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Abstract

In this paper we present an application of Constraint Logic Programming to the design and
implementation of type inference algorithms for programming languages. We present imple-
mentations in Prolog and Constraint Handling Rules (CHR) of several algorithms which belong
to the state of the art of type inference for programming languages: the Damas-Milner type
system, the Ohory system for labeled records and the Rank-2 Intersection Type system. In our
implementation the differences between the general aspects of the type inference algorithms and
the constraint resolution modules become more clear, when compared to other implementations
of the same systems, usually made in a functional programming language. In the constraint
modules, solving equality constraints, here implemented by Prolog unification, is completely
separated from constraint simplification, which is made by solvers implemented in CHR for each
system. Constraint Logic Programming revealed to be a highly declarative specification and
implementation language for type inference algorithms.

1 Introduction

The advantages of strong static typing, where types are inferred by the compiler at compile time, are
now generally recognized. As a matter of fact languages such as Haskell, ML, Mercury or Java all rely
on strong typing. In order to gain programming flexibility avoiding rejecting perfectly safe programs,
the type inference algorithm should support type polymorphism, i.e. it should allow programs to
possess more than one type. Two main options for polymorphism are universal types, where types
are parametrized (this concept is known as parametric polymorphism), and intersection types which
introduce an operator of intersection over types (their duals are the existential types and union types).

The most popular type inference algorithm is the Damas-Milner algorithm [10] which supports
parametric polymorphism with universal types. In the area of type systems for programming lan-
guages there was a long search for systems more expressive than the Damas-Milner type system
and with decidable typability. In this search there have been a few positive results in two distinct
directions: extensions of the Damas-Milner approach and systems based on intersection types [7, 18].

Type inference in all these systems rely on some notion of constraint resolution. The type
inference algorithm of the Damas-Milner system (used as the basis of the type systems of functional
programming languages such as ML and Haskell), uses unification to solve constraints in the type
language. Several extensions of this algorithm are based on extensions of the unification algorithms
with some kind of constraint resolution mechanism. Some examples include record systems [23] type
inference dealing with overloading [35, 21, 22] and subtyping [1, 12, 24]. Type inference for decidable
fragments of intersection types also rely on constraint resolution methods [16, 18].

Sulzmann and Wehr defined the HM(X ) framework, [32], as a general framework for extensions
of the Damas-Milner type systems with constraints. Instantiating the parameter X , to a specific
constraint system, defines a specific type system (note the relation with the CLP(X ) framework for
constraint logic programming [15]). They showed that the instantiations of X are sound under an
untyped semantics and they presented a generic type inference algorithm which guarantees standard
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properties of type inference, such as decidability and the existence of principal types, under certain
conditions on X . The HM(X ) type inference algorithm was presented in a syntax closely related with
an implementation in a functional programming language, as it is usually done in the definition of
type inference algorithms for functional languages.

The first part of this paper is a revised version of a previous work of the authors reported
in [2], where it is presented an implementation the general type inference algorithm of HM(X )
using Prolog with Constraint Handling Rules (CHR) [13]. In this formulation of the algorithm,
equality constraints are specified by Prolog unification, and any extensions become clear as a set of
simplification rules with a declarative specification using CHR. Dealing only with equality constraints
we get an implementation of the paradigmatic polymorphic type system of pure ML. We also present
an extension of the general algorithm to deal with records. In this implementation the constraint
normalization process has a very high level declarative implementation using CHR.

In the second part of the paper we present an implementation in Prolog and CHR of the most used
decidable fragment of intersection types, the Rank-2 Intersection Type System [16, 34]. Intersection
type systems provide what is generally called discrete polymorphism [19] and type more programs
than the Damas-Milner type system. They provide more flexibility to the type system avoiding, in
many cases, the contortions that programmers sometimes have to do to convince the compiler that
their programs are well-typed. The price to pay for this flexibility is that intersection type systems
are rather complex, with definitions that can be quite difficult to understand. Also for the intersection
type inference implementation presented in this paper, logic programming and CHR revealed to be a
quite powerful framework leading to a high declarative and understandable implementation. As far as
we know, this is the first work which uses a Constraint Programming Language in the implementation
of type inference algorithms for intersection type systems.

Let us present an example clarifying the role of constraint resolution in the type inference process.

Example 1 Consider a simple declaration like

compose f g = λ x.f(g(x))

which defines function composition. Considering that the types of f , g and x are, respectively, α1, α2

and γ, typing the expression
f(g(x))

generates the constraints:
{α2 = γ → α3, α1 = α3 → α4}

being α3, α4 respectively the types for g(x) and f(g(x)). Solving those constraints using Robinson
unification [26] algorithm as the constraint solver one gets the following type for compose:

compose :: (α3 → α4) → (γ → α3) → γ → α4

In this work we do not present yet another type inference system. The main contribution is to show
that constraint logic programming provides a powerful declarative way to specify and implement type
inference algorithms for programming languages. This work sustains our thesis that type inference
becomes more clear when implemented in a constraint logic programming language.

Let us now present the related work: the use of CHR for checking the satisfiability of subtype
inequalities was reported in [9]. CHR for type inference with Haskell as host language was presented
in [28]. The study and implementation of systems dealing with overloading employing CHR was done
in [14] and in [29]. The CHR specifications presented in these works can be easily integrated in our
implementation as new CHR modules, allowing to make type inference in the presence of overloading.

Both approaches, using Haskell as a host language and ours which uses Prolog, show the ease of
use and declarative character of axiomatic based constraint simplification mechanisms (such as CHR)
for the specification of extensions of unification in type inference algorithms. The main differences
between the two approaches are essentially related to differences in the two paradigms used as host
languages. The approaches based on functional languages implemented a standard substitution-based
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definition of unification. Note that Prolog unification (based on a graph representation of terms) is
highly optimized. This makes Prolog implementations of type inference using built-in unification
quite efficient and at the same time more declarative, having propagation of substitutions for free.
Finally, note that an elegant way to specify type inference algorithms is by using a logical system
consisting of a set of rules defined by induction on the program structure. As it is shown in this paper
these rules can be directly coded as Horn clauses where the head defines the type of the expression
and the body the types of its subexpressions.

We assume that the reader is familiar with the logic programming paradigm [20]. A good survey
about type inference for programming languages can be found in [5].

The rest of the paper is structured as follows: The next section presents some preliminary notions.
In section 3 we talk about parametric polymorphism and present a brief description of the Damas-
Milner type system. In section 4 we describe succinctly the HM(X ) framework and define the general
type inference algorithm for the HM(X ) framework, as a logic program with a constraint simplification
module. As case studies, we show how type inference for ML is trivially done as a special case of the
algorithm, and present the CHR rules which implement type simplification in a record calculus. In
section 5 we present the Rank 2 Intersection Types System, and implement an inference algorithm
for this system also using logic programming and CHR. Finally we conclude.

2 Preliminaries

2.1 Constraint Handling Rules (CHR)

Constraint Handling Rules [13] are a high-level language designed to write constraint solvers. It
allows us to add executable specifications of a constraint theory (the user-defined constraints) to a
given host language, such as Prolog, Java or Haskell. Those user-defined constraints are handled by
a user-defined set of CHR rules.

Definition 2 A CHR program is a finite set of guarded rules. The two most important rules (the
only rules used in our application) are:

(simplification) H1, . . . ,Hi ⇐⇒ G1, . . . , Gj | B1, . . . , Bk

(propagation) H1, . . . ,Hi =⇒ G1, . . . , Gj | B1, . . . , Bk

with i > 0, j ≥ 0, k ≥ 0, and where H1, . . . ,Hi is a nonempty sequence of CHR (user-defined)
constraints, the guard G1, . . . , Gj is a sequence of built-in (predefined) constraints, and B1, . . . , Bk

is a sequence of built-in and CHR constraints.

Basically, simplification rewrites constraints preserving logical equivalence, and propagation adds
new constraints that may cause further simplifications.

Empty sequences are represented by the built-in constraint true. The empty guard, true, can be
omitted.

2.1.1 Operational Semantics

The operational semantics of CHR programs is given by a transition system. Through computational
steps, one can proceed from one state to another. A state is a tuple

〈F,E,D〉

where F is a conjunction of CHR and built-in constraints, E is a conjunction of CHR constraints and
D is a conjunction of built-in constraints. In a state 〈F,E, D〉, F are the constraints that remain to
be solved, and D and E are the constraints that have been accumulated and simplified so far.

Definition 3 Let P be a CHR program for the CHR constraints and CT a constraint theory for the
built-in constraints. The transition relation 7−→ for CHR is defined thus:
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(solve) 〈C ∧ F,E, D〉 7−→ 〈F,E,D′〉
if C is a built-in constraint and CT |= (C ∧D)↔ D′

(introduce) 〈H ∧ F,E,D〉 7−→ 〈F,H ∧ E,D〉
if H is a CHR constraint

(simplify) 〈F,H ′ ∧ E,D〉 7−→ 〈B ∧ F,E,H = H ′ ∧D〉
if (H ⇔ G | B) in P and CT |= D → ∃x̄ (H = H ′ ∧G)

(propagate) 〈F,H ′ ∧ E,D〉 7−→ 〈B ∧ F,H ′ ∧ E,H = H ′ ∧D〉
if (H ⇒ G | B) in P and CT |= D → ∃x̄ (H = H ′ ∧G)

Definition 4 A computation of a conjunction of constraints G, is a sequence of states S0, S1, . . . ,
with Si 7→ Si+1, beginning with the initial state S0 = 〈G, true, true〉, and ending with a final state or
diverging. A finite computation is successful if it ends with a final state of the form 〈true, E, D〉, and
it is failed if it ends with a final state of the form 〈F,E, false〉.

Let us now present an example:

Example 5 For the following CHR program, specifying the relation =<:

reflexivity @ X =< Y <=> X = Y | true.
antisymmetry @ X =< Y, Y =< X <=> X = Y.
transitivity @ X =< Y, Y =< Z ==> X =< Z.

the computation of A ≤ B ∧ C ≤ A ∧B ≤ C is:

〈A ≤ B ∧ C ≤ A ∧B ≤ C, true, true〉
7−→introduce 〈true, A ≤ B ∧ C ≤ A ∧B ≤ C, true〉
7−→propagate Transitivity 〈C ≤ B,A ≤ B ∧ C ≤ A ∧B ≤ C, true〉
7−→introduce 〈true, A ≤ B ∧ C ≤ A ∧B ≤ C ∧ C ≤ B, true〉
7−→simplify Antisymmetry 〈B = C,A ≤ B ∧ C ≤ A, true〉
7−→solve 〈true, A ≤ B ∧ C ≤ A,B = C〉
7−→simplify Antisymmetry 〈A = B, true, B = C〉
7−→solve 〈true, true, A = B ∧B = C〉

2.2 The Lambda Calculus

In 1932, Alonzo Church [6], defined the the λ-calculus as a model of the computable functions.
Lambda calculus has been used as the basis of intermediate languages in functional programming
languages compilers (see [4] about the use of λ-calculus in computer science).

In this section we will briefly present some basic concepts concerning λ-calculus which are needed
for the comprehension of this work (see [3] for a survey on the subject).

Definition 6 Let V be an infinite set of variables. The set of λ-terms, Λ is constructed inductively
from V in the following way:

(Variable) x ∈ V ⇒ x ∈ Λ
(Application) M,N ∈ Λ ⇒ (MN) ∈ Λ
(Abstraction) M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ

Considering application to be left associative, and abstraction to be right associative, we use the
following abbreviations to simplify notation:

• (M1M2 . . .Mn) for (. . . (M1M2) . . .Mn)

• (λx1x2 . . . xn.M) for (λx1.(λx2.(. . . (λxn.M) . . . )))

Definition 7 Given M ∈ Λ, the set FV (M) of all free variables in M is defined inductively by:

FV (x) = {x}
FV (MN) = F (M) ∪ FV (N)

FV (λx.M) = FV (M) \ {x}
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A term is closed iff FV (M) = ∅. A variable occurrence which is not free is called a bound occurrence.

The result of replacing all the free occurrences of a variable x by a term N in a term M is denoted
by M [N/x]. That substitution M [N/x] is allowed, in which case we say that x is replaceable by N
in M , if x does not occur free in any subterm of M of the form λy.P and y ∈ FV (N). In the rest
of the paper we assume that the sets of free and bound variables of a term are disjoint, thus every
substitution M [N/x] is allowed.

Example 8 The following functional program

f x y = g (x y) z

is represented by the λ-term
(λxy.g(xy)z)

3 Parametric Polymorphism

In programming languages where functions or procedures have a unique type, one cannot define
functions that might be applied to different data types, making it necessary to define distinct functions
for different types. Such languages, like Pascal and C, are called monomorphic. For example, let
(λx.x) be the term representing the identity function. In a monomorphic type system we can consider
the following types for this term:

` λx.x : int→ int ` λx.x : char → char

For functions like the identity, one is interested in using the same function for a set of types instead
of defining a different one for each different type. This concept is known as type polymorphism.

There are several kinds of polymorphism. We are interested in the kind of polymorphism provided
by the ML language, the parametric polymorphism, in which polymorphic functions are used uniformly
in a set of types.

In parametric polymorphism, one describes sets of types using schemes with parameters that can
be instantiated, allowing a representation of the set of types for a certain term. For the identity
function (λx.x), the set of types that can be derived is represented by (∀α.α→ α).

We now describe the Damas-Milner type system [10], which is the base of type systems for
polymorphic languages.

3.1 The term language

The term language is just the λ-calculus with local definitions.

M ::= x |MM ′ | λx.M | let x = M in M ′

The term let x = M in M ′, although semantically equivalent to (λx.M ′)M , allows more terms to be
typable, because, in let x = M in M ′, x can be used polymorphically in M ′, even if the term (λx.M ′)
is not typable. We shall see an example concerning the let term when we present the system.

3.2 Type schemes

We define the notion of type scheme so that, given a λ-term M , one can represent the set of types
that are allowed for that term.

We first define the set of simple types (or Curry types).

Definition 9 Let α range over an infinite set of type variables, V. The set of simple types (here
denoted by τ , τ ′ and τ ′′) is defined inductively by:

τ ::= α | τ ′ → τ ′′
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Definition 10 We say that σ is a type scheme if σ is a simple type τ or is of the form ∀α1, . . . , αn.τ ,
where α1, . . . , αn are type variables called generic.

Type schemes represent the set of types resulting from every possible substitution of the generic
variables by simple types.

Definition 11 Let τ be a type and σ a type scheme. We say that τ is a generic instance of σ iff
σ = τ or σ = ∀α1, . . . , αn.τ ′ and ∃τ1, . . . , τn such that τ = [τi/αi]τ ′.

3.3 Types

The set of types of the Damas-Milner type system is defined by:

σ ::= τ | ∀α.σ′

where τ is a simple type, and σ, σ′ are type schemes.

3.4 The type system

Let Γ be one set of type declarations where for each term variable there is at most one type declaration.
Let σ range over type schemes and τ , τ ′ range over simple types. Γ ` M : σ, meaning that M has
type σ with the type declarations Γ, is defined by the following rules:

(Var) Γ ` x : σ, if (x : σ) ∈ Γ

(Gen)
Γ `M : σ, if α /∈ fv(Γ)

Γ `M : ∀α.σ

(Inst)
Γ `M : ∀α.σ

Γ `M : σ[τ/α]

(App)
Γ `M : (τ ′ → τ),Γ `M ′ : τ ′

Γ ` (MM ′) : τ

(Abs)
Γ ∪ {x : τ ′} `M : τ

Γ ` λx.M : (τ ′ → τ)

(Let)
Γ `M : σ,Γ ∪ {x : σ} `M ′ : τ

Γ ` let x = M in M ′ : τ

The function fv(Γ), returns the set of free type variables in Γ.

Example 12 Consider the term let y = (λx.x) in yy, and the type derivation for this term given by
figure 1.

Note that the term (λy.yy)(λx.x), semantically equivalent to let y = (λx.x) in yy, is not typable,
since it is not possible to type the subterm (λy.yy) because y cannot be used polymorphically in λy.yy.

4 Constraint based Type Inference

4.1 The HM(X ) framework

Sulzmann, Odersky and Wehr defined the HM(X ) [32] as a general framework for extensions of the
Damas-Milner type system with constraints. The X in the HM(X ) framework stands for a constraint
system along the lines defined in [27]. We will not present a formal definition of constraint system
here. We just note that X is a parameter defining:

1. a set of primitive constraints;
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{x : α} ` x : α

ABS

?
` λx.x : α → α

GEN

?

{y : ∀α.α → α} ` y : ∀α.α → α

INST

?

{y : ∀α.α → α} ` y : ∀α.α → α

INST

?
{y : ∀α.α → α} ` y : (β → β) → (β → β)

APP

H
HHH

HHj

{y : ∀α.α → α} ` y : β → β

APP

�
���

���
` λx.x : ∀α.α → α

LET

PPPPPPPPq

{y : ∀α.α → α} ` yy : β → β

LET

��������)

` let y = (λx.x) in yy : β → β

Figure 1: Type derivation

2. an entailment relation between constraints (|=);

3. a projection of a constraint c onto variables x̄. As usual, projection is denoted by the existential
quantifier (∃);

4. a set of predicates relating types. This set must contain an equality predicate.

Concerning type inference, an instance of the general type inference framework HM(X ) is defined
by (X , T ,S,Γ0). T defines the type language and X defines the constraint system. The set S defines
the set of valid constraints used in the type schemes and in type derivations, and Γ0 is the set with
the initial type declarations.

4.1.1 The term language

The term language is the same presented in last section for the Damas-Milner type system:

M ::= x | λx.M |MM ′ | let x = M in M ′

Additional language constructors are expressed as predefined variables and their types are declared
in the initial environment Γ0.

4.1.2 The type language

The definition of types is more general than the one for the Damas-Milner system. The type language
is now defined by T , and might contain other type constructors besides→. Let α range over an infinite
set of type variables, τ and τ ′ denote types and σ denote type schemes. Then the type language is
defined as follows:

τ ::= α | τ → τ ′ | T τ̄
σ ::= τ | ∀α.C ⇒ σ

T stands for other type constructors defined in T . Those constructors depend on the particular
instance of HM(X ). Type schemes ∀α.C ⇒ σ, include a set of constraints C, which restricts the
types that can be instantiated to α. In this framework {C1, . . . , Cn} is equivalent to C1 ∧ · · · ∧ Cn.

4.1.3 The type system

Let C be satisfiable in X , Γ one set of type declarations where for each term variable there is at most
one type declaration, and σ range over type schemes. We define C ∗Γ `M : σ by the following rules,
where Γx denotes the result of excluding from Γ any assumptions about x:
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(Var) C ∗ Γ ` x : σ (x : σ ∈ Γ)

(Abs)
C ∗ Γx ∪ {x : τ} `M : τ ′

C ∗ Γ ` λx.M : τ → τ ′

(App)
C ∗ Γ `M : τ1 → τ2 C ∗ Γ `M ′ : τ1

C ∗ Γ `MM ′ : τ2

(Let)
C ∗ Γ `M : σ C ∗ Γx ∪ {x : σ} `M ′ : τ ′

C ∗ Γ ` let x = M in M ′ : τ ′

(∀ Intro)
C ∪D ∗ Γ `M : τ ᾱ /∈ fv(C) ∪ fv(Γ)

C ∪ {∃ᾱ.D} ∗ Γ `M : ∀ᾱ.D ⇒ τ

(∀ Elim)
C ∗ Γ `M : ∀ᾱ.D ⇒ τ ′ C |= [τ̄ /ᾱ]D

C ∗ Γ `M : [τ̄ /ᾱ]τ ′

The type ∀ᾱ.D ⇒ τ is a different notation for ∀α1.true⇒ · · · ∀αn.D ⇒ τ , and ∃ᾱ.D for ∃α1. . . .∃αn.D.
A type derivation C ∗ Γ `M : σ is valid if C is satisfiable.

Originally HM(X ) has en extra rule to deal with subtyping. In our work we do not deal with
subtyping thus the system is presented here without the subtyping rule.

In some situations we might want to restrict the set of constraints appearing in type schemes and
type derivations. For that purpose a set of constraints in solved form is defined and the constraints in
type schemes and type derivations are restricted to constraints in that set. The set S, of constraints
in solved form, is a subset of the set of satisfiable constraints in X .

The set S determines the valid typings in HM(X ). For example, if S is the empty set then we
cannot type any term.

4.1.4 Normalization

Type inference in HM(X ) combines constraint generation and constraint normalization. The general
idea is to transform the problem of inferring a type for a term into a constraint satisfaction problem,
such that the term is typable if the constraint satisfaction problem has a solution. The solution of
the constraint problem is a constraint in solved form.

Here we present the concept of constraint normalization, along the lines presented in [31].
In [31] substitution φ = [τ1/α1, . . . , τn/αn], is viewed as the constraint set {α1 = τ1, . . . , αn = τn},

and the application of substitution φ to a constraint C is viewed as the constraint ∃α1 . . . αn.(C∧(α1 =
τ1) ∧ · · · ∧ (αn = τn)).

Definition 13 Let C, D and φ be constraints in X , then C ∧ φ is a normal form of D iff C ∈ S
(being S the set of constraints in solved form), and C ∧ φ |= D.

Definition 14 Let C, C ′, D, φ and φ′ be constraints in X , then C∧φ, is a principal normal form of
D, if for all normal forms C ′∧φ′ of D, ∃U.(C ′∧φ′) |= ∃U.(C∧φ) where U = fv(C∧C ′∧φ∧φ′)\fv(D),
with fv being the function that returns the set of free variables of a constraint/type.

The principal normal form represents the most general solution of a constraint problem.

Example 15 Let Herbrand be the constraint system where primitive constraints are of the form
τ1 = τ2 where τ1, τ2 are types. The equality predicate is syntactic equality, and entailment is checked
by a matching algorithm. For example, β → γ = α → (α → β) entails β = α and γ = α → β.
Let S = true here represented by ∅. Then normal forms correspond to unifiers and principal normal
forms to most general unifiers.

Definition 16 The function normalize from constraints to normal forms is defined as:
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normalize(D) = C ∧ φ if C ∧ φ is a principal normal form of D
= fail if no normal form exists

Normalization can be viewed as an extension of constraint solving and unification. In our imple-
mentation, unification is done by the builtin unification of Prolog, and normalization corresponds to
constraint solving in CHR.

Example 17 Consider a constraint system, with primitive constraints of the form α :: τ , and the
following rule:

(α :: τ1) ∧ (α :: τ2) |= τ1 = τ2

Then for C = (α :: (β → β)→ β) ∧ (α :: γ → β),

normalize(C) = (α :: (β → β)→ β) ∧ [(β → β)/γ]

Definition 18 A constraint system X has the principal constraint property, if for every constraint
C in X , either C has a principal normal form, or C does not have a normal form.

4.2 The Type Inference Algorithm

In [32] a general algorithm for infering types in the HM(X ) framework is defined. This algorithm is
proved to be sound with respect to an untyped semantics and to derive principal types if X has the
principal constraint property.

Here we present our specification of the algorithm using Prolog and CHR. Equality constraints
are solved using Prolog unification with an occur-check. Each different instance will correspond to
a different module in CHR, to normalize constraints which were not solved by unification. Thus, to
each type system corresponds a different set of CHR rules, and those rules are the only differences
between different type systems within HM(X ) (except for possible differences in the type and term
languages).

In the definition of the type inference algorithm and in the rest of the paper, by an abuse of
notation, we use an abstract syntax for types (τ,∀ᾱ.D ⇒ τ, . . .) instead of the proper syntax for
Prolog terms.

Definition 19 Given a set of type declarations Γ, and a term M , the algorithm gives as an output
the type τ for M , and the set of constraints in solved form C. The type inference algorithm is defined
by the following set of Horn clauses:

type(C,Γ, x, τ)← member(x,Γ,∀ᾱ.D ⇒ τ1),
new instance(ᾱ, τ1, τ, D1, D),
normalize(D1, C).

type(C,Γ, λx.M,α→ τ)← type(C, [(x, ∀∅.true⇒ α) | Γ],M, τ).

type(C,Γ,M1M2, τ)← type(C1,Γ,M1, τ1),
type(C2,Γ,M2, τ2),
append(C1, C2, D),
unify with occurs check(τ1, τ2 → τ),
normalize(D,C).

type(C,Γ, let x = M1 in M2, τ)← type(C1,Γ,M1, τ1),
gen(C1,Γ, τ1, C2, σ),
type(C3, [(x, σ) | Γ],M2, τ),
append(C2, C3, D),
normalize(D,C).
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We assume the notation ∀∅.true⇒ τ for simple types. This avoids having different clauses for simple
types and type schemes.

The predicate normalize is defined as follows:

normalize([ ], C)← findall constraints( , CId),
removeId(CId,C).

normalize([X|R1], C)← call(X),
normalize(R1, C).

The first argument of normalize is a set of constraints. These are the constraints which are going
to be solved by CHR, and it is the only point where the type inference algorithm differs from one
type system to another.

The CHR builtin function, findall constraints(Pattern,List), unifies List with a list of Constraint
# Id pairs from the constraint store that match Pattern. When we call findall constraints( ,List),
we just collect all constraints.

The removeId(CId,C) predicate scans the list CId of pairs of the form Constraint # Id and for
each pair removes the second element.

Let us briefly explain the predicate gen used in the Let rule.
In gen(C,Γ, σ, D∪{∃ᾱ.C ′},∀ᾱ.C ′ ⇒ σ), C ∈ S is a set of constraints, Γ is a set of type declarations,

σ is a type scheme and fv(D) ∩ ᾱ = ∅. The set ᾱ is a subset of (fv(σ) ∪ fv(C)) \ fv(Γ).
This predicate splits C in two sets, D and C ′. The generalized variables appear only in C ′.
Finally, in the predicate new instance(ᾱ, τ1, τ, D1, D), ᾱ is a set of type variables, τ1 a type, D1

a set of constraints, τ is a type and D a set of constraints, such that τ = [β̄/ᾱ]τ1 and D = [β̄/ᾱ]D1

(β̄ are new variables). That is, D is a new instance of D1 and τ a new instance of τ1, which results
from replacing the variables in ᾱ by fresh variables.

4.3 Some instances of HM(X )

In this section we present instances of the HM(X ) framework, by defining the parameters (X , T , S,
Γ0). The systems presented are the Damas-Milner type system presented in section 3, and the Ohori
type system for extensible records reported in [23]. Those systems were used in [30] to illustrate the
use of specific constraint systems for type inference. Here we show that, when compared to other
languages CHR gives a clear and direct implementation of the entailment relation, defined in the
constraint system, as a set of CHR rules.

4.4 The Damas-Milner Type System

Type inference for pure ML, also known as Damas-Milner type system [10], is obtained by defining
X , T , S, Γ0 in the following way.

4.4.1 The constraint system DM

The constraint system DM is the Herbrand constraint system (see example 15), with primitive
constraints of the form τ1 = τ2, which are solved by unification.

4.4.2 The type language T

We define the type language T by the following grammar:

τ ::= α | τ → τ ′

That is, the only type constructor is →.
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4.4.3 The constraints in solved form S

The set S of constraints in solved form consists of only of constraints of the form:

C ::= true

where true is represented by the empty set. That is, the only possible type schemes are of the form
∀α.{} ⇒ σ, which correspond to ∀α.σ in the Damas-Milner type system.

4.4.4 The initial environment Γ0

The term language is the one defined for HM(X ). Additional language constructors are declared in the
initial environment Γ0. That is, if one wants to extend the language to deal with comparing functions
(eq, <, >,≤,≥), one should consider those functions as variables declared in the initial environment.

Example 20 Consider the program:

f = let
g x = x

in
g g

Applying the type inference algorithm to g = (λx.x) we have:

type(C,Γ0, (λx.x), α→ τ)
type(C, [(x, α) | Γ0], x, τ)

member(x, [(x, α) | Γ0], β)
new instance({}, α, τ, {}, D) τ = α, D = {}
normalize({}, C) C = {}

Thus,

type(C,Γ0, (λx.x), α→ α)

If we apply the type inference algorithm to let g = (λx.x) in gg

type(C,Γ0, let g = (λx.x) in gg, τ)
type(C1,Γ0, (λx.x), τ1) τ1 = α→ α, C1 = {}
gen(C1,Γ0, α→ α, C2, σ) C2 = {}, σ = ∀α.{} ⇒ α→ α
type(C, [(g,∀α.{} ⇒ α→ α) | Γ0], gg, τ)

type(C3, [(g,∀α.{} ⇒ α→ α) | Γ0], g, τ3)
member(g, [(g,∀α.{} ⇒ α→ α) | Γ0],∀α.{} ⇒ α→ α)
new instance(α, α→ α, τ3, {}, D3) τ3 = α1 → α1, D3 = {}
normalize({}, C3) C3 = {}

type(C4, [(g,∀α.{} ⇒ α→ α) | Γ0], g, τ4)
member(g, [(g,∀α.{} ⇒ α→ α) | Γ0],∀α.{} ⇒ α→ α)
new instance(α, α→ α, τ4, {}, D4) τ4 = α2 → α2, D4 = {}
normalize({}, C4) C4 = {}

union({}, {}, D) D = {}
unify with occurs check(α1 → α1, α2 → α2 → α3) α1 = α2 → α2,

α3 = α2 → α2

normalize({}, C) C = {}
τ = α3 τ = α2 → α2

Thus,
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type({},Γ0, let g = (λx.x) in gg, α2 → α2)

After generalizing the variables which do not occur free in the basis, the types inferred for g and
f with initial set of type declarations Γ0 = ∅, are:

f :: ∀ α2 .{} ⇒ α2 → α2

g :: ∀ α .{} ⇒ α → α

4.5 Records

Here we present an instance of the HM(X ) framework by defining the CHR rules used in the
normalization of type constraints for the Ohori type system. The Ohori type system extends the
ML type system with polymorphic records.

4.5.1 The term language

The term language for this system is an extension to the Damas-Milner term language, with terms
for records creation, field access and field modification:

M ::= x |MM | λx.M | let x = M in M |
{l = M, . . . , l = M} |M.l | modify(M, l,M)

Example 21 As an example of an expression in this language consider:

λ x y . let
name = λ z . z .Name

in
name {Name = x , Age = y}

4.5.2 Types and Kinds

The set of types for the Ohori system is given by:

τ ::= α | τ → τ ′ | {l : τ1, . . . , l : τn}
σ ::= τ | ∀α :: k.σ

where τ is a monomorphic type and σ is a polymorphic type.
The type {l1 : τ1, . . . , ln : τn} defines records with label fields l1, . . . , ln, which have types τ1, . . . , τn.

Example 22 The following term for record creation

{Name = x,Age = y}

has type

{Name : α,Age : β}

where α and β are the types of x and y respectively.

The type variables in type schemes are constrained to a set of types which is called kind. The set
of kinds is given by:

κ ::= U | {{l1 : τ1, . . . , ln : τn}}

U is the set of all types. A kind {{l1 : τ1, . . . , ln : τn}} represents the records which contain, at least,
the fields l1, . . . , ln with types τ1, . . . , τn respectively.
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Example 23 If a type variable α has kind U , then α can represent any type. If α has kind

{{Name : string,Age : int}}

then α can represent the type

{Name : string,Age : int,Phone : int}
or

{Name : string,Age : int,Address : string}

but not,

{Name : string,Phone : int,Address : string}

Next we present the parameters (X , T ,S,Γ0) that define the HM(R) instance.

4.5.3 The type language T

The types in T are defined by:

τ ::= α | τ → τ ′ | {l1 : τ1, . . . , ln : τn}

That is, the type language has an additional type constructor for record types.

4.5.4 The Constraint System R

Kinded quantification is modeled in the following way:

• A kind κ is defined as 〈l1 : τ1, . . . , ln : τn〉, and defines the records which contain at least the
fields l1, . . . , ln.

• The primitive constraints of this system are of the form (τ :: κ), where τ is a type and κ is a
kind.

In HM(R) there are no constraints of the form τ :: U , because we consider that, in a type scheme
∀ᾱ.C ⇒ τ , if a type variable α ∈ ᾱ does not appear in C then α can represent any type.

Let rectype(R) (R = [(l1, τ1), . . . , (ln, τn)]) denote the type {l1 : τ1, . . . , ln : τn}, and labtype(L, τi)
represent the kind 〈L : τi〉. Let fv(K, V ) be a predicate where V is the set of free variables of K.
The normalization rules for R are the following:

records1 @ rectype(R) :: labtype(L, τi)⇐⇒ member(L,R, τi) | true.

records2 @ τ :: labtype(L, τ1), τ :: labtype(L, τ2) =⇒ τ1 = τ2.

records3 @ rectype(R) :: labtype(L, τ2) =⇒ member(L,R, τ1) | τ2 = τ1.

records4 @ exists(α, (α :: K))⇐⇒ fv(K, V ),notin(α, V ) | true.

The first rule states that, for any li, τi i = 1 . . . n, we have {l1 : τ1, . . . , ln : τn} :: 〈li : τi〉. Rules 2
and 3 avoid overloading for fields. One record cannot have different types for the same field. Rule 4
simplifies constraints existentialy quantified by generalization, preserving logical equivalence.

As defined in [32], constraints in solved form are the satisfiable constraints of the form

C ::= true | (α :: 〈l : τ〉) | C ∧ C | ∃ᾱ.C

The initial set of declarations Γ0 has the primitive constructors for the creation, selection and
modification of records.

Let l1, . . . , ln be a sequence of fields, and {l1 : τ1, . . . , ln : τn} the type representing a record with
those fields. We define the constructor l1 . . . ln and add to Γ0:
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l1 . . . ln : τ1 → · · · → τn → {l1 : τ1, . . . , ln : τn}

l1 . . . lne1 . . . en creates a new record {l1 = e1, . . . , ln = en}.
For each field l, we add to Γ0 the following type declarations:

.l : ∀α, β.(α :: 〈l : β〉)⇒ α→ β

for field access, and

modifyl : ∀α, β.(α :: 〈l : β〉)⇒ α→ β → α

for field modification.

Example 24 Consider the following program:

f x = let
g x y = {l1 = x , l2 = y}

in
modify(g 1 2, l1, x )

The types inferred for f and g, with the initial type declaration {eq : ∀α.{} ⇒ α → α → bool, 1 :
int, 2 : int}, are respectively:

f :: int → {l1 : int , l2 : int}
g :: ∀ α, β .{} ⇒ α → β → {l1 : α, l2 : β}

Example 25 Consider the following function:

f x y = eq x .l y .l

The type inferred for f , with the initial type declaration {eq : ∀α.{} ⇒ α→ α→ bool}, is:

f :: ∀ α, β, γ .(α :: 〈 l : β〉 ∧ γ :: 〈 l : β 〉 ) ⇒ α → γ → bool

5 Intersection Types

Intersection Types were introduced in [7] to allow typings where different occurrences of the same
variable are used with different types. This ability makes it possible to type terms, not typable in
ML, such as λx.xx.

In Intersection Type Systems (ITS), functional types of the form

σ1 ∩ · · · ∩ σn → σ

are introduced to model the type of a function which returns an object of type σ when given an
argument of, simultaneously, types σ1, . . . , σn.

Type inference for Intersection Type Systems is undecidable [7, 25]. However there are decidable
restrictions which are useful for type assignment in programming languages [33, 11, 8, 34, 17, 18].
Particularly, the rank 2 Intersection Type System was studied in detail in [33, 16, 17, 34].

There are many different formulations of intersection type systems (see [33] for a survey).

Definition 26 Let V be an infinite set of type variables. The set of Intersection Types is defined
inductively by:

1. If α ∈ V then α is a type;

2. If σ1, . . . , σn and σ are types, then σ1 ∩ · · · ∩ σn → σ is a type.
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5.1 Rank 2 Intersection Types

Rank 2 Intersection Types are the most studied decidable restrictions of Intersection Type Systems.
Rank 2 Intersection types are of the form τ1 ∩ · · · ∩ τn → σ, where τ1, . . . , τn are simple types. Here
we present a basic definition of the Rank 2 Intersection Type System along the lines presented in
[16].

Definition 27 Let TC be the set of simple types. We then consider the following sets of types:

1. The set of Rank 1 Types, T1 is defined by: If τ1, . . . , τn ∈ TC (n ≥ 1), then τ = τ1∩· · ·∩τn ∈ T1.

2. The set of Rank 2 Intersection Types, T2 is inductively defined by:

(a) If τ ∈ TC , then τ ∈ T2.
(b) If τ ∈ T1 and σ ∈ T2, then τ → σ ∈ T2.

We assume that the intersection operator is associative, commutative and idempotent.

Definition 28 A Rank 2 basis is a set of pairs of the form x : σ where x (the subject) is a term-
variable and σ (the predicate) ∈ T1. Alternatively one can define a basis as a partial function from
term-variables to types in T1.

The set T1 consists of nonempty, finite intersections of simple types. The set T2 is the set of types
containing intersections of simple types but only to the left of an arrow.

Definition 29 Let τ, τ1, . . . , τn ∈ TC and σ, σ′ ∈ T2. The Rank 2 Type System is defined by:

(Var) A ∪ {x : τ1 ∩ · · · ∩ τn} `2 x : τi (i ∈ {1, . . . , n})

(Abs)
Ax ∪ {x : τ1 ∩ · · · ∩ τn} `2 M : σ

A `2 λx.M : τ1 ∩ · · · ∩ τn → σ

(App)
A `2 M : τ1 ∩ · · · ∩ τn → σ A `2 N : τ1 . . . A `2 N : τn

A `2 MN : σ

Example 30 Consider the term (λx.xx). We have the following type derivation:

{x : (α → β) ∩ α} `2 x : α → β

APP

H
HHH

HHj

{x : (α → β) ∩ α} `2 x : α

APP

�
���

���
{x : (α → β) ∩ α} `2 xx : β

ABS

?
`2 λx.xx : ((α → β) ∩ α) → β

Note that the term (λx.xx) is not typable in ML.

5.2 Type Inference

The type inference algorithm that we implement in Prolog and CHR in this section was defined by van
Bakel and Trevor Jim in [33] and [16]. We will follow the presentation of [16] since it is a constraint
based formulation of the algorithm.

In [16], to avoid unification of types involving intersections (which have algebraic properties that
would complicate the unification process) the type inference algorithm generates a set of subtyping
constraints which respect semantic inclusion between types. In the same paper, the author proved
that these subtype constraints could be transformed into a set of equality constraints which can
be solved by syntactic unification, defined a constraint system for these transformation, and proved
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that the resulting algorithm is sound with respect to the type system. In our implementation the
transformation of subtyping into equality constraints becomes quite clear as a set of CHR rules. As
for the previous systems, equality constraints are solved by Prolog unification with an occur-check.
Let us now present our implementation of the type inference algorithm defined in [16] for the Rank-2
Intersection Type System.

Definition 31 Given a term M , the algorithm gives as output the type τ for M , and a Rank 2 basis
A. The type inference algorithm is defined by the following set of Horn clauses:

type([(x, α)], x, α).

type(Ax, λx.N, τ ′ → τ) ← type(A,N, τ),
member(x, A, τ ′),
remove(x, A,Ax).

type(A, λx.N, α→ τ) ← not member(x,A, ),
type(A,N, τ).

type(A,M1M2, α2) ← type(A1,M1, α),
var(α),
type(A2,M2, τ2),
unify with occurs check(α, α1 → α2),
normalize([τ2 ≤ α1], [ ]),
plus(A1, A2, A).

type(A,M1M2, σ1) ← type(A1,M1, τ → σ1),
itlength(τ , N),
ntype(N,AI ,M2, τ ,Clist),
normalize(Clist, [ ]),
plus(A1, AI , A).

We represent a Rank 1 type τ1 ∩ · · · ∩ τn as a list of Curry types [τ1, . . . , τn].
The predicate normalize is the one defined in section 4.2. However, in this system, type inference

is only possible if the inequality constraints are transformed into equality constraints, which are solved
by unification, thus we expect the result of normalize to be an empty set of constraints.

The predicate plus used in the rules for the application implements the following operation on
basis:

(A1 + A2)(x) =


A1(x) if x /∈ dom(A2),
A2(x) if x /∈ dom(A1),
A1(x) ∧A2(x) otherwise.

for any x ∈ dom(A1) ∪ dom(A2).
The predicate itlength(τ , n) in the second rule for the application gives the number n of types

in τ and, for that n, the predicate ntype(n, AI ,M2, τ ,Clist), calls n times the predicate type for
M2 and builds a list of constraints Clist of the form [σ1 ≤ τ1, . . . , σn ≤ τn], and a Rank 2 basis
AI = A1 + · · · + An, where each pair (σi, Ai) (i ∈ {1, . . . , n}) is such that type(Ai,M2, σi). The
implementation of ntype is the following:

ntype(0, A, M, σ, [τ ≤ σ]) ← type(A,M, τ).

ntype(1, A, M, [σ], [τ ≤ σ]) ← type(A,M, τ).
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ntype(N,A, M, [σ|R], [τ ≤ σ|RC]) ← type(A1,M, τ),
N1 is N − 1,
ntype(N1, A2,M,R, RC),
plus(A1, A2, A).

For simple types the call for itlength returns 0 and the first rule of ntype is used.

Let α, α1 and α2 be type variables. Subtype normalization is defined by the following set of CHR
rules:

twone1 @ σ1 → σ2 ≤ α⇐⇒ var(α) |
α1 ≤ σ1, σ2 ≤ α2, unify with occurs check(α, α1 → α2).

twone2 @ σ1 → σ2 ≤ τ1 → τ2 ⇐⇒ τ1 ≤ σ1, σ2 ≤ τ2.

twone3 @ σ ≤ [τ1]⇐⇒ σ ≤ τ1.

twone4 @ σ ≤ [τ1 | τ2]⇐⇒ σ ≤ τ1, σ ≤ τ2.

twone5 @ α ≤ τ ⇐⇒ var(α), simple(τ) | unify with occurs check(α, τ).

The first rule simplifies a subtype constraint decomposing it into two simpler constraints. Rule 2
implements contra-variance. The next two rules transform a constraint of the form σ ≤ τ1 ∩ · · · ∩ τn

into a set of constrains of the form σ ≤ τ1 ∧ · · · ∧ σ ≤ τn. The last rule transforms an inequality
constraint α ≤ τ , into a equality constraint α = τ , and solves it by unification, if α is a variable and
τ is a simple type.

Example 32 Consider the following function:

f = (λ x .xx )I

being I the identity function (λy.y). Applying the type inference algorithm to (λx.xx) we have:

type(Ax, (λx.xx), β1 → β2)
type(A, xx, β2)

type([(x, α1)], x, α1)
var(α1)
type([(x, α2)], x, α2)
unify with occurs check(α1, α3 → β2) α1 = α3 → β2

normalize([α2 ≤ α3], [ ])
unify with occurs check(α2, α3) α2 = α3

plus([(x, α3 → β2)], [(x, α3)], [(x, [α3 → β2, α3])])
type([(x, [α3 → β2, α3])], xx, β2)
member(x, [(x, [α3 → β2, α3])], [α3 → β2, α3])
remove(x, [(x, [α3 → β2, α3])], [ ])

Thus,
type([ ], (λx.xx), [α3 → β2, α3]→ β2)

Applying the type inference algorithm to I we have:

type(Ay, (λy.y), β3 → β4)
type([(y, α4)], y, α4)
member(y, [(y, α4)], α4)
remove(y, [(y, α4)], [ ])

Thus,
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type([ ], (λy.y), α4 → α4)

If we apply the type inference algorithm to (λx.xx)I:
type(A, (λx.xx)I, β2)

type([ ], (λx.xx), [α3 → β2, α3]→ β2)
itlength([α3 → β2, α3], 2)
ntype(2, [], (λy.y), [α3 → β2, α3], [α4 → α4 ≤ α3 → β2, α5 → α5 ≤ α3])
normalize([α4 → α4 ≤ α3 → β2, α5 → α5 ≤ α3], [ ]), α3 = α5 → α5,

β2 = α4 = α3 = α5 → α5

plus([ ], [ ], [ ])

Thus,
type([ ], (λx.xx)I, α5 → α5)

Example 33 Consider the following function:

f x y z = x z (y z )

Applying the inference algorithm obtains the following type for f :

f :: (α1 → α2 → α3) → (α4 → α2)→ (α1 ∩ α4) → α3

6 Conclusion

Type inference for modern programming languages is based on logical systems and constraint resolu-
tion. In this paper we implement three type inference algorithms, which belong to the state of the art
of the area, using constraint logic programming. The implementations presented are clear and highly
declarative and show one particularly interesting area of application of logic programming, which is
the design and implementation of type inference algorithms for programming languages.
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