks, their constructs are very low-level and high-level idioms that provide more
intuitive abstractions for programming are desirable.

Here, we introduce a scripting language called Mob that aims to provide both language security and,
a user friendly, seamless, programming style more characteristic of the first set of languages. The
main novelties introduced in Mob are as follows:

• Mob is service oriented, meaning that services, described as interfaces implemented by agents
are the main abstractions of the language. Agents both provide and require services and they
are bound to these dynamically as they move through the network;

• The semantics of a subset of the Mob core language is sound relative to distributed form of
the TyCO process calculus (TYped Concurrent Objects) [14, 11]. This subset contains all the
primitives of Mob except the migration primitive (go). The encoding of the Mob abstract
machine into TyCO also provides the specification for the Mob compiler. High-level constructs
are obtained as derived constructs from the core language, thus preserving the semantics;

• compiled Mob programs are executed using the MIL (Multi-threaded Intermediate Language [15])
virtual machine, which is itself implemented on top of the JVM and thus takes advantage of
its portability while keeping full control of the state of the virtual machine. This provides full
support for agent migration while keeping portability across distinct hardware platforms;

• a user friendly scripting programming style provides the high-level abstractions desirable for
programming mobile agents as derived constructs from the core language, thus preserving the
semantics;

• extensions to the core virtual machine in the form of external calls can be used to interact with
other services (not implemented in Mob, namely SMTP, FTP, HTTP or SQL for databases), as
well to execute as programs written in other programming languages, such as Java, Python or
Perl. In this view, Mob can be used as a coordination language allowing high-level programming
of mobile applications.

In the remainder of this paper we introduce the syntax and semantics of the Mob programming
language.

2 The Mob Language and Semantics

Before describing the language and its semantics, we give a short overview of our main design
goals. We want to provide a simple to use programming language based on the high-level type-
free programming feel of scripting languages. However, we also want to supply the means to develop
clean, modular and structured code, and therefore we adhere to the object-oriented programming
paradigm.

Conceptually, we view an agent as a special object, with a run-time associated, that can move from
host to host in a network and that provides and requires services to/from that network. Agents are
handled in Mob programs much like objects in Object-Oriented languages, introducing constructors
agent, to define an agent abstraction, and new to create a new instance of an agent.

Data-types are defined with the usual class constructor. Objects are instances of these classes and,
unlike agents, have no run-time data-structures associated. In Mob, objects are first class entities
and are created with the constructor new.

The service is the main abstraction of the language. Agents exist to implement services and do useful
work by using services provided by other agents. There is absolutely no distinction between clients
and servers.

3

Checking that an agent correctly uses or correctly implements the interface of a service is done at
compile time by connecting to a network name service. The types inferred by the Mob compiler
are matched with those assumed for the service in the name service. If the agent implements a non-
existing service, the interface provided becomes the de facto interface for that service. This level of
type verification provides some form of program security, namely in remote method invocation.

To access a service, a programmer is required to get a binding for an agent that provides it. The
binding is obtained dynamically by asking the network name service for an agent that provides the
required service. When the binding is received, interaction through method invocation can happen.

Agents may move through the network and this is controlled explicitly, at high-level by the pro-
grammer using a primitive go (similar to the one found in Telescript [16]). The movement of an
agent involves moving an entire virtual machine and its state to the target host in the network. The
execution resumes on arrival at the target host, without external intervention.

Since agents supply services, they must be able to handle multiple incoming requests. To cope with
such a demand we have designed the architecture of an agent as multi-threaded, where each remote
method invocation is handled by a dedicated thread. This design justified also the inclusion of explicit
thread creation (fork) and synchronization (join).

Objects in Mob can be accessed simultaneously by any number of threads, therefore a scheme to
allow for exclusive access is required. We provide such a scheme with two instructions lock and
unlock that allows a primitive form of mutual exclusion in data access.

Interaction with external services is provided by Mob through the exec instruction. In general, exec
is used to implement extensions to the core Mob language to support more functionality. These
external services may be implemented in other languages, such as Java, C, TCL or Perl, or allow
interaction with network services, such as WWW queries, FTP transactions, or e-mail communication.

2.1 The Syntax

We now present the syntax for the core language. The full form of the language is obtained by
providing derived constructs for higher-level programming, while keeping the underlying semantics
of the core language.

2.2 The Abstract Syntax

Reserved Words

The language defines a set reserved words that may not be used as identifiers:

agent implements requires class service

go return join lock unlock

if else while break exit

new fork bind host exec

self main null

! { } () . ;
+ − ∗ / %

== ! = > < >= <= && ||

4

Constant Identifiers

Constant identifiers in Mob are divided in the following classes: booleans, elements of
Bool = {true, false} ranged over by bool; integers, elements of Int ranged over by int and, strings,
elements of String ranged over by str, defined by the regular expression: ”[̂ \”\n]∗”. Hosts have
string identifiers in Mob programs.

Identifiers

Identifiers are defined by the regular expression: [a− zA− Z] ([a− zA− Z] | [0− 9] |)∗. They are
divided in the following categories:

x, y ∈ Var variables
X, Y ∈ ClassId class identifiers
A,B ∈ AgentId agent identifiers
s ∈ ServiceId service identifiers
m ∈ MethodId method labels

A sequence of elements of a given syntactic category α is written as α̃.

Grammar

The syntax of a Mob program resorts to the following phrase classes:

ι ∈ Instruction program instruction
V ∈ AssignValue assignable value
M ∈ Methods method implementation
e ∈ Expression basic expression
c ∈ Constant constant value
v ∈ LangValue variable or constant
o ∈ Target object or agent
bop ∈ BinOp binary operator
uop ∈ UnOp unary operator

A Mob program is syntactically a sequence of instructions (P) defined by the grammar in figure 1:

2.2.1 Syntactic Restrictions

The concrete syntax of Mob imposes some syntactic restrictions over the syntax of a program:

• definitions of classes, agents and services, can only appear at top-level;

• an agent class must implement the main method;

• the return instruction can only appear within the body of a method;

• the break instruction can only appear inside the body of an if or a while instruction;

• the go and exit instructions can only appear inside the body of an agent definition’s method;

• the method identifiers mi in {m1(x̃1) { P1 } . . .mn(x̃n) { Pn }} are pairwise distinct;

• the parameters x̃ in an agent (agent A(x̃) implements s̃ requires s̃ M), a class (class X(x̃) M)
or a method (m(x̃){P}) definitions are pairwise distinct;

5

P ::= ι;P Sequential Composition
| ε Empty Sequence

ι ::= agent A(x̃) implements s̃ requires s̃ M Agent Definition
| service s {m̃} Service Definition
| class X(x̃) M Class Definition
| go (v) Agent Movement
| return (v) Method Return
| join (x) Thread Synchronization
| lock (x) Lock Resource
| unlock (x) Unlock Resource
| if (v) { P } else { P } Conditional Execution
| while (v) { P } Iterator
| break Break
| exit () Terminate Agent Execution
| o = V | o.x = v Assignment

V ::= new A (ṽ) New Agent
| new X (ṽ) New Object
| fork { P } New Thread
| bind (s v) Agent Discovery
| host () Current Host
| exec (ṽ) External Call
| o.m (ṽ) Method Call
| e Expressions

M ::= {m1(x̃1) { P1 } . . .mn(x̃n) { Pn }} Methods
e ::= v | e bop e | uop e Basic Expressions
v ::= o | o.x | c Language Values
o ::= x | self Target
c ::= bool | int | str | null Constants

bop ::= + | − | ∗ | / | % | == | ! =
| < | > | <= | >= | && | || Binary Operators

uop ::= ! | − Unary Operators

Figure 1: Syntax of the Mob programming language.

• a variable x is bound in P with an assignment (x = V ;P); is bound in M in an agent definition
(agent A(x̃) implements s̃ requires s̃ M) or class definition (class X(x̃) M) if it is one of the
x̃; is bound in P in a method (m(x̃){P}) if it is one of the x̃;

• an agent identifier A is bound in M and in P with a statement
agent A(x̃) implements s̃ requires s̃ M ;P ;

• a class identifier X is bound in M and in P with a statement class X(x̃) M ;P ;

• a service identifier s is bound in P with a statement service s {m̃};P ;

6

• the sets of free variables, free agents, free classes and free services are defined accordingly. Well
formed Mob programs are closed for variables, agent identifiers, class identifiers and service
identifiers.

2.3 Semantics

We provide the semantics for a Mob network in the form of an abstract transition machine. A Mob
network is composed by a set of hosts, which are abstractions for network nodes. Hosts define the
boundaries where computations take place in a Mob network. The computing units of the Mob
language are agents. There may be several agents running concurrently in a given host at any given
time. In our approach there is no distinction between clients and servers, any agent may behave as a
client requesting a service while also providing services to others. This is achieved by implementing
multi-threaded agents to handle multiple requests concurrently. The threads in an agent share the
same heap space whilst having independent control data-structures.

Before defining the structure of the network, agents and threads we first introduce some notation,
syntactic categories and auxiliary functions:

Notation

In the sequel we use the following notation:

• ∅ : the empty set;

• ε : the empty sequence;

• X∗ : the set {} ∪X ∪X2 ∪X3 ∪ . . . ;

• 2X : the set of subsets of X;

• α ∈ α1, . . . , αn : we abusively say that an element of a given category α belongs to a sequence
of elements of that same category α1, . . . , αn if α ∈ {α1, . . . , αn}.

• f + g : the finite map f modified by g with domain dom(f) ∪ dom(g) and values

(f + g)(x) = if x ∈ dom(g) then g(x) else f(x).

• a stack of elements of a given category α is defined as: Stack(α) ::= α :: Stack(α) | ε.

• a pool of concurrently executing units defined by some given category α is defined as Pool(α) =
α1 | α2 | . . . | αn, where the commutative operator | represents concurrent execution.

Syntactic Categories

The syntactic categories involved in the abstract machine are:

7

a, b ∈ AgentName agent name
h ∈ Host host identifier
c ∈ Constant constant value
x, y ∈ Var variable
X, Y ∈ ClassId class identifier
A,B ∈ AgentId agent identifier
D ∈ DefinitionId = AgentId ∪ ClassId agent or class identifier
m ∈ MethodId method label
s ∈ ServiceId service identifier
ι ∈ Instruction Mob instruction
P ∈ Instruction* sequence of Mob instructions
C ∈ Code code for the class and agent definitions
M ∈ Method methods of a definition
H ∈ Heap address space for the agent
r ∈ HeapRef heap reference
K ∈ Closure closure
u ∈ Value constant value or a heap reference
T ∈ RunningThread flow of execution
B ∈ Environment environment of a thread
Q ∈ Stack stack of interrupted blocks of code
S ∈ SuspendedThread threads suspended on a heap reference
A ∈ Agent agent
t ∈ Type type of a service
R ∈ NameService name service
Ans ∈ AgentNameService agent name service
Sns ∈ ServiceNameService service name service
N ∈ Network network

The Data Structures

The abstract machine has two layers: agents and threads. A network is described as a set of agents
running concurrently plus a name service for agents. Agents are described as collections of threads
running concurrently and sharing the agent’s resources, namely its code and address space.

Agents are abstractions for autonomous programs running on network hosts. Agents interact with
the network by spawning new agents or moving between hosts. They interact with other agents by
invoking methods.

• an Agent Name is an element of the set AgentName, ranged over by a, b, and represents a
unique, network-wide, identifier for an agent;

• a Host is an element of the set Host ⊂ String, ranged over by h, and represents a unique,
network-wide, host identifier;

• an Instruction is an element of the set Instruction, ranged over by ι, and represents a Mob
instruction. A sequence of instructions is denoted by P ;

• Method represents a set of methods and is a map of the form Method = MethodId 7→ Var∗ ×
Instruction∗, ranged over by M , and represents the methods in a class or agent;

• the Code for the Agent is a map defined as Code = DefinitionId 7→ Var∗×Method×ServiceId∗,
ranged over by C and represents the code of all the classes required for the execution of an
agent;

• a Heap Reference is an element of the set HeapRef, ranged over by r, and is an abstraction for
an address in the address space of an agent. Heap references in MOB are qualified with the

8

identifier of their hosting agent (e.g., reference r in the heap of agent a should be interpreted as
r@a) and thus are unique in the network. To ease the reading of the rules we omit the qualifier
of a heap reference when it is accessed from within its hosting agent. The value • ∈ HeapRef
represents a null heap reference;

• a Constant is an element of the set Constant = Bool ∪ Int ∪ String, ranged over by c, and
represents a primitive value of the language;

• a Value is an element of the set Value = Constant ∪HeapRef, ranged over by u;

• an Environment is a map defined as Environment = Var 7→ Value, ranged over by B, that
represents a map from identifiers in the code to references in the heap. We will represent the
binding from an identifier x to a value u as x : u;

• a Closure is an element of the set Closure = Environment × DefinitionId, ranged over by K,
and represents the closure for an instance of a class or an agent located in an address space.

• a Heap is a map defined as Heap = HeapRef 7→ HeapRef × (Closure ∪ Value),
ranged over by H, and represents the address space of an agent. The contents associated
with heap references may be accessed with mutual exclusion using locks. Hence the inclusion
of a heap reference associated with each value indicating the thread who holds the lock to the
contents;

• a Stack is an element of the set Stack = Stack(HeapRef×Environment× Instruction∗), ranged
over by Q, and represents the stack of interrupted blocks of code, that will resume their execution
as soon as the current sequence of instructions terminates. It is used as a call stack for local
method invocations (within an agent) and to implement control-flow instructions such as break,
if and while. We refer to elements of the stack as code-blocks;

• a Running Thread is an element of the set RunningThread = HeapRef × Environment ×
Instruction∗ × Stack, ranged over by T , and represents a flow of execution. In the definition
of a thread (r, B, P,Q), the reference r is a location in the heap to which the thread is bound.
It is used to synchronize multiple threads and to indicate where the result of a remote method
invocation must be placed;

• a Suspended Thread is a map defined as SuspendedThread = HeapRef 7→ RunningThread,
ranged over by S, and represents threads suspended on heap references;

• an Agent is an element of the set Agent = AgentName × Host × Code × Heap ×
Pool(RunningThread)× SuspendedThread, ranged over by A, and represents a multi-threaded
autonomous computation. We write an agent (a, h, C, H, T, S) as a(h, C, H, T, S) thus exposing
the agent’s name;

• a Service Type is a element of the set Type, ranged over by t.

• an Name Service, R, is composed by two maps, NameService = AgentNameService×
ServiceNameService. The first, defined as AgentNameService = HeapRef 7→ Host, ranged over
by Ans, represents a network-wide name service for locating agents. The second, defined as
ServiceNameService = ServiceId 7→ Type×2HeapRef, ranged over by Sns, represents a network-
wide name service for obtaining the type of a service and the set of agents that implement it,
denoted by I;

• a Network is an element of the set Network = Pool(Agent)×NameService, ranged over by N ,
and represents a Mob network computation.

9

Auxiliary Definitions

Function tryAccess checks if in a heap H the access to the value located at r′ is granted to a thread
identified by a reference r.

tryAccess : Heap×HeapRef×HeapRef 7→ Bool

tryAccess(H, r′, r) =
{

true, if H(r′) = (r, v) or H(r′) = (•, v)
false, if H(r′) = (r′′, v) and r′′ 6= r

Function tryLock tries to grant the lock for a value located at r′ to a thread identified by r in a heap
H. Function tryUnlock tries to release the lock for a value located at r′ in a heap H. The result of
both functions is a heap modified (or not) by the operation, and a boolean value indicating if the
operation was successful. Both these functions are atomic.

tryLock : Heap×HeapRef×HeapRef 7→ Heap× Bool

tryLock(H, r′, r) =
{

(H + {r′ : (r, v)}, true), if tryAccess(H, r′, r) = true
(H, false), if tryAccess(H, r′, r) = false

tryUnlock : Heap×HeapRef×HeapRef 7→ Heap× Bool

tryUnlock(H, r′, r) =
{

(H + {r′ : (•, v)}, true), if tryAccess(H, r′, r) = true
(H, false), if tryAccess(H, r′, r) = false

Function code returns the code for a method m of an object (agent), given an the representation of
the object’s (agent’s) class.

code : (Var∗ ×Method× ServiceId∗)×MethodId 7→ Var∗ × Instruction∗

code((x̃, M, s̃),m) = M(m)

Function evalSeq returns the evaluation of a sequence of expressions, each element being evaluated
by the eval function. The evaluation requires the knowledge of the state of the heap H, the heap
reference of the thread computing the expression r, and its environment B. The evaluation is fairly
standard, however a few particularities require some closer attention: the null language constant is
evaluated to • (a null reference in the machine); a variable may contain a heap reference whose value
is another reference, which forces the resolution of the indirection; and finally, when the evaluation
of an expression accesses a heap reference locked by some other thread, the function is recursively
called until the value may be accessed.

10

evalSeq : (Heap×HeapRef× Environment× Expression∗) 7→ Value∗

evalSeq(H, r,B, v ṽ) = eval(H, r,B, v) evalSeq(H, r,B, ṽ)
evalSeq(H, r,B, ε) = ε

eval : (Heap×HeapRef× Environment× Expression) 7→ Value

eval(H, r,B, c) = val(c) where val(null) = •

eval(H, r,B, x) = val(c) if B(x) = c

eval(H, r,B, x) = r′ if B(x) = r′, tryAccess(H, r′, r) = true and H(r′) = (,K)
eval(H, r,B, x) = u if B(x) = r′, tryAccess(H, r′, r) = true and H(r′) = (, u)
eval(H, r,B, x) = eval(H, r,B, x) if B(x) = r′ and tryAccess(H, r′, r) = false

eval(H, r,B, x.y) = eval(H, r,B′, y)
if B(x) = r′, tryAccess(H, r′, r) = true and H(r′) = (, (B′,))

eval(H, r,B, x.y) = eval(H, r,B, x.y)
if B(x) = r′ and tryAccess(H, r′, r) = false

eval(H, r,B, e bop e′) = bop(u, u′)
if eval(H, r,B, e) = u and eval(H, r,B, e′) = u′

eval(H, r,B, uop e) = uop(u) if eval(H, r,B, e) = u

Function copySeqab returns a copy of the closures for a sequence of values located in the heap of an
agent a, plus all the code they require. The new references created to duplicate the given closure are
located in the target agent b. The function takes as arguments the code repository C and heap H of
the origin agent a, and the sequence of values to be copied ũ. The copy of each value is computed
by function copyab.

copySeqab : Code×Heap×Value∗ 7→ Code×Heap×Value∗

copySeqab(C,H, u ũ) = (C ′ + C ′′,H ′ + H ′′, u′ũ′)
where (C ′,H ′, u′) = copyab(C,H, u) and where (C ′′,H ′′, ũ′) = copySeqab(C,H, ũ)

copySeqab(C,H, ε) = (∅, ∅, ε)

copy : Code×Heap×Value 7→ Code×Heap×Value

copyab(C,H, r@a) = ({X : C(X)}+ C ′,H ′ + {r′@b : (•, ({x̃ : ũ′}, X)}, r′@b)
if H(r@a) = (, ({x̃ : ũ}, X)) where (C ′,H ′, ũ′) = copySeqab(C,H, ũ), r′@b fresh

copyab(C,H, r@a) = (C ′,H ′ + {r′@b : u′}, r′@b)
if H(r@a) = (, u) where (C ′,H ′, u′) = copyab(C,H, u), r′@b fresh

copyab(C,H, r@c) = (∅, ∅, r@c) where c 6= a

copyab(C,H, c) = (∅, ∅, c)

11

The run function places a set of threads in concurrent execution.

run : RunningThread 7→ Pool(RunningThread)

run({T1, T2, . . . , Tn}) = T1 | run({T2, . . . , Tn})
run({T}) = T

The Initial and Final States

Based on the above definitions, we may write the syntax for a network as follows:

N ::= A,R Network
A ::= A | A Concurrent Agents

| a(h, C, H, T, S) Running Agent
| 0A Terminated Agent

T ::= T | T Concurrent Threads
| (r, B, P,Q) Running Thread
| 0T Terminated Thread

For the sake of simplicity we assume that agents run in a static network with no failures. In other
words, the set of available hosts is constant and denoted H ⊂ Host. Here we describe the abstract
machine from the point of view of the execution of one agent. Thus, when we start running an agent,
the network may already have a set of agents A running concurrently and distributed among the
network nodes in the set H:

A,R

We launch a program in the network by encapsulating its code (P) in an agent, that is placed in a
host specified by the user. Thus, the initial state of execution will be:

a(h, ∅, ∅, launch(∅, P), ∅) | A,R

where a is a fresh agent identifier, h is the local host and launch(B,P) is a macro that creates a new
thread with environment B and code P (see rule [ThreadLaunch] below).

Note that no heap reference is associated to the agent a, since a program does not provide any
methods, nor has attributes. Moreover, a is not registered in R, and thus is not accessible to the
network. The registry is a precondition for an agent to migrate (further detail in rule [Go]), and
thus, Mob programs cannot migrate, just agents.

Agents are daemons by default and must be explicitly terminated by the exit instruction, which
produces the 0A state. Thus, at the end of the program running in agent a, the configuration of the
network will be of the form:

0A | A′,R′

Such an agent can thus be garbage collected and produce the state:

A′,R′

12

2.4 The Congruence Rules

Following Milner [7] we divide the computation rules in structural congruence rules and reduction
rules. The structural congruence rules allows for the re-writing of the state of an agent into a
semantically equivalent one, until a reduction rule may be applied. Thus, we define ≡ has been the
smallest congruence relation over a Mob agent, defined by the following rules:

[AgentSwap]

A | A′ ≡ A′ | A

[AgentAlpha]

A ≡α A′

A ≡ A′

[AgentGC]

0A | A ≡ A

The same holds for threads within an agent and thus we have rules below. Notice that no garbage
collection rule is required, since the reduction rules collect all terminated threads.

[ThreadSwap]

a(h, C, H, T | T ′, S) | A ≡ a(h, C, H, T ′ | T, S) | A

[ThreadAlpha]

T ≡α T ′

a(h, C, H, T, S) | A ≡ a(h, C, H, T ′, S) | A

[ThreadTerm]

a(h, C, H, (r, B, ε, ε) | T, S) | A ≡ a(h, C, H, notify(r) | T, S) | A

[ThreadLaunch]

a(h, C, H, launch(B,P) | T, S) | A ≡ a(h, C, H + {r : (r, •)}, (r, B, P, ε) | T, S) | A r fresh

Rules [ThreadTerm] and [ThreadLaunch] define the notify and launch macros that are simply a
mechanism to allow a more expressive writing of the reduction rules. In rule [ThreadLaunch] r
is a fresh identifier, the reference to the agent’s thread that runs P . As it will become clear in rule
[Fork], threads always have exclusive access to their heap reference.

13

2.5 The Reduction Rules

Each Mob instruction requires at least one machine transition to be processed. The rules are written
in one of the following forms, depending if preconditions are required or not:

[Rule Name]

P: (Preconditions)

C: (Current State)

N: (New State)

[Rule Name]

C: (Current State)

N: (New State)

The first rule allows reduction to occur under structural congruence:

[Cong]

P: A ≡ A′

C: A,R

N: A′′,R′′

C: A′,R

N: A′′,R′′

The following rule widens the scope of a reduction in an agent to the whole network:

[AgentRed]

P:

C: A

N: A′′

C: A | A′,R

N: A′′ | A′,R′′

Next we provide the rules for the language constructs.

Classes, Services and Agents

A service specifies an interface implemented by some Mob agent. Service definitions are used to
supply information to the type-system. Type-checking of a Mob program is performed at compile-
time by matching the inferred types for services used or provided by the program with their definitions
kept in the name service. If the service is required by the program or if the program implements a
known service in the network then its inferred type must match the interface for the service kept in

14

the name service. If the service is introduced for the first time by the program (an interface for it
does not yet exist in the name service) then the type inferred for the service will become the adopted
interface for the service as registered in the name service. So, when the agent is created the Sns map
is updated with the agent reference for all the services the agent implements.

[Service]

C: a(h, C, H, (r, B, service s {m̃} ;P,Q) | T, S)

N: a(h, C, H, (r, B, P,Q) | T, S)

Simple classes define abstract data-types and we call their instances objects. They add an entry to
the code area of the agent containing a closure with slots for the attributes of the class, the code
for its methods, and for an empty sequence of implemented services, since a regular object does not
provide any services. The rule is as follows:

[Class]

C: a(h, C, H, (r, B, class X(x̃) {m1(x̃1) { P1 } . . .mn(x̃n) { Pn }} ;P,Q) | T, S)

N: a(h, C + {X : (x̃, {m1 : (x̃1, P1), . . . ,mn : (x̃n, Pn)}, ε)},H, (r, B, P,Q) | T, S)

Some classes are special in that they represent full computations. We call their instances agents, and
we use a different keyword to differentiate them. The definition of an agent is very much like that
of a regular class. We create a new entry for a closure with the attributes and code for the methods
and indicate which services are provided by the agent.

The requires keyword only supplies information to the type-system, indicating which required services
must be checked against the definitions in the Sns. This is done at compile time. On the other hand,
the implements keyword does not only supply information to the type-system, but also states which
service entries must be updated whenever a new instance of the class is created. Therefore, the
sequence of services implemented by the agent must be kept in order to perform this action in rule
[NewAgent].

[Agent]

C: a(h, C, H, (r, B, agent A(x̃) implements s̃ requires s̃′

{m1(x̃1) { P1 } . . .mn(x̃n) { Pn }} ;P,Q) | T, S)

N: a(h, C + {A : (x̃, {m1 : (x̃1, P1), . . . ,mn : (x̃n, Pn)}, s̃)},H, (r, B, P,Q) | T, S)

Note that agents may not always implement services and thus s̃ may be an empty sequence.

Creation of Objects and Agents

The instantiation of a regular class creates a new object. It reserves a block of heap space for a
closure representing the object. The closure holds the values of the attributes, a special attribute
self, that is a reference to the object, and keeps a link for the code of the class.

15

[NewObject]

P: evalSeq(H, r,B, ṽ) = ũ C(X) = (x̃,M, ε) r′ fresh

C: a(h, C, H, (r, B, x = new X(ṽ) ; P,Q) | T, S)

N: a(h, C, H + {r′ : (•, ({self : r′, x̃ : ũ}, X))}, (r, B + {x : r′}, P, Q) | T, S)

Agents in Mob are similar to objects, but they have an execution unit associated to them. This unit
will begin by execute the agent’s main method, a required method that defines the agent’s initial
behavior, an approach common to many programming languages.

The new agent runs concurrently with the other agents running at the same host. It is initiated with
a heap containing its closure at r′ (as in the [NewObject] rule) and the reference for the initial
thread at r′′. This thread executes the agent’s main method with the agent’s environment B′. The
parent agent keeps a binding to the reference r′@b of the created agent in x.

[NewAgent]

P: evalSeq(H, r,B, ṽ) = ũ copySeqab(C,H, ũ) = (C ′,H ′, ũ′) C(A) = (x̃, M, (s1 . . . sn))
code(C(A),main) = ()P ′ B′ = {self : r′, x̃ : ũ′}
Sns(s1) = (t1, I1) . . . Sns(sn) = (tn, In) b, r′@b fresh

C: a(h, C, H, (r, B, x = new A(ṽ) ; P,Q) | T, S) | A, (Ans, Sns)

N: a(h, C, H, (r, B + {x : r′@b}, P, Q) | T, S) |
b(h, C, H ′ + {r′ : (•, (B′, A))}, launch(B′, P ′), ∅) | A,
(Ans + {r′@b : h}, Sns + {s1 : (t1, I1 + {r′@b}), . . . , sn : (tn, In + {r′@b})})

Note that both maps of the name service are updated. The reference r′@b holding the agent’s closure
will be the key in the Ans map to locate the agent’s current host (r′′@b : h). Every entry of the Sns
map corresponding to each of the agent’s implemented services, will be updated with r′@b, e. g.,
(s1 : (t1, I1 + {r′′@b})) for the implemented service s1.

Multi-threaded Agents

The fork instruction allows the explicit creation of a new thread by the programmer. The new
thread inherits the environment of its creator and a handle is returned to the caller. This handle is
associated to a newly created heap reference, that contains a null value and is used for inter-thread
synchronization. This is achieved by granting the thread exclusive access to itself (see [Join] rules).

[Fork]

P: r′ fresh

C: a(h, C, H, (r, B, x = fork {P ′} ;P,Q) | T, S)

N: a(h, C, H + {r′ : (r′, •)}, (r, B + {x : r′}, P, Q) | (r′, B, P ′, ε) | T, S)

A thread can suspend waiting for the completion of another thread using the instruction join. The
instruction uses the thread’s handle returned by a previous fork statement. Since a given thread has

16

a lock on its own heap reference, any other thread calling join will suspend until the first completes
and frees the reference, rule [JoinSuspend]. If the thread on which the synchronization is performed
terminates its execution before the join instruction is called, the reference is freed and the calling
thread never suspends,rule [Join].

[Join]

P: evalSeq(H, r,B, x) = r′ H(r′) = (•, •)

C: a(h, C, H, (r, B, join(x) ; P,Q) | T, S)

N: a(h, C, H, (r, B, P,Q) | T, S)

[JoinSuspend]

P: evalSeq(H, r,B, x) = r′ H(r′) = (r′, •)

C: a(h, C, H, (r, B, join(x) ; P,Q) | T, S)

N: a(h, C, H, T, S + {r′ : (r, B, P,Q)})

If the code currently under execution terminates and the stack of previously interrupted code-blocks
is empty, the thread has run out of code to execute and terminates, as in rule [End]. In the process
it releases the lock associated with its heap reference and places a notify thread to wake up all
the threads suspended upon it. The [Notify] rule wakes up every thread suspended on the given
reference. S(r) is the set of threads suspended on that reference r.

[End]

P: H(r) = (r, •)

C: a(h, C, H, (r, B, ε, ε) | T, S)

N: a(h, C, H + {r : (•, •)}, notify(r) | T, S)

[Notify]

P: H(r) = (•, •)

C: a(h, C, H, notify(r) | T, S)

N: a(h, C, H, T | run(S(r)), S|dom(S)−{r})

Agent Movement and Discovery

An agent may move to another host, changing the topology of the distributed computation, rule [Go].
The original host will proceed without the moving agent, and the later will resume its execution

17

concurrently with the agents at the target host. In order to migrate an agent must be registered in
the Ans map.

The reference associated to the agent is discovered by following the binding for the self identifier.
This can be done, since the go instruction can only appear inside the body of an agent definition’s
method.

[Go]

P: evalSeq(H, r,B, v) = h′ a ∈ dom(Ans) B(self) = r′@a h′ ∈ H

C: a(h, C, H, (r, B, go(v) ; P,Q) | T, S) | A, (Ans, Sns)

N: a(h′, C, H, (r, B, P,Q) | T, S) | A, (Ans + {r′@a : h′}, Sns)

An agent may invoke a method in another agent only if it has a binding to the reference holding
the target agent’s closure. Agent discovery in Mob is service-oriented, meaning that agents are
discovered for the services they implement. The instruction bind consults the network name service
and retrieves a heap reference, r′@b, associated with an agent that implements a service s and is
presently running in host h, rule [Bind]. However, sometimes the host where the agent is running is
irrelevant and is not taken is consideration when the reference is picked, rule [BindAny]. In both
these rules, the picking criterion is left to the implementation.

[Bind]

P: evalSeq(H, r,B, v) = h Sns(s) = (t, I) ∃r′@b ∈ I : Ans(r′@b) = h ∧ b 6= a

C: a(h, C, H, (r, B, x = bind(s v) ; P,Q) | T, S) | A, (Ans, Sns)

N: a(h, C, H, (r, B + {x : r′@b}, P, Q) | T, S) | A, (Ans, Sns)

[BindAny]

P: Sns(s) = (t, I) ∃r′@b ∈ I : b 6= a

C: a(h, C, H, (r, B, x = bind(s null) ; P,Q) | T, S) | A, (Ans, Sns)

N: a(h, C, H, (r, B + {x : r′@b}, P, Q) | T, S) | A, (Ans, Sns)

Current Host

The next rule returns the host where the agent is running.

[Host]

C: a(h, C, H, (r, B, x = host() ;P,Q) | T, S)

N: a(h, C, H, (r, B + {x : h}, P, Q) | T, S)

18

Local Method Invocation

Method invocation in objects can only be done within an agent. All objects are encapsulated within
agents and thus, invoking a method from an object in some other agent’s address space is not possible,
unless the agent’s interface provides some means to access the object. Methods of the agent itself
can of course be invoked from within the agent. Thus, rule [LocalInvoke] applies to both these
scenarios. We qualify the reference with its location to ensure that these rules only apply to local
references.

The method call pushes the continuation of the thread unto the stack. The resulting code-block is
composed by the reference where the result of the method must be placed, and the continuation’s
environment and sequence of instructions. In this environment, variable x is bound to r′′, the place
where the returned value is to be placed.

The method’s body is set for execution with the object’s environment modified with the values
assigned to the method’s parameters.

Rule [LocalInvokeLocked] states that if the object on which the method its to be invoked is
locked by another thread, the current thread suspends on that object.

[LocalInvoke]

P: evalSeq(H, r,B, ṽ) = ũ B(y) = r′@a tryAccess(H, r′@a, r) = true H(r′@a) = (B′, X)
code(C(X),m) = (x̃)P ′ r′′ fresh

C: a(h, C, H, (r, B, x = y.m(ṽ) ; P,Q) | T, S)

N: a(h, C, H + {r′′ : (•, •)}, (r, B′ + {x̃ : ũ}, P ′, (r′′, B + {x : r′′}, P) :: Q) | T, S)

[LocalInvokeLocked]

P: B(y) = r′@a tryAccess(H, r′@a, r) = false

C: a(h, C, H, (r, B, x = y.m(ṽ) ; P,Q) | T, S)

N: a(h, C, H, T, S + {r′ : (r, B, x = y.m(ṽ) ; P,Q)})

The return instruction resumes the execution of the code-block pushed to the stack by the method call.
However, this code-block may not be the one at the top of the stack. This may happen, for example,
if the return instruction was executed from within the body of one or several if or while instructions,
since the rules associated to these instructions also use the stack. Nonetheless, it is simple to obtain
the desired code-block, since it is the topmost one waiting for a result. Therefore, all the code-blocks
not waiting for a result (holding • in the first slot) are discarded, rule [LocalReturnDiscard].
Once the right code-block is found, it is placed under execution and the heap updated with the
binding of the given reference to the returned value, rule [LocalReturn].

[LocalReturnDiscard]

C: a(h, C, H, (r, B, return(v) ; P, (•, ,) :: Q) | T, S)

N: a(h, C, H, (r, B, return(v) ; P,Q) | T, S)

19

[LocalReturn]

P: eval(H, r,B, v) = u r′ 6= •

C: a(h, C, H, (r, B, return(v) ; P, (r′, B′, P ′) :: Q) | T, S)

N: a(h, C, H + {r′ : (•, u)}, (r, B′, P ′, Q) | T, S)

Remote Method Invocation in an Agent

Agents interact through method invocation. Remote method calls always launch a new thread in the
target agent to execute the corresponding code1. The thread carries a heap reference, r′′@a, from
the heap of the calling agent, where the result is to be placed on return. The environment for the
new thread is composed of the bindings for the object plus the values for the method’s parameters.
The calling thread is suspended on the reference r′′@a, waiting for the result.

[RemoteInvoke]

P: evalSeq(H, r,B, ṽ) = ũ B(y) = r′@b tryAccess(H ′, r′@b, r@a) = true
copySeqab(C,H, ũ) = (C ′′,H ′′, ũ′) H ′(r′@b) = (B′, A) code(C ′(A),m) = (x̃)P ′ r′′@a fresh

C: a(h, C, H, (r, B, x = y.m(ṽ) ; P,Q) | T, S) | b(h′, C ′,H ′, T ′, S′) | A,R

N: a(h, C, H + {r′′ : (r′′, •)}, T, S + {r′′ : (r, B + {x : r′′}, P, Q)}) |
b(h′, C ′ + C ′′,H ′ + H ′′, (r′′@a,B′ + {x̃ : ũ′}, P ′, ε) | T ′, S′) | A,R

The values assigned to the method’s parameters are passed by value, except agents that are passed by
reference. Passing them by value would constitute a new form of migration. A copy of the arguments
must be sent to the target agent and since this may include objects, a closure with the values and
the classes they use must be constructed.

If the agent on which the method is to be invoked is locked, the rule is similar to the previous. The
difference lies in that the thread to be launched in the target agent is placed in its set of suspended
threads, instead of its pool of running threads. This requires for the agent to be freed before the
thread starts its execution.

[RemoteInvokeLocked]

P: evalSeq(H, r,B, ṽ) = ũ B(y) = r′@b tryAccess(H ′, r′@b, r@a) = false
copySeqab(C,H, ũ) = (C ′′,H ′′, ũ′) H ′(r′@b) = (B′, A) code(C ′(A),m) = (x̃)P ′ r′′@a fresh

C: a(h, C, H, (r, B, x = y.m(ṽ) ; P,Q) | T, S) | b(h′, C ′,H ′, T ′, S′) | A,R

N: a(h, C, H + {r′′ : (r′′, •)}, T, S + {r′′ : (r, B + {x : r′′}, P, Q)}) |
b(h′, C ′ + C ′′,H ′ + H ′′, T ′, S′ + {r′ : (r′′@a,B′ + {x̃ : ũ′}, P ′, ε)}) | A,R

1The maximum number of threads allowed for one agent is implementation-dependent. Note that remote invocations
are not anonymous, the invoking agent may be identified, since the agent’s name qualifies the reference r′′@a. This
means that precautions to avoid abusive use from other agents may be achieved by adding a set of new preconditions
to the rule. This, can be used for instance to avoid denial-of-service attacks.

20

The return value from a remote method call must be placed in a reference in the heap of the calling
agent. This value may include objects, and thus a closure with the value and the classes it uses must
be constructed. Finally, a notify thread is placed in the pool of threads of the calling agent, that will
trigger the [Notify] rule and awake the calling thread.

Note that the stack of the thread is empty. This means that the method call was perform by some
other thread. Only in this scenario, the result is sent to the calling agent. Any other scenarios where
the stack is not empty are covered by the regular stack-handling rules.

[RemoteReturn]

P: evalSeq(H, r,B, v) = u copySeqab(C,H, u) = (C ′′,H ′′, u′)

C: a(h, C, H, (r@b, B, return(v) ; P, ε) | T, S) | b(h′, C ′,H ′, T ′, S′) | A,R

N: a(h, C, H, T, S) | b(h′, C ′ + C ′′,H ′ + H ′′ + {r : (•, u′)}, notify(r) | T ′, S′) | A,R

Exclusive Access

Values in the heap may be shared by several threads, therefore it is necessary to supply a mechanism
to ensure that a thread may gain exclusive access to a given value. The lock instruction restricts
the access to a reference to the current thread. The operation is only allowed if no other thread
has exclusive access over the reference, rule [Lock]. If such precondition is not fulfilled the thread
suspends on the reference, rule [LockFailed]. Note that although the inspected agent is the only
one under the rule’s scope, we qualify r′ with its location. This is to point that exclusive access
operations can only be performed on references owned by the agent.

[Lock]

P: evalSeq(H, r,B, x) = r′@a tryLock(H, r′@a, r) = (H ′, true)

C: a(h, C, H, (r, B, lock(x) ; P,Q) | T, S)

N: a(h, C, H ′, (r, B, P,Q) | T, S)

[LockFailed]

P: evalSeq(H, r,B, x) = r′@a tryLock(H, r′@a, r) = (H, false)

C: a(h, C, H, (r, B, lock(x) ; P,Q) | T, S)

N: a(h, C, H, T, S + {r′@a : (r, B, lock(v) ; P,Q)})

Instruction unlock returns the public access to a given heap reference and notifies every thread
suspended on the reference, so that they may resume their execution (rule [Unlock]). If a thread tries
to free an object without having exclusive access to it, the operation is ignored, rule [UnlockIgnore].

21

[Unlock]

P: evalSeq(H, r,B, x) = r′@a tryUnlock(H, r′@a, r) = (H ′, true)

C: a(h, C, H, (r, B,unlock(x) ; P,Q) | T, S)

N: a(h, C, H ′, notify(r′@a) | (r, B, P,Q) | T, S)

[UnlockIgnore]

P: evalSeq(H, r,B, x) = r′@a tryUnlock(H, r′@a, r) = (H, false)

C: a(h, C, H, (r, B,unlock(x) ; P,Q) | T, S)

N: a(h, C, H, (r, B, P,Q) | T, S)

Control Flow

The machine defines a basic set of instructions dedicated to control the flow of execution (if, while,
and break).

The if instruction requires two reduction rules, selecting the branch according to the boolean value
resulting of the evaluation of value v. Each of them pushes the continuation of the thread (P) to the
stack. This enables a clean implementation of the if and the break instructions.

[IfFalse]

P: evalSeq(H, r,B, v) = false

C: a(h, C, H, (r, B, if (v) {P ′} else {P ′′} ;P,Q) | T, S)

N: a(h, C, H, (r, B, P ′′, (•, B, P) :: Q) | T, S)

[IfTrue]

P: evalSeq(H, r,B, v) = true

C: a(h, C, H, (r, B, if (v) {P ′} else {P ′′} ;P,Q) | T, S)

N: a(h, C, H, (r, B, P ′, (•, B, P) :: Q) | T, S)

Likewise, the while instruction also requires two rules that depend on the condition’s evaluation.
Rule [WhileFalse] ignores the body of the instruction, proceeding with the continuation P . Rule
[WhileTrue] pushes the continuation P to the stack, and executes the body of the while statement.
The process eventually stops when the v evaluates to false. The execution then continues with the
continuation P popped from the stack (see rule [Resume]).

22

[WhileFalse]

P: evalSeq(H, r,B, v) = false

C: a(h, C, H, (r, B,while (v) {P ′} ;P,Q) | T, S)

N: a(h, C, H, (r, B, P,Q) | T, S)

[WhileTrue]

P: evalSeq(H, r,B, v) = true

C: a(h, C, H, (r, B,while(v) {P ′};P,Q) | T, S)

N: a(h, C, H, (r, B, P ′ ;while(v) {P ′}, (•, B, P) :: Q) | T, S)

The break instruction terminates the execution of the current code-block.

[Break]

C: a(h, C, H, (r, B,break ;P, (•, B′, P ′) :: Q) | T, S)

N: a(h, C, H, (r, B, ε, (•, B′, P ′) :: Q) | T, S)

When the body of an if or a while instruction terminates, or is explicitly terminated by a break,
the continuation placed on the top of the stack must be set for execution, rule [Resume]. The
environment of the continuation must be updated with the current environment, to inherit all the
new bindings for the variables of its domain. The restriction to the domain of B′ will reduce the
scope of the variables created in the body of the if or while to that same body.

[Resume]

C: a(h, C, H, (r, B, ε, (•, B′, P) :: Q) | T, S)

N: a(h, C, H, (r, (B′ + B)|dom(B′), P, Q) | T, S)

Execute External Commands

The exec instruction calls an external command handler exec that executes the command syn-
chronously. It receives as input the evaluation of arguments to the exec instruction. Asynchronous
calls can be performed by encapsulating the exec instruction in a newly created thread.

[Exec]

P: evalSeq(H, r,B, ṽ) = ũ exec(ũ) = u

C: a(h, C, H, (r, B, x = exec(ṽ) ; P,Q) | T, S)

N: a(h, C, H, (r, B + {x : u}, P, Q) | T, S)

23

Assignment of Expressions

The value associated to an expression may be assigned to a variable, after the expression has been
computed. The assignment involves adding a new entry in the environment (B) of the thread.

[Assignment]

P: evalSeq(H, r,B, e) = u

C: a(h, C, H, (r, B, x = e ;P,Q) | T, S)

N: a(h, C, H, (r, B + {x : u}, P, Q) | T, S)

Assigning a value to an attribute of an object involves modifying the object’s closure. Thus, an
inspection to the object’s access status is required. If the access is granted to the current thread,
the binding of the given object’s attribute is modified, rule [AttrAssignment]. If not, the current
thread suspends on the reference holding the object, rule [AttrAssignmentLocked].

[AttrAssignment]

P: evalSeq(H, r,B, e) = u B(x) = r′ H(r′) = (r′′, (B′, D)) tryAccess(H, r′, r) = true

C: a(h, C, H, (r, B, x.y = e ;P,Q) | T, S)

N: a(h, C, H + {r′ : (r′′, (B′ + {y : u}, D))}, (r, B, P,Q) | T, S)

[AttrAssignmentLocked]

P: evalSeq(H, r,B, e) = u B(x) = r′ tryAccess(H, r′, r) = false

C: a(h, C, H, (r, B, x.y = e ;P,Q) | T, S)

N: a(h, C, H, T, S + {r′ : (r, B, x.y = e ;P,Q)})

Terminate an Agent

Finally, this last rule terminates the execution of an agent.

[Exit]

C: a(h, C, H, (r, B, exit() ; P,Q) | T, S)

N: 0A

24

3 Conclusions

In this report we have presented the syntax and semantics for the core of a language for programming
mobile agents, named Mob. A new report, focusing on the encoding of the semantics of this language
into the distributed version of the TyCO process calculus, is currently being prepared.

The Mob core-language compiler and run-time system are implemented. The first is an implementa-
tion of the encoding to be presented in the next report, and the second an extension to the distributed
TyCO run-time to allow the execution of Mob computations.

The run-time is currently being extended with primitives for interaction with external services. This
will allow Mob to act as a coordination language for mobile agents that interact with web services
for: recognition/execution of programs in several high-level languages, building itineraries through
external search engines, database transactions, and network communication through known protocols,
such as SMTP, FTP, or HTTP.

Future plans also include an integrated tool for programming, debugging and monitoring agents.

Acknowledgements This work is partially supported by FCT’s project MIMO
(contracts POSI/CHS/39789/2001).

References

[1] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. X-Klaim and Klava: Programming
Mobile Code. In TOSCA 2001, volume 62. Elsevier Science, 2001.

[2] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In
ASA/MA’99, pages 22–29. IEEE Computer Society, 1999.

[3] Graham Glass. Overview of Voyager: ObjectSpace’s Product Family for State-of-the-art
Distributed Computing. Technical report, CTO ObjectSpace, 1999.

[4] Robert S. Gray. Agent Tcl: A Transportable Agent System. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Fourth International Conference on Information
and Knowledge Management (CIKM 95), 1995.

[5] Yasuaki Honda and Mario Tokoro. An Object Calculus for Asynchronous Communication.
In European Conference on Object-Oriented Programming (ECOOP’91), volume 512 of LNCS,
pages 141–162. Springer-Verlag, 1991.

[6] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998.

[7] Robin Milner. Communication and Concurrency. Preentice-Hall, 1989.

[8] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes (parts I and
II). Information and Computation, 100(1):1–77, 1992.

[9] Holger Peine and Torsten Stolpmann. The Architecture of the Ara Platform for Mobile Agents.
In Proc. of the First International Workshop on Mobile Agents MA’97, volume 1219 of LNCS,
pages 316–323. Springer-Verlag, 1997.

[10] Peter Sewell et all. Acute: High-Level Programming Language Design for Distributed
Computation. availble from http://www.cl.cam.ac.uk/users/pes20/acute/

[11] António Ravara, Ana Matos, Vasco T. Vasconcelos, and Lúıs Lopes. Lexically Scoping
Sistribution: What You See Is What You Get. In FGC: Foundations of Global Computing,
volume 85(1) of ENTCS. Elsevier Science, July 2003.

25

[12] Gert Smolka. Concurrent Constraint Programming Based on Functional Programming. In
Programming Languages and Systems, volume 1381 of LNCS, pages 1–11. Springer-Verlag, 1998.

[13] Fritz Straber and Joachim Baumann. Mole - A Java Based Mobile Agent System. In Mühlhäuser
M., editor, Special Issues in Object Oriented Programming, pages 301–308, 1997.

[14] Vasco Vasconcelos, Lúıs Lopes, and Fernando Silva. Distribution and Mobility with Lexical
Scoping in Process Calculi. In Workshop on High Level Programming Languages (HLCL’98),
volume 16(3) of ENTCS, pages 19–34. Elsevier Science, 1998.

[15] Vasco Vasconcelos and Lúıs Lopes. A Multi-threaded Typed Assembly Language: Intermediate
Language and Virtual Machine. Unpublished.

[16] James E. White. Telescript Technology: Scenes from the Electronic Marketplace. General Magic
White Paper, general magic edition, 1995.

[17] Pawel T. Wojciechowski and Peter Sewell. Nomadic Pict: Language and Infrastructure Design
for Mobile Agents. IEEE Concurrency, 8(2):42–52, 2000.

26

