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Abstract

Solving equations involving terms with variables that can be instantiated to sequences of
terms (sequence variables) and terms with function symbols of arbitrary arity may lead to infinite
loops. This is particularly relevant when the implementations traverse the solution tree using
a depth-first strategy, because some solutions become unreachable when they appear after a
branch that loops. In this paper we present a simple method for checking if a branch will lead to
a loop. This makes it possible to go on with the unification algorithm without trying to explore
those branches. The technique we use is based on an abstraction of the original unification by a
Diophantine equation on the sizes of the terms involved. We present this abstraction and show
that it is correct with respect to the original unification.

1 Introduction

Unification of terms with arbitrary arity and sequence variables has been applied in several domains,
such as knowledge management [8, 10], databases [11, 22, 12], programming languages [24, 20] and
XML processing [5].

This unification was shown to be decidable in [17] by reducing the original problem to an
unification problem whose signature consists only of fixed arity function symbols and one flat arbitrary
arity function symbol and then proving the decidability of the reduced problem.

More pragmatically Kutsia presented in [15] an elegant procedure that solves this kind of uni-
fication problems with the additional restriction that no variable can occur more than twice in an
equation. This algorithm generates a tree of solutions for the equation using a breath-first strategy.

In [5] we presented a depth-first version of the previous algorithm. The breath-first algorithm
terminates if the set of solutions to a given unification is finite. The same does not happen with
the depth-first algorithm because in this case some solutions may never be computed because they
lie on a branch after another branch that leads to a failure, but where the algorithm loops. The
following example (due to Kutsia) shows this situation (where =*= stands to unification of terms
with arbitrary function symbols and sequence variables):

Example 1.1 Given the unification problem,

f(X, f(a, Y )) = ∗ = f(a, f(Y ),f(a, Y ))

the algorithm outputs the solution, X = a and then it will continue trying to unify f(f(a, Y )) with
f(f(Y ),f(a, Y )). This will lead to f(a, Y ) = ∗ = f(Y ) and it will result in an infinite loop. Note that
this unification problem has a solution that is X = a, f(Y ) although the algorithm never reaches it.

In [18] Kutsia mentions a decision algorithm based on Makanin algorithm [19] and Baader-Schultz
combination method [1], that for any unification problem can tell whether this problem has a solution
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or not. With this method one could stop expanding a branch if the decision procedure tells us that
the problem at the branch does not have a solution and then going to the next branch. However this
procedure is not part of the implementation and it is not an easy task to implement it.

In this paper we present a procedure for checking if a branch has not a solution by abstracting
the original unification problem by a Diophantine Equation on the sizes of sequences. This method is
rather simple when compared with previous methods and it solves the previously presented problem
of the depth first implementation.

Let us now show how we solve the problem in the previous example:

Example 1.2 Given the sequences, f(X, f(a, Y )) and f(a, f(Y ), f(a, Y )). The associated Diophan-
tine equation is:

X + Y + 2 = 2Y + 4⇒ X = Y + 2

Where X and Y stand for the lengths of sequences X and Y and the constants 2 and 4 to the number
of constants and function symbols in the sequences X, f(a, Y ) and a, f(Y ), f(a, Y ), respectively. The
algorithm proceeds unifying X = a and will continue trying to unify f(f(a, Y )) with f(f(Y ), f(a, Y )).
Here the associated equation is:

Y + 3 = 2Y + 4⇒ Y = −1

Thus, there are no solutions in the positive integers, meaning that there is not any sequence as solution
for Y and this branch fails. After backtracking the algorithm will try X = a, f(Y ) and proceed with
the unification of f(f(a, Y )) with f(f(a, Y )) that will obviously succeed. So, it was possible to output
a solution previously unreachable.

Contribution: In this work we present a simple method for identifying non-terminating branches
corresponding to failure in the tree of solutions for a unification problem with arbitrary arity function
symbols and sequence variables. This is particularly relevant in depth-first implementation of the
algorithm because it avoids not to reach solutions due to loops in branches corresponding to failure.

Related Work: In [21], Kutsia mentioned a decision algorithm that, for any unification problem
could tell us whether the problem had a solution or not. This decision algorithm was not implemented
and its implementation does not seem to be an easy task (it is a more theoretical method based on
Makanin algorithm and Baader-Schulz combination method).

Diophantine equations played a key role in unification theory. In [16] Kutsia used Diophantine
equations and/or inequalities as constraints in the representation of minimal complete set of unifiers
in an equational theory with individual and sequence variables and patterns (patterns abbreviate
sequences of terms of unknown length, where the terms match a certain “common pattern”).

Solving systems of linear Diophantine equations was applied before in many unification problems:
unification modulo associativity [19], modulo associativity and commutativity [23, 13, 3] and modulo
distributivity [6].

We assume that the reader is familiar with basic theory of unification [2] and knows the general
notions related to unification of terms with arbitrary arity function symbols and sequence variables
[15].

The paper is organized as follows: In section 2 we present terms with flexible arity symbols and
sequence variables. In section 3 we present the unification algorithm and in section 4 we present our
extension with Diophantine Equations on the length of the terms involved in the unification along
with some examples of problems previously unsolvable.

2 Terms with Flexible Arity Symbols and Sequence Variables

In [15], Kutsia presented a breath-first algorithm for solving unification problems for terms with
flexible arity symbols and sequence variables. In [5] we present a depth-first implementation of Kutsia
algorithm, where, we restricted unification to terms containing only sequence variables (standard
variables are not included). In this previous work, we extended a standard semantic domain of trees
over uninterpreted functors with finite sequences of trees.

Some definitions and examples (taken from [5]) follow:
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Definition 2.1 A sequence t̃, is defined as follows:

• ε is the empty sequence.

• t1, t̃ is a sequence if t1 is a term and t̃ is a sequence

Example 2.1 Given the terms f(a), b and X, then t̃ = f(a), b,X is a sequence.

Equality is the only relation between trees. Equality between trees is defined in the standard way:
two trees are equal if and only if their root functor are the same and their corresponding subtrees, if
any, are equal.

Syntactically we consider an alphabet consisting of the following sets: the set of sequence variables
(variables are denoted by upper case letters), the set of constants (denoted by lower case letters) and
the set of flexible arity function symbols.

Definition 2.2 The set of terms over the previous alphabet is the smallest set that satisfies the
following conditions:

1. Constants and sequence variables are terms.

2. If f is a flexible arity function symbol and t1, . . . , tn (n ≥ 0) are terms, then f(t1, . . . , tn) is a
term.

Terms of the form f(t1, . . . , tn) where f is a function symbol and t1, . . . , tn are terms are called
compound terms.

Definition 2.3 If t1 and t2 are terms then t1 = ∗ = t2 (unification of terms with flexible arity
symbols) is a constraint.

A constraint t1 = ∗ = t2 is solvable if and only if there is an assignment of sequences or ground terms,
respectively, to variables therein such that the constraint evaluates to true, i.e. such that after that
assignment the terms become equal.

Example 2.2 Given the sequence variable X, f(a,X, c, d) is a flexible arity term. X can be instanti-
ated by a sequence of terms, leading for instance to the terms f(a, a, a, c, d) or f(a, c, d) (corresponding
respectively to X = a, a and X = ε).

Example 2.3 Accordingly to the definitions presented in [15], the minimal complete set of unifiers
of the equation

f(g(a,X), g(Y, c)) = ∗ = f(U, g(b, V ))

is: {{U = g(a,X), Y = b, V = c}, {X = ε, U = g(a), Y = b,V = c},{U = g(a,X), Y = b, Y,
V = Y, c}, {X = ε, U = g(a), Y = b, Y, V = Y, c}}

2.1 Constraint Solving

Constraints of the form t1 = ∗ = t2 are solved by a non-standard unification that calculates the
corresponding minimal complete set of unifiers. This non-standard unification is basically a depth-
first implementation of Kutsia algorithm [15] restricted to sequence variables. As motivation we
present some examples of unification:

Example 2.4 Given the terms a(X, b, Y ) and a(a, b, b, b) where X and Y are sequence variables,
a(X, b, Y ) = ∗ = a(a, b, b, b) gives three results:

1. X = a and Y = b, b

2. X = a, b and Y = b

3. X = a, b, b and Y = ε
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Example 2.5 Given the terms a(b,X) and a(Y, d) where X and Y are sequence variables, a(b,X) =
∗ = a(Y, d) gives two possible solutions:

1. X = d and Y = b

2. X = N, d and Y = b,N where N is a new sequence variable.

Note that this non-standard unification is conservative with respect to standard unification: in the
last example the first solution corresponds to the use of standard unification.

3 The Unification Algorithm

The unification algorithm, as presented in [15], consists of two main steps, Projection and Trans-
formation. The first step, Projection is where some variables are erased from the sequence. This is
needed to obtain solutions where those variables are instantiated by the empty sequence. The second
step, Transformation is defined by a set of rules where the non-standard unification is translated to
standard unification.

Definition 3.1 Given terms T1 and T2, let V be the set of variables of T1 and T2 and A be a subset
of V . Projection eliminates all variables of A in T1 and T2.

Example 3.1 Let T1 = f(b, Y, f(X)) and T2 = f(X, f(b, Y )). In the projection step we obtain the
following cases (corresponding to A = {}, A = {X}, A = {Y } and A = {X,Y }):

• T1 = f(b, Y, f(X)), T2 = f(X, f(b, Y ))

• T1 = f(b, Y, f), T2 = f(f(b, Y ))

• T1 = f(b, f(X)), T2 = f(X, f(b))

• T1 = f(b, f), T2 = f(f(b))

Our version of Kutsia algorithm uses a special kind of terms, here called, sequence terms for repre-
senting sequences of arguments.

Definition 3.2 A sequence term, t̄ is defined as follows:

• ε is a sequence term.

• seq(t, s̄) is a sequence term if t is a term and s̄ is a sequence term.

Definition 3.3 A sequence term in normal form is defined as:

• ε is in normal form

• seq(t1, t2) is in normal form if t1 is not of the form seq(t3, t4) and t2 is in normal form.

Example 3.2 Given the function symbol f , the variable X and the constants a and b:

seq(f(seq(a, ε)), seq(b, seq(X, ε)))

is a sequence term in normal form.

Note that sequence terms are lists and sequence terms in normal form are flat lists. We intro-
duced this different notation because sequence terms are going to play a key role in our imple-
mentation of the algorithm and it is important to distinguish them from standard lists. Sequence
terms in normal form correspond trivially to the definition of sequence presented in definition 2.1.
In fact sequence terms in normal form are an implementation of this definition. Thus, in our
implementation, a term f(t1, t2, . . . , tn), where f has flexible arity, is internally represented as
f(seq(t1,seq(t2, . . . ,seq(tn, ε) . . .)), that is, arguments of functions of flexible arity are always rep-
resented as elements of a sequence term.

We now define a normalization function to reduce sequence terms to their normal form.
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Definition 3.4 Given the sequence terms t̄1 and t̄2, we define sequence term concatenation as t̄1 +
+t̄2, where the ++ operator is defined as follows:

ε ++ t̄ = t̄
seq(t1,t̄2) ++ t̄3 = seq(t1,t̄2++t̄3)

Definition 3.5 Given a sequence term, we define sequence term normalization as:

normalize(ε) = ε
normalize(t) = seq(t,ε), if t is a constant or variable.
normalize(t) = seq(f(normalize(t1)),ε), if t = f(t1).
normalize(seq(t1,t̄)) = normalize(t1) ++ normalize(t̄)

Proposition 3.1 The normalization procedure always terminates yielding a sequence in normal
form.

Transformation rules are defined by the rewrite system presented in figure 1. We consider that
upper case letters (X,Y ,. . . ) stand for sequence variables, lower case letters (s,t,. . . ) for terms and
overlined lower case letters (t̄, s̄) for sequence terms. These rules implement Kutsia algorithm applied
to sequence terms by using standard unification. Note that rules 6, 7, 8 and 9 are non-deterministic:
for example rule 6 states that in order to solve seq(X, t̄) = ∗ = seq(s1, s̄) we can solve t̄ = ∗ = s̄ with
X = s1 or we can solve normalize(seq(X1, t̄)) = ∗ = normalize(s̄) with X = seq(s1, seq(X1, ε)).
At the end the solutions given by the algorithm are normalized by the normalize function. When
none of the rules is applicable the algorithm fails. Please note that in the rules in figure 1 standard
unification t = s propagates the resulting substitution to the remaining is constraints (similar to the
behavior of = in Prolog). Kutsia showed in [15] that this algorithm terminated if it had a cycle check,
(i.e. it stopped with failure if a unification problem gave rise to a similar unification problem) and if
each sequence variable does not occur more than twice in a given unification problem.

For the sake of simplicity, from now on examples are presented in sequence notation, alternatively
to the sequence term notation.

Example 3.3 Given t = f(X, b, Y ) and s = f(c, c, b, b, b, b) the projection step leads to the following
transformation cases:

• f(X, b, Y ) = ∗ = f(c, c, b, b, b, b)

• f(b, Y ) = ∗ = f(c, c, b, b, b, b)

• f(X, b) = ∗ = f(c, c, b, b, b, b)

• f(b) = ∗ = f(c, c, b, b, b, b)

Using the transformation rules we can see that only the first and third unifications succeed. For
f(X, b, Y ) = ∗ = f(c, c, b, b, b, b) we have the following answer substitutions:

• X = c, c and Y = b, b, b

• X = c, c, b and Y = b, b

• X = c, c, b, b and Y = b

And for f(X, b) = ∗ = f(c, c, b, b, b, b) we have:

• X = c, c, b, b, b

• Y = ε

In [5] we prove the correctness of our implementation of Kutsia algorithm. In [15] Kutsia proved
the correctness of his algorithm with respect to a given semantics for the non-standard unification.
In [5] we show that our implementation of Kutsia algorithm is correct, i.e, both give the same set of
solutions for a given equation.

1== denotes syntactic equality (in opposite with = which denotes standard unification)
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Success
(1) t = ∗ = s =⇒ True, if t == s 1

(2) X = ∗ = t =⇒ X = t if X does not occur in t.
(3) t = ∗ = X =⇒ X = t if X does not occur in t.

Eliminate
(4) f(t̄) = ∗ = f(s̄) =⇒ t̄ = ∗ = s̄
(5) seq(t1, t̄) = ∗ = seq(s1, s̄) =⇒ t1 = ∗ = s1,

normalize(t̄) = ∗ = normalize(s̄)
(6) seq(X, t̄) = ∗ = seq(s1, s̄) =⇒ X = s1, if X does not occur in s1,

normalize(t̄) = ∗ = normalize(s̄)
=⇒ X = seq(s1, seq(X1, ε)),

if X does not occur in s1,
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable.

(7) seq(t1, t̄) = ∗ = seq(X, s̄) =⇒ X = t1, if X does not occur in t1,
normalize(t̄) = ∗ = normalize(s̄)

=⇒ X = seq(t1, seq(X1, ε)),
if X does not occur in t1,
normalize(t̄) = ∗ = normalize(seq(X1, s̄)),
where X1 is a new variable.

(8) seq(X, t̄) = ∗ = seq(Y, s̄) =⇒ X = Y
t̄ = ∗ = s̄.

=⇒ X = seq(Y, seq(X1, ε),
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable and X,Y are
distinct.

=⇒ Y = seq(X, seq(Y1, ε)),
normalize(t̄) = ∗ = normalize(seq(Y1, s̄)),
where Y1 is a new variable and X,Y are
distinct.

Split
(9) seq(t1, t̄) = ∗ = seq(s1, s̄) =⇒ if t1 = ∗ = s1 =⇒ r1 = ∗ = q1 then

normalize(seq(r1, t̄)) = ∗ = normalize(seq(q1, s̄))
...

=⇒ if t1 = ∗ = s1 =⇒ rw = ∗ = qw,
normalize(seq(rw , t̄n)) = ∗ = normalize(seq(qw , s̄)),
where t1 and s1 are compound terms.

Figure 1: Transformation rules
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4 Extension with Diophantine Equations on the length of the
solutions

The algorithm presented in the previous section does not work for some unification problems. In fact
it has the same limitation of Kutsia original algorithm concerning a maximum of two occurrences
per variable in each constraint. In particular, when a variable occurs more than twice can lead to
situations where the constraint has no solution and the algorithm loops (instead of failing). In this
paper we present a solution for this problem. From now on the examples presented are related only
with the Transformation rules, since the solution we propose is applied to these steps. Consider the
following example:

Example 4.1 Given the constraint f(X, a,X) = ∗ = f(a,X, a), the first solution is X = a and then
will try to unify f(X1, a, a,X1) with f(a,X1, a), where X = a,X1. After one step of the algorithm,
this will lead to the unification of f(a, a, a) with f(a, a) where X1 = a, which fails. Then the algorithm
follows trying to unify f(X2, a, a, a,X2) with f(a,X2, a), where X1 = a,X2. It is easy to see that this
process will continue forever.

Obviously the algorithm doesn’t stop although the unification is never possible. Things get worse
when the algorithm enters an infinite loop, before presenting all the solutions. Consider the next
example:

Example 4.2 Given the sequences, f(X,Y,f(Z, a, Z)) and f(a, b, c,f(a, Z, a)), the algorithm starts
with X = a and continues the unification with f(Y,f(Z, a, Z)) = ∗ = f(b, c,f(a, Z, a)). This will
fail for Y = b but will go on with Y = b, Y1 and the next unification is f(Y1, f(Z, a, Z)) = ∗ =
f(c, f(a, Z, a)). Now Y1 = c and the algorithm tries the unification f(f(Z, a, Z)) = ∗ = f(f(a, Z, a)).
For Z = a, we have the solution, X = a, Y = b, c and Z = a. Then the algorithm will backtrack to
Z = a, Z1 and f(f(Z1, a, a, Z1)) = ∗ = f(f(a, Z1, a)) and it enters an infinite loop. However, there
is another solution, X = a, b, Y = c and Z = a which will never be computed.

4.1 Diophantine equations on the length of the solutions

We solve the previous problem by maintaining constraints on the length of the terms. Whenever a
new unification problem arises we solve a Diophantine equation based on it. The solutions of the
equation represent the length of the solutions of the unification problem. Based on this values we
can predict if a unification problem cannot be solved. We now show how to obtain the equations and
how to use them.

Definition 4.1 Given the sequence t, length(t) is defined as follows:

length(c) = 1 if c is a constant
length(X) = 1 if X is a variable
length(f(t1, . . . , tn)) = 1+length(t1)+. . . +length(tn)

Definition 4.2 Given the sequence term or term t, A(t) translates t to a polynomial of degree 1 (an
affine linear equation):

A(ε) = 0
A(c) = 1 if c is a constant
A(X) = X if X is a variable
A(seq(t1, t̄)) = A(t1) +A(t̄)
A(f(t1, . . . , tn)) = 1+A(t1)+. . . +A(tn)

Note that, given the unification problem t̄ = ∗ = s̄ a Diophantine equation on the length of the
solutions results form applying A to both sides of the unification problem and equalizing them:

A(t̄) = A(s̄)
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We assume the existence of an algorithm solve(A(t̄) = A(s̄)) that returns true if A(t̄) = A(s̄) has
solutions in Z+ and false otherwise. Examples of such algorithm for solving linear Diophantine
equation can be found in [14, 4, 7, 9].

In figure 2 we present a new version of our algorithm, where we use the Diophantine equations
solver in order to avoid loops. We now present some examples:

Example 4.3 Given the sequences, f(X, b, Y ) and f(a, b, b, b), from A(f(X, b, Y )) and A(f(a, b, b, b))
we have the following equation:

X + Y + 2 = 5⇒ X + Y = 3

This means that the length of the solution of X added to the length of the solution of Y must be 3. And
the possible solutions for this unification problem are (recall that we are dealing with transformation
rules only):

• X = a and Y = b,b

• X = a,b and Y = b

Example 4.4 Given the sequences, f(X, b) and f(a, Y ) we have the following equation:

X + 2 = Y + 2⇒ X = Y

This means that the length of the solution of X is the same than the solution of Y. And the possible
solutions for this unification problem are:

• X = a and Y = b

• X = a,N and Y = N,b where N is a new variable.

Now, let’s go back to the problematic examples presented before.

Example 4.5 Given the sequences f(X, a,X) and f(a,X, a), the associated equation is:

2X + 2 = X + 3⇒ X = 1

This means that the length of the solutions associated with X is 1. The algorithm proceeds with this
unification for X = a and succeeds. Now the algorithm tries X = a,X1 and the resulting unification
problem is f(X1, a, a,X1) = ∗ = f(a,X1, a) and the associated equation:

2X1 + 3 = X1 + 3⇒ X1 = 0

Since the equation doesn’t have solutions in the set of positive integers, the algorithm does not proceed,
thus avoiding an infinite loop.

Example 4.6 Given the sequences, f(X,Y, f(Z, a, Z)) and f(a, b, c, f(a, Z, a)). The associated equa-
tion is:

X + Y + 2Z + 3 = Z + 7⇒ X + Y + Z = 4

The algorithm proceeds with X = a and continues the unification with f(Y, f(Z, a, Z)) = ∗ = f(b, c,
f(a, Z, a)) that has the equation:

Y + 2Z + 3 = Z + 6⇒ Y + Z = 3

This branch fails for Y = b and the algorithm will go on with Y = b, Y1. The next unification is
f(Y1, f(Z, a, Z)) = ∗ = f(c, f(a, Z, a)) with the associated equation:

Y1 + 2Z + 3 = Z + 5⇒ Y1 + Z = 2

2== denotes syntactic equality (in opposite with = which denotes standard unification)
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Success
(1) t = ∗ = s =⇒ True, if t == s 2

(2) X = ∗ = t =⇒ X = t if X does not occur in t.
(3) t = ∗ = X =⇒ X = t if X does not occur in t.

Eliminate
(4) f(t̄) = ∗ = f(s̄) =⇒ if solve(A(t̄) = A(s̄)) = false then fail

else t̄ = ∗ = s̄
(5) seq(t1, t̄) = ∗ = seq(s1, s̄) =⇒ if solve(A(seq(t1, t̄)) = A(seq(s1, s̄))) = false

then fail else t1 = ∗ = s1,
normalize(t̄) = ∗ = normalize(s̄)

(6) seq(X, t̄) = ∗ = seq(s1, s̄) =⇒ if solve(A(seq(X, t̄)) = A(seq(s1, s̄))) = false
or X occurs in s1 then fail
else X = s1, normalize(t̄) = ∗ = normalize(s̄)

=⇒ if solve(A(seq(X, t̄)) = A(seq(s1, s̄))) = false
or X occurs in s1 then fail
else X = seq(s1, seq(X1, ε)),
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable.

(7) seq(t1, t̄) = ∗ = seq(X, s̄) =⇒ if solve(A(seq(t1, t̄)) = A(seq(X, s̄))) = false
or X occurs in t1 then fail
else X = t1, normalize(t̄) = ∗ = normalize(s̄)

=⇒ if solve(A(seq(t1, t̄)) = A(seq(X, s̄))) = false
or X occurs in t1 then fail
else X = seq(t1, seq(X1, ε)),
normalize(t̄) = ∗ = normalize(seq(X1, s̄)),
where X1 is a new variable.

(8) seq(X, t̄) = ∗ = seq(Y, s̄) =⇒ if solve(A(seq(X, t̄)) = A(seq(Y, s̄))) = false
then fail else X = Y , t̄ = ∗ = s̄.

=⇒ if solve(A(seq(X, t̄)) = A(seq(Y, s̄))) = false
then fail else X = seq(Y, seq(X1, ε),
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable and X,Y are
distinct.

=⇒ if solve(A(seq(X, t̄)) = A(seq(Y, s̄))) = false
then fail else Y = seq(X, seq(Y1, ε)),
normalize(t̄) = ∗ = normalize(seq(Y1, s̄)),
where Y1 is a new variable and X,Y are
distinct.

Split
(9) seq(t1, t̄) = ∗ = seq(s1, s̄) =⇒ if t1 = ∗ = s1 =⇒ r1 = ∗ = q1 then

normalize(seq(r1, t̄)) = ∗ = normalize(seq(q1, s̄))
...

=⇒ if t1 = ∗ = s1 =⇒ rw = ∗ = qw,
normalize(seq(rw , t̄n)) = ∗ = normalize(seq(qw , s̄)),
where t1 and s1 are compound terms.

Figure 2: Transformation rules
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Now Y1 = c and will try to unify f(f(Z, a, Z)) with f(f(a, Z, a)). This problem is similar to the one
presented in example 4.5 and the result will be Z = a, reaching the final solution, X = a, Y = b, c and
Z = a. Since the use of the equations prevents entering an infinite loop, the algorithm will backtrack
and try X = a,X1 and proceed with the unification of f(X1, Y, f(Z, a, Z)) and f(b, c, f(a, Z, a)) that
has the associated equation:

X1 + Y + 2Z + 3 = Z + 6⇒ X1 + Y + Z = 3

The next unification is, X1 = b and proceeding with f(Y, f(Z, a, Z)) and f(c, f(a, Z, a)) leads to the
equation:

Y + 2Z + 3 = Z + 5⇒ Y + Z = 2

Now, Y = c and the algorithm proceeds with f(f(Z, a, Z)) and f(f(a, Z, a)) which is similar to
example 4.5 and will reach Z = a. Finally we have the solution X = a, b, Y = c and Z = a that was
unreachable with the original algorithm.

We now prove that the new algorithm correctly prunes branches which lead to failure. We first
present some auxiliary results.

Lemma 4.1 Given sequences t1, s1, t̄ and s̄,

A(t1) = A(s1) ∧ A(t̄) = A(s̄) ⇒ A(seq(t1, t̄)) = A(seq(s1, s̄))

Proof 4.1 A(t1) = A(s1) ⇒ A(t1) + A(t̄) = A(s1) + A(t̄) and, since A(t̄) = A(s̄), one has A(t1)
+ A(t̄) = A(s1) + A(s̄). Now by the definition of A, A(t1) + A(t̄) = A(s1) + A(s̄) ⇒ A(seq(t1, t̄))
= A(seq(s1, s̄)). 2

Proposition 4.1 Given a sequence term t̄,

A(normalize(t̄)) = A(t̄)

Theorem 4.1 Given two sequences, t̄ and s̄,

t̄ = ∗ = s̄ has solutions =⇒ A(t̄) = A(s̄) has solutions in Z+

Proof 4.2 We prove this result by induction on the number of steps of the transformation rules. The
base cases are steps 1 to 3. Our induction hypothesis states that t̄ = ∗ = s̄ has solutions then, A(t̄) =
A(s̄) has solutions on the positive integers. Assuming this hypothesis we will show that, if seq(t1, t̄)
= ∗ = seq(s1, s̄) has solutions then, A(seq(t1, t̄)) = A(seq(s1, s̄)) has solutions in the positive integers.

• (1) t = ∗ = s has solution since both t and s are exactly the same, A(t) = A(s) ⇒ V1 + . . .+Vn
+k = V1 + . . .+Vn +k, where V1, . . . , Vn are variables occurring in t and s, k is the sum of the
constants and functors, and this equation has solutions in the positive integers.

• (2) X = t has solution since A(X) = A(t) ⇒ X = V1 + . . .+ Vn +k where V1, . . . , Vn are the
variables occurring in t and k is the sum of the constants and functors in t, thus it is enough
to assign positive values to each one of the variables V1 + . . .+ Vn, to have a positive solution.

• (3) This case is analogous to the previous one.

• (4) In this case we can apply the induction hypothesis directly and the result holds.

• (5) By lemma 4.1 and applying the induction hypothesis to t1 = ∗ = s1 and to normalize(t̄)
= ∗ = normalize(s̄) the result holds.

• (6) Here we have two possible cases:

– By lemma 4.1 and applying the induction hypothesis to X = s1 and normalize(t̄) = ∗ =
normalize(s̄) the result holds.
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– Here we have that:
A(X) = A(seq(s1, seq(X1, ε))) = A(s1) +A(X1), by the definition

of A
= A(s1) +X1, since X1 is a

new free variable
By the induction hypothesis we have that,

A(normalize(seq(X1, t̄))) = A(normalize(s̄))

holds and by proposition 4.1,

A(seq(X1, t̄)) = A(s̄)

Now,
A(seq(X1, t̄)) = A(s̄) ⇔ A(X1) +A(t̄) = A(s̄), by the definition

of A
⇔ X1 = A(s̄)−A(t̄), since X1 is a

new free variable.
Now replacing X1 by A(s̄) −A(t̄) in A(X) = A(s1) + X1 leads to:

A(X) = A(s1) +A(s̄)−A(t̄)⇔ A(X) +A(t̄) = A(s1) +A(s̄)

and by the definition of A this is equivalent to,

A(seq(X, t̄)) = A(seq(s1, s̄))

and the result holds.

• (7) This case is analogous to the previous one.

• (8) Here we have three possible cases:

– By lemma 4.1 and applying the induction hypothesis to X = ∗ = Y and to t̄ = ∗ = s̄ the
result holds.

– This case is similar to the one presented in the second case of (6)

• (9) Here we can apply the induction hypothesis directly and the result holds. 2

Note that the previous theorem states that whenever the equation associated with an unification
problem does not have a solution in Z+ then, the original unification problem does not have any
solution.

The inverse is not true, there are problems with an associated equation having solutions on the
positive integers and without any solution. Consider the following examples:

Example 4.7 Given the following unification, f(a, b) = ∗ = f(b, c), the associated Diophantine
equation is A(f(a, b)) = ∗ = A(f(b, c)) which results in 3 = 3, but the unification doesn’t have any
solution.

Example 4.8 Given the following unification, f(g(a, a, a)) = f(X,X), the associated Diophantine
equation is A(f(g(a, a, a))) = ∗ = A(f(X,X)) which results in 4 = 2X+1, but the unification doesn’t
have any solution.

Note that, this happens because A abstracts different constant symbols to the same number (the
constant 1).
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