
On the Representation of Finite Automata

Marco Almeida Nelma Moreira Rogério Reis

Technical Report Series: DCC-2005-04
Version 1.4

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150 Porto, Portugal

Tel: +351+2+6078830 – Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

Abstract

We give an unique string representation, up to isomorphism, for initially connected
deterministic finite automata (ICDFA’s) with n states over an alphabet of k symbols.
We show how to generate all these strings for each n and k, and how its enumeration
provides an alternative way to obtain the exact number of ICDFA’s.

1 Motivation

In symbolic manipulation environments for finite automata, it is important to have an
adequate representation of automata and, dependent upon their use, several representations
may be available. For example, for testing if two finite automata are isomorphic objects
or for (random) generation of automata, the representation must be compact and somehow
canonical. In the FAdo project [MR05a, fad] a canonical form is used to test if two minimal
DFA’s are isomorphic (i.e are the same up to renaming of states). In this paper we prove
the correctness of that representation and show how it can be used for the exact enumeration
and generation of initially connected deterministic finite automata (ICDFA).

The problem of enumeration of finite automata was considered by several authors since
early 1960s, in particular see Harrison [Har65], Robinson [Rob85], Harary and Palmer [HP67]
and Liskovets [Lis69] amongst many others. A survey may be found in Domaratzki et
al. [DKS02]. More recently, several authors examined related problems. Domaratzki et
al. [DKS02] studied the enumeration of distinct languages accepted by finite automata
with n states; Nicaud [Nic99], Champarnaud and Paranthoën [CP05, Par04] and Bassino
and Nicaud [BN] analysed several aspects of the average behaviour of regular languages;
Liskovets [Lis03] and Domaratzki [Dom04] gave (exact and asymptotic) enumerations of
acyclic DFA’s and of finite languages.

The paper is organised as follows. In the next section, we review some basic notions
and introduce some notation. Section 3 describes a string representation for deterministic
finite automata that is unique up to isomorphism for initially connected deterministic finite
automata. Section 4 presents an efficient method to generate those strings. Section 5 shows
how their enumeration provides an upper bound and the exact value for the number of
ICDFA’s. Section 6 and Appendix A report some implementation issues and final remarks.

2 Preliminaries

We first recall some basic notions from automata theory and formal languages, that can be
found in standard books [HMU00]. An alphabet Σ is a nonempty set of symbols. A string
over Σ is a finite sequence of symbols of Σ. The empty string is denoted by ǫ. The set Σ⋆

is the set of all strings over Σ. A language L is a subset of Σ⋆. The density of a language
L over Σ, ρL(n), is the number of strings of length n that are in L, i.e., ρL(n) = |L ∩ Σn|.
A regular expression (r.e.) α over Σ represents a language L(α) ⊆ Σ⋆ and is inductively
defined by: ∅, ǫ and σ ∈ Σ are a r.e., where L(∅) = ∅, L(ǫ) = {ǫ} and L(σ) = {σ}; if α1 and
α2 are r.e., (α1 +α2), (α1α2) and α⋆

1 are r.e., respectively with L((α1 +α2)) = L(α1)∪L(α2),
L((α1α2)) = L(α1)L(α2) and L(α1

⋆) = L(α1)
⋆. In this paper, we will use regular expressions

to represent descriptions of finite automata. A deterministic finite automaton (DFA) A is a
quintuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is the alphabet, δ : Q × Σ → Q
is the transition function, q0 the initial state and F ⊆ Q the set of final states. We assume
that the transition function is total, so we consider only complete DFA’s. The size of a DFA

2

is the number of its states, |Q|. Normally, we are not interested in the labels of the states
and we can represent them by an integer 0 ≤ i < |Q|. The transition function δ extends
naturally to Σ⋆: for all q ∈ Q, if x = ǫ then δ(q, ǫ) = q; if x = yσ then δ(q, x) = δ(δ(q, y), σ).
A DFA is initially connected1 (ICDFA) if for each state q ∈ Q there exists a string x ∈ Σ⋆

such that δ(q0, x) = q. Two DFA’s A = (Q,Σ, δ, q0, F) and A′ = (Q′,Σ, δ′, q′0, F
′) are called

isomorphic (by states) if there exists a bijection f : Q → Q′ such that f(q0) = q′0 and for
all σ ∈ Σ and q ∈ Q, f(δ(q, σ)) = δ′(f(q), σ). Furthermore, for all q ∈ Q, q ∈ F if and only
if f(q) ∈ F ′. The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F}. Two
DFA are equivalent if they accept the same language. Obviously, two isomorphic automata
are equivalent, but two non-isomorphic automata may be equivalent. A DFA A is minimal

if there is no DFA A′ with fewer states equivalent to A. Trivially a minimal DFA is an
ICDFA. Minimal DFA’s are unique up to isomorphism. We are mainly concerned with the
representation of the transition function of DFA’s of size n over an alphabet of k symbols
, so we disregard the set of final states and we consider only a quadruple (Q,Σ, δ, q0) called
the structure of an automaton and referred as DFA∅. For each of our representations,
there will be 2n DFA’s. We denote by ICDFA∅ the structure of an ICDFA. We consider
that any integer variable has always a nonnegative value (if not otherwise stated). Let
[n]0 = {0, 1, . . . , n} and [n] = {1, . . . , n}.

3 Representations towards a normal form

The method used to represent a DFA has a significative role in the amount of computer
work needed to manipulate that information, and can give an important insight about this
set of objects, both in its characterisation and enumeration. Let us disregard the set of final
states of a DFA. A naive representation of a DFA∅ can be obtained by the enumeration of
its states and for each state a list of its transitions for each symbol. For the DFA∅ in Fig.1
we have:

[[A (a : A, b : B)], [B (a : A, b : E)], [C (a : B, b : E)],

[D (a : D, b : C)], [E (a : A, b : E)]]. (1)

A B

D

C

E

a
b

a

b

a

b

a

b

b

a

Figure 1: A DFA with no final states marked

Given a complete DFA∅ (Q,Σ, δ, q0) with |Q| = n and |Σ| = k and considering a total
order over Σ, the representation can be simplified by omitting the alphabetic symbols. For

1
Also called accessible.

3

our example, we would have

[[A (A,B)], [B (A,E)], [C (B,E)], [D (D,C)], [E (A,E)]]. (2)

The labels chosen for the states have a standard order (in the example, the alphabetic
order). We can simplify the representation a bit if we use that order to identify the states,
and because we are representing complete DFA∅’s we can drop the inner tuples as well. We
obtain

[0, 1, 0, 4, 1, 4, 3, 2, 0, 4]. (3)

Because this representation depends on the order we label the states, we have more than
one representation for each DFA∅. Can we have a canonical order for the set of the states?
Let the first state be the initial state q0 of the automaton, the second state the first one to be
referred (excepting q0) by a transition from q0, the third state the next referred in transitions
from one of the first two states, and so on... For the DFA∅ in the example, this method
induces an unique order for the first three states (A,B,E), but then we can arbitrate an
order for the remaining states (C,D). Two different representations are thus admissible:

[0, 1, 0, 2, 0, 2, 3, 4, 1, 2] and [0, 1, 0, 2, 0, 2, 1, 2, 4, 3]. (4)

If we restrict this representation to ICDFA∅’s, then this representation is unique and defines
an order over the set of its states. In the example, the DFA∅ restricted to the set of states
{A,B,E} is represented by [0, 1, 0, 2, 0, 2]. Let Σ = {σi | i < k}, with σ0 < σ1 < · · · < σk−1.

Given an ICDFA∅ (Q,Σ, δ, q0) with |Q| = n, the representing string is of the form [(Si)i<kn]
with Si ∈ [n−1]0 and Si = δ(⌊i/k⌋, σi mod k). In Figure 2, we present an algorithm for obtain
these string representation.

� �

1 uniqueStr {

2 S = []

3 Ord(q0) = 0

4 i = j = 0

5 while i ≤ j :

6 for l in [k − 1]0:
7 if Ord(δ(Ord−1(i),σl)) not defined then

8 j = j + 1

9 Ord(δ(Ord−1(i),σl)) = j

10 S = S + [Ord(δ(Ord−1(i),σl))]

11 i = i + 1

12 return S

13 }
� �

Figure 2: Obtaining the string representation of an ICDFA∅.

Lemma 1. Let [(Si)i<kn] be a representation of a complete ICDFA∅ (Q,Σ, δ, q0) with |Q| = n
and |Σ| = k, then:

(∀m > 1)(∀i)(Si = m ⇒ ((∃j < i)Sj = m − 1)) (R1)

(∀m ∈ [n − 1])((∃j < km)Sj = m) (R2)

4

1 n − 2 n − 1

first occurences

2

Figure 3: R1 states that first refferences to each state occur sequencially.

mll − 110

...

k

m

Figure 4: R2 ensures that before the appearance of the set of transitions from a given state
at least a reference to that state must appear in the string.

Proof. (of Lemma 1) The condition R1 establishes that a state label (greater than 1) can
only occur after the occurrence of its predecessors. This is a direct consequence of the way
we defined the representing string.

Suppose R2 does not verify, thus there exists a state m that does not occur in the
first km symbols of the string (the m first state descriptions). Because the automaton
is initially connected there must be a sequence of states (mi)i≤l and symbols (σi)i≤l such
that m0 = 0, ml = m and δ(mi, σi) = mi+1 for i < l. We must have 0 < m < ml−1

because m appears in the ml−1 description and we supposed no occurrences of m in the first
m state descriptions. There must exist l′ < l such that ml′−1 < m < ml′ , implying that
ml′ ∈ {Si | i < km}. This contradicts R1 because we are supposing that m 6∈ {Si | i < km}
and m < ml′ . Thus R2 is verified.

Note that the conditions R1 and R2 are independent. For k = 2 and n = 3, the string
[2, 1, 0, 0, 1, 0] satisfies R2 but not R1, and the opposite occurs for the string [0, 0, 1, 1, 0, 2].

Lemma 2. Every string [(Si)i<kn] with Si ∈ [n − 1]0 satisfying R1 and R2 represents a
complete ICDFA∅ with n states over an alphabet of k symbols.

Proof. Let [(Si)i<kn] be a string in the referred conditions, and consider the associated
automaton A using the string symbols as labels for the corresponding states. By its con-
struction, A is a deterministic complete finite automaton structure. We only need to prove
that it is initially connected. Let m be a state of the automaton.

A proof that m is reachable from the initial state 0 can be done by induction on m.

If m = 0 there is nothing to prove. If m = 1 then, by R2, 1 must occur in the description
of state 0, making state 1 reachable from state 0.

Let us suppose that every state m′ < m is reachable from state 0 and prove that state m
is reachable too. By R2, m occurs at least once before position km, say in position km′ + i
with m′ < m and i < k. Then for some symbol σ, δ(m′, σ) = m. By induction hypothesis,
state m′ is reachable from state 0, thus state m is reachable too and the automaton is initially
connected.

Now consider the string representation obtained for A, [(S′
i)i<kn]. By Lemma 1 it satisfies

R1 and R2. It is easy to see that this representation is the same as [(Si)i<kn]. By R1,

5

S0 = S′
0. Suppose that (∀i < j)(Si = S′

i). Now we prove that S′
j = Sj . By R1, either

Sj ∈ {Si | i < j} or Sj = max{Si | i < j} + 1. In the first case, there exists l < j such that
Sj = Sl and, by induction hypothesis, Sl = S′

l, thus

Sj = δ(⌊j/k⌋, σj mod k)

= Sl

= δ(⌊l/k⌋, σl mod k)

= S′
l

= S′
j.

Analogously, by R1, in the second case we have that

S′
j = max{Si | i < j} + 1 = Sj .

Theorem 1. There is a one-to-one mapping between strings [(Si)i<kn] with Si ∈ [n − 1]0
satisfying R1 and R2, and the non-isomorphic ICDFA∅’s with n states, over an alphabet Σ
of size k.

Proof. Let (Q,Σ, δ, q0) and (Q′,Σ, δ′, q′0) be two ICDFA∅’s and [(Si)i<kn] and [(S′
i)i<kn]

their representing strings. By Lemma 1, these strings satisfy R1 and R2. Suppose that
f : Q −→ Q′ is an isomorphism between the ICDFA∅’s. Then 0 = q0 and f(q0) = q′0 = 0.
Either S0 = δ(q0, σ0) = q0 = 0 or S0 = δ(s0, σ0) = 1 (by R1).

i) If S0 = 0 then f(q0) = f(δ(q0, σ0)) = δ′(q′0, σ0) = S′
0 = 0, because δ(q0, σ0) = q0 implies

δ′(f(q0), σ0) = f(q0).

ii) If S0 = 1 then f(1) = δ′(q′0, σ0) = S′
0 6= 0, thus S′

0 = 1, again by R1.

Supposing that (∀i < j)(Si = S′
i ∧ f(Si) = S′

i) we need to prove that Sj = S′
j ∧ f(Sj) = S′

j .
Trivially we have {Si | i < j} = {S′

i | i < j}. We know that Sj = δ(⌊j/k⌋, σj mod k), and by
R2 there exists l < j such that ⌊j/k⌋ = Sl thus f(⌊j/k⌋) = f(Sl) = Sl = S′

l = ⌊j/k⌋ by
induction hypothesis. We have

S′
j = δ′(⌊j/k⌋, σj mod k) = δ′(f(⌊j/k⌋), σj mod k) = f(δ(⌊j/k⌋, σj mod k)) = f(Sj).

By R1, either Sj ∈ {Si | i < j} or Sj = max{Si | i < j} + 1.

i) If Sj ∈ {Si | i < j} then there exists l < j such that Sj = Sl and Sl = S′
l. Then

δ(⌊j/k⌋, σj mod k) = δ(⌊l/k⌋, σl mod k) ⇒ f(δ(⌊j/k⌋, σj mod k)) = f(δ(⌊l/k⌋, σl mod k))

⇔ δ′(⌊j/k⌋, σj mod k) = δ′(⌊l/k⌋, σl mod k)

Thus Sj = Sl implies S′
j = S′

l, and so S′
j = Sj.

ii) If Sj = max{Si | i < j} + 1 then S′
j 6∈ {Si | i < j} because if there exists a l < j

such that S′
l = S′

j by the same reason as before Sj ∈ {Si | i < j}. Thus, by R1

S′
j = max{Si | i < j} + 1 = Sj .

Conversely, by Lemma 2, we have that each string represents a ICDFA∅ up to a com-
patible renaming of states, i.e., if two ICDFA∅’s are represented by the same string, that
representation defines a isomorphism between them.

These string representations lead to a normal representation for ICDFA∅’s. For each of
them, if we add a sequence of final states, we obtain a normal form for ICDFA’s.

6

4 Generating automata

Normal representations for ICDFA∅’s (as presented above) can be used as compact computer
representations for that kind of objects, but even though rules R1 and R2 are quit simple,
it is not evident how to write an enumerative algorithm in an efficient way. In a string
representing an ICDFA∅ with n states over an alphabet of k symbols, [(Si)i<kn], let (fj)0<j<n

be the sequence of indexes of the first occurrence of each state label j. That those indexes
exist is a direct consequence of the way the string is constructed. Now consider

b1 = f1 + 1, (5)

bj = fj − fj−1 , for 2 ≤ j ≤ n − 1 (6)

bn = kn − fn−1. (7)

f1 f2

b2

fj−1

bj

fj

b1

fn−1

bn

Note that
j

∑

l=1

bl = fj + 1 , for j ∈ [n − 1]. (8)

It is easy to see that

1. Rule R1 simply states that

(∀2 ≤ j ≤ n − 1)(bj > 0). (G1)

2. Rule R2 establishes that
(∀m ∈ [n − 1])(fm < km). (G2)

To generate all the automata, for each allowed sequence of (bj)0<j<n we can generate all the
remaining symbols Si (those with i 6∈ {fj | 0 < j < n}) according to the following rules:

i < b1 ⇒ Si = 0; (G3)

(∀j ∈ [n − 2])(fj < i < fj+1 ⇒ Si ∈ [j]0); (G4)

i > fn−1 ⇒ Si ∈ [n − 1]0. (G5)

5 Enumeration of ICDFA’s

In this section we obtain a formula Bk(n) for the number of strings [(Si)i<kn] representing
ICDFA∅’s with n states over an alphabet of k symbols. Although it is already known a
formula for the number of non-isomorphic ICDFA∅’s, we think that our method is new.
Liskovets [Lis69] and, independently, Robinson [Rob85] gave for that number the formula

Hk(n) = hk(n)
(n−1)! where hk(1) = 1 and for n > 1

hk(n) = nkn −
∑

1≤j<n

(

n − 1

j − 1

)

nk(n−j)hk(j) (9)

7

Note that nkn is the number of transition functions, from which we subtract the number
of them that have n − 1, n − 2,. . . ,1 states not accessible from the initial state. And then,
we may divide by (n − 1)!, as the names of the remaining states (except the initial) are
irrelevant. Reciprocally, the formula we will derive (Bk(n)) is a direct positive summation.

First, let us consider the set of strings [(Si)i<kn] with Si ∈ [n − 1]0 and satisfying only
rule R1. The number of these strings gives an upper bound for Bk(n). This set can be given
by An ∩ [n − 1]kn

0 , where for c > 0,

Ac = L(0⋆ +

c−1
∑

i=1

0⋆
i

∏

j=1

j(0 + · · · + j)⋆). (10)

These languages belong to a family of languages Lc presented by Moreira and Reis [MR05b]
and that represent partitions of [n] with no more than c ≥ 1 parts, i.e.,

Lc = L(

c
∑

i=1

i
∏

j=1

j(1 + · · · + j)⋆). (11)

We have that ρAc(n) = ρLc(n+1) and that ρLc(n) =
∑c

i=1 S(n, i), where S(n, i) are Stirling
numbers of second kind. So we get that the number of strings of length kn that are in An,
is ρAn(kn) =

∑n
i=1 S(kn + 1, i). We have the proposition,

Proposition 1. For all n, k ≥ 1, Bk(n) ≤
∑n

i=1 S(kn + 1, i).

For n = 3 and k = 2, B2(3) ≤ 365. For k = 2, Bassino and Nicaud [BN] presented a
better upper bound, namely that B2(n) ≤ nS(2n, n).

Now let us consider only the rule R2. This rule can be formulated as

n−1
∧

m=1

km−1
∨

j=0

Sj = m. (12)

From this formula it is easy to see that the strings [(Si)i<kn] with Si ∈ [n−1]0 and satisfying
only rule R2 can be represented by the regular expression

n−1
⋂

m=1

km−2
∑

j=0

(0 + · · · + (m − 1))jm(0 + · · · + (n − 1))kn−j−1, (13)

where we extended the operators of regular expressions to intersection.
Now in order to simultaneously satisfy rules R1 and R2, in formula (13), the first

occurence of m must precede the one of m − 1, for 2 ≤ m ≤ n − 1. These positions are
exactly the sequence (fj)0<j<n defined in Section 4. Given these positions and considering
the correspondent sequence (bj)0<j<n we obtain the regular expression:





n−1
∏

j=1

(0 + . . . + (j − 1))bj−1j



 (0 + · · · + (n − 1))bn−1,

and we must consider the possible values of (bj)0<j<n, constrained to G1 and G2:

k
∑

b1=1

2k−b1
∑

b2=1

· · ·

k(n−1)−
Pn−2

l=1
bl

∑

bn−1=1





n−1
∏

j=1

(0 + . . . + (j − 1))bj−1j



 (0 + · · · + (n − 1))bn−1

8

For n = 3 and k = 2 we have

(01 + 1(0 + 1))((0 + 1)2 + 2(0 + 1 + 2))(0 + 1 + 2)2 + 12(0 + 1 + 2)4,

and the number of these strings is (1 + 2)((2 + 3)32) + 34 = 216.
For each sequence (bj)0<j<n the number of strings [(Si)i<kn] with Si ∈ [n − 1]0 and

satisfying R1 and R2 is
n

∏

j=1

jbj−1, (14)

a direct consequence of rules G3, G4 and G5. And then we must take the sums over all bj

constrained to rules G1 and G2.

Theorem 2. We have

Bk(n) =

k
∑

b1=1

2k−b1
∑

b2=1

3k−b1−b2
∑

b3=1

· · ·

k(n−1)−
Pn−2

l=1
bl

∑

bn−1=1

n
∏

j=1

jbj−1. (15)

Proof. It is an immediate consequence of rules G1 to G5.

The above formula can also be rewritten using the sequence (fi)0<i<n, and considering
fn = kn:

Bk(n) =
k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·

k(n−1)−1
∑

fn−1=fn−2+1

n
∏

i=2

ifi−fi−1−1.

Corollary 1. The number of non-isomorphic ICDFA’s with n states over an alphabet of k
symbols is

2nBk(n). (16)

Proof. By Theorems 1 and 2 and considering the possible sets of final states.

6 Conclusion

The method described in Section 4 was implemented in Python [pyt] and used to generate
all ICDFA∅’s for k = 2 and n < 10, and k = 3 and n < 7. The time complexity of the
program is linear in the number of automata and took about a week to generate all the
referred ICDFA∅’s, in a PPC G4 1.5MHz.

One of the advantage of this method is that only the allowed strings are computed so it
is not a generate-and-test algorithm and because automata are generated in lexicographic
order it is easy to generate them as needed for consumption by another algorithm.

The formula Bk(n) was also implemented and its values where computed for k = 1..10
and n = 1..9. Those values are presented in Appendix A. The sequences B2(n) and B3(n)
appear in Sloane [Slo03] as A082165 and A065756, respectively. If an ICDFA with n
states accepts a finite language then there exists a topological order of its states such that
δ(i, σ) > i, for all i < n − 1 and σ ∈ Σ. But the order we used for string representations
is not a topological order. So we can not determine directly from the string if the accepted
language is finite, as was done by Domaratzki [Dom04] only for finite languages. Although
the formula Bk(n) is quite similar to the one obtained in [Dom04] for an upper bound of the
number of finite languages, the meaning of the parameters (bj) are not directely related.

9

References

[BN] Frédérique Bassino and Cyril Nicaud. Enumeration of complete accessible
deterministic automata over a 2-letter alphabet. Submitted.

[CP05] J.-M. Champarnaud and T. Paranthoën. Random generation of DFAs. Theoretical
Computer Science, 330(2):221–235, 2005.

[DKS02] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number of
distinct languages accepted by finite automata with n states. Journal of Automata,
Languages and Combinatorics, 7(4):469–486, 2002.

[Dom04] Michael Domaratzki. Combinatorial interpretations of a generalization of the
Genocchi numbers. Journal of Integer Sequences, 7(04.3.6), 2004.

[fad] FAdo: tools for formal languages manipulation. http://www.ncc.up.pt/fado.

[Har65] M. A. Harrison. A census of finite automata. Canad. J. Math., 17:100–113, 1965.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison Wesley, 2000.

[HP67] F. Harary and E. M. Palmer. Enumeration of finite automata. Information and
Control, 10:499–508, 1967.

[Lis69] Valery Liskovets. The number of inittially connected automata. Kibernetika, 3:16–
19, 1969. (in Russian; Engl. transl: Cybernetics, 4 (1969), 259-262).

[Lis03] Valery Liskovets. Exact enumeration of acyclic automata. In Proc. 15th Conf.
”Formal Power Series and Algebr. Combin. (FPSAC’03), 2003.

[MR05a] Nelma Moreira and Rogério Reis. Interactive manipulation of regular objects with
FAdo. In Proceedings of 2005 Innovation and Technology in Computer Science
Education (ITiCSE 2005). ACM, 2005.

[MR05b] Nelma Moreira and Rogério Reis. On the density of languages representing finite
set partitions. Journal of Integer Sequences, 8(05.2.8), 2005.

[Nic99] Cyril Nicaud. Average state complexity of operations on unary automata. In
M. Kurylowski, L. Pacholski, and T. Wierzbicki, editors, Proc. 24th Symposium,
Mathematical Foundations of Computer Science, volume 1672 of Lecture Notes on
Computer Science, pages 231–240. Springer-Verlag, 1999.

[Par04] T. Paranthoën. Génération aléatoire et structure des automates à états finis. PhD
thesis, Université de Rouen, 2004.

[pyt] Python language website. http://python.org.

[Rob85] R. W. Robinson. Counting strongly connected finite automata. In Graph Theory
with Applications to Algorithms and Computer Science, pages 671–685. Wiley,
1985.

[Slo03] N.J.A. Sloane. The On-line Encyclopedia of Integer Sequences, 2003.
http://www.research.att.com/∼njas/sequences.

10

A Experimental Results

In this appendix we present the number of ICDFA’s non-isomorphic without final states for
n = 1..9 states and k = 2..10 alphabetic symbols.

k= 2 n

1 1

2 12

3 216

4 5248

5 160675

6 5931540

7 256182290

8 12665445248

9 705068085303

k= 3 n

1 1

2 56

3 7965

4 2128064

5 914929500

6 576689214816

7 500750172337212

8 572879126392178688

9 835007874759393878655

k=4 n

1 1

2 240

3 243000

4 642959360

5 3508208993750

6 34253071111894176

7 544271118689873008532

8 13147735690099619023732736

9 458677874292647947600097994111

k=5 n

1 1

2 992

3 6903873

4 175483321344

5 11826519415721875

6 1744085190146957291232

7 494949686355427145872161111

8 246491144450280856073240885624832

9 200977948941552280610264305518977871090

k=6 n

1 1

2 4032

3 190505196

4 46086910722048

5 38056697263376203125

6 84121943186006445713224896

7 423117794749852189502006410905462

8 4310798840913881378315033530121291563008

9 81510780531114326278646228956855976801744959908

k=7 n

1 1

2 16256

3 5192233245

4 11921614605697024

5 120315894541852283281250

6 3976063029034767886935933510912

7 353521348806151995743455800832981571314

8 73484638707005629827978811367001966356732051456

9 32134987099884609628834726023582411808822980002131697574

k=8 n

1 1

2 65280

3 140764942800

4 3065045074098257920

5 377746484367585519367187500

6 186463110898012043254861617993372672

7 292790327511533355186380818285419369165134504

8 1240517859367854140741786003068555614652944740664737792

9 12533845162122187320986901745839566315023480777415952875118142242

k=9 n

1 1

2 261632

3 3807455329593

4 786050986901533097984

5 1182694443740139221396759765625

6 8717477417765526110669606920661061954048

7 241663209893166029311235709449296848489007150038885

8 20862781312540752296309668431262192459252081308963680368459776

9 4868562054782101154240008904969374335289040629362192719160637468384235331

k=10 n

1 1

2 1047552

3 102881965757076

4 201378988990926052917248

5 3698771376375809074323775654296875

6 407056620031409364982690175796310640877007872

7 199195425299637859859159104431333727959687905790340860554

8 350350773589537416604934471527510136835511671254200548676664702271488

9 1888096336032066333099268007451472025946469500517722087924581588200472709241234833

11

