
Educated brute-force to get h(4)

Rogério Reis Nelma Moreira João Pedro Pedroso

Technical Report Series: DCC-04-04 rev.3

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150 Porto, Portugal

Tel: +351+2+6078830 – Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

Educated brute-force to get h(4)

Rogério Reis Nelma Moreira João Pedro Pedroso

{rvr,nam,jpp}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150 Porto, Portugal

June 2004

Abstract

In one of his numerous conferences, Frank Harary, talked about one of his many
games, that, as usual, had a very difficult problem associated to it. In this case, a family
of games for two players in which the selected number of columns in the game has a
vital importance. He has proved that for 2 and 3 columns the longest match has 9 and
24 moves respectively, that is to say that h(2) = 9 and h(3) = 24. At the same time
it was announced that he knew a solution of length 66 for the problem with 4 columns,
but he didn’t know if it was the maximum. We present here a program that proves that
h(4) = 67. Although it uses but a brute-force approach, its soundness seems good fun
to prove.

1 The name of the game

One of the many games that Frank Harary presented in his talks, consists of a small
fixed number of empty columns in which each player places, in his turn and beginning
with the number 1, the next integer. The column in which the number is placed must
be such that it is not possible to write it as the sum of two other elements of that

column. The player that cannot complete his move complying to these rules, looses.
Here is an example of a game with 3 columns, in which player A starts choosing

column C1 and wins because player B cannot place number 12 in any column:

C1 C2 C3

1 3 4

2 5 6
7 9 8

10 11

This game cannot proceed. For each number of columns is there a longer game
possible? If it exists, say for c columns, we call it the Harary number of order c or h(c).
Putting this in a more formal manner... To simplify let us adopt the following notation

�
n = {0, . . . , n}

and
� +

n = {1, . . . , n}.

Then we can define h(c) as

1+max{k ∈
�

| ∃f :
� +

k →
� +

c ∀x, x′, x′′ ∈
� +

k (f(x) = f(x′) = f(x′′) ⇒ x 6= x′+x′′}.

2

That this is a good definition, i.e. that h(c) is a finite integer for every c > 0, is a
consequence of Schur’s theorem (a corolary of Ramsey Theorem).

Trivially h(1) = 3:

C1

1

2

In the same way, it is easy to verify that h(2) = 9. The following is the maximal
solution for c = 2:

C1 C2

1 3
2 5
4 6
8 7

It was proven that for c = 3, 24 is the length of the maximal game. An example of a
solution of that length is

C1 C2 C3

1 3 9
2 5 10
4 6 12
8 7 13
11 19 14
16 21 15
22 23 17

18
20

For the case c = 4, Harary announced that he knew a solution of length 66, generated
by a computer program, but he didn’t know if it was maximal.

2 Taming brute-force

A brute-force approach to the problem is very easy to state: a program that tries
every possible different choice of placement of each integer, with a depth-first search
for example, thus covering all possible game configurations. The longest one is the
answer to our question. The problem is, that for the game with 4 columns it simply
takes to much time to do this!

It is easy to see that the whole game configuration can be represented by the sequence
of columns chosen in each turn by the players to place the numbers, as those numbers
are determined by the natural order of

�
. With this observation the maximal game for

the problem c = 3 can be completely described by the string:

[C1, C1, C2, C1, C2, C2, C2, C1, C3, C3, C1, C3, C3, C3, C3, C1, C3, C3, C2, C3, C2, C1, C2]

or, in a lighter notation, by

[1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3, 2, 3, 2, 1, 2].

If we, as usual, denote A? as the Kleene closure of A, game descriptions can be seen
as a member of (

� +
c)?, that is, the set of sequences of elements of

� +
c . To simplify the

representation, and because we will need computationally fast implementations of these

3

data structures, let us assume we have an upper bound to the length of the maximal
game for a given c. Let us represent that limit by LIMIT. Then, if we concatenate a
string of 0’s to a string description of a game, so that the result has always length LIMIT,
we can see a game description as a member of

(
�

c)
LIMIT.

This can be easily and efficiently represented in a computer data structure.
In this case, brute-force means to generate all the possible elements of

(
�

c)
LIMIT ∩ (

� +
c)?{0}?

that stand for legal configurations of the game. So we only need to execute the following
code:

� �

#define NCOLS 4

#define LIMIT 70

void brute_force(){

int i;

for(i=0; i<NCOLS; i++)

if(column_selectable(i)){

select_column(i);

brute_force();

backtrack_last_move();

}

}

main(){

init_data_structures();

brute_force();

}
� �

The problem is the computational that the cost of column_selectable() is too high.
A direct evaluation from the data of the game configuration, for the nth placement will
have to compute in the worst case (n − 1)(n − 2) additions and comparisons, for a
configuration with all previous placements in the same column. We can estimate an
average of c(n

c
)2, supposing an even distribution of placements by the different columns.

This is clearly too much for a computation that, in the case c = 4, is going to be repeated
a number of times that we only know to bounded by 466.1

A solution for this problem is to use another data structure, that can store the “for-
bidden values” for each column, and that can be calculated in an incremental way. For
each column we can store the values that can be obtained by adding two of the members
of the column. Lets call that structure base and use it so that base[i][j] == 0 means
that the number j can be “legally” placed in column i+1.

� �

#define column_selectable(X) (base[X][last] == 0)

1Assuming that the solution already known for the problem, is indeed maximal.

4

int base[NCOLS][LIMIT+1], sol[LIMIT], last=0;

void init_data_structures(){

int i,j;

for(i=0; i<NCOLS; i++)

for(j=0; j<=LIMIT; j++)

base[i][j] = 0;

}

void select_column(int col){

int i, sum;

sol[++last] = col;

for(i=1; i<last; i++){

sum = last+i;

if((sol[i]==col) && (sum <= LIMIT))

base[col][sum]++;

}

}
� �

Testing if a move is legal is now much more efficient (O(n)) but the backtracking of a
move, will still take too much time. We are already storing in base[col][i] not simply
a 1 when the integer i is “forbidden” on that col, but the number of different ways it is
possible to write it as sum of two elements of the column. In this way backtracking will
be easier when one of the contributing parcels of i is removed from column col it needs
just to subtract 1 to this value (base[col][i]--;). If we keep, in another data array,
for each integer i, the list of integers than it contributes to “outcast” in its column,
backtracking can be done with minimal computational effort (O(n)). Rewriting the last
code to incorporate these speed-ups, we have:

� �

#define column_selectable(X) (base[X][last] == 0)

int base[NCOLS][LIMIT+1], sol[LIMIT], last;

int sums[LIMIT+1][LIMIT+1];

void init_data_structures(){

int i,j;

for(i=0; i<NCOLS; i++)

for(j=0; j<=LIMIT; j++)

base[i][j] = 0;

}

void select_column(int col){

int i, j=0, sum;

sol[++last] = col;

for(i=1; i<last; i++){

5

sum = last+i;

if((sol[i]==col) && (sum <= LIMIT)){

sums[last][j++]=sum;

base[col][sum]++;

}

}

void backtrack_last_move(void){

int i=0, col;

col = sol[last];

while(sum[last][i]){

base[col][sums[last][i]]--;

sums[last][i++] = 0;

}

last --;

}
� �

3 Trimming the tree

We can significantly improve computational speed by simply not doing so much, i.e.

pruning the search tree whenever we know that, although the search will find new
maximal solutions, they will be of the same length of the ones already found. Solutions
that can be obtained from others by renaming (or reorder if you prefer!) are not of
particular interest.

So, we can fix the first column to be chosen, say the first, and save time reducing it
to 1

c
(in this case 1

4). But other, and much more effective pruning criteria can be used.
Let us consider again our domain

(
�

c)
LIMIT ∩ (

� +
c)?{0}?.

The depth-first descend that we are executing corresponds to the enumeration in lexico-
graphic order. Lets denote by [a/b]s the application of the substitution of every b by a
in the string s. Then we observe that for any string

s = a1a2 . . . an−1anan+1 . . . ak

if an > (max{a1 . . . an−1} + 1),
s′ < s

where
s′ = [(max{a1 . . . an−1} + 1)/an, an/(max{a1 . . . an−1} + 1)]s.

The placement of number 1 in the first column, can be seen as a special case of this
last observation. The main() and brute_force() functions can then be rewritten as:

� �

#define MAX(X,Y) (X<Y?Y:X)

#define MIN(X,Y) (X<Y?X:Y)

void brute_force(int bound){

int i;

6

for(i=0; i<=(MIN(NCOLS -1,bound+1)); i++)

if(column_selectable(i)){

select_column(i);

brute_force(MAX(i,bound));

backtrack_last_move();

}

}

main(){

init_data_structures();

brute_force(-1);

}
� �

If we take LIMIT = 4 and c = 4, only the following 15 complete configurations will be
tested for validity, instead of the total possible 256:

1 1 1 1
1 1 1 2
1 1 2 1
1 1 2 2
1 1 2 3
1 2 1 1
1 2 1 2
1 2 1 3
1 2 2 1
1 2 2 2
1 2 2 3
1 2 3 1
1 2 3 2
1 2 3 3
1 2 3 4

For each c, if we consider the language

Lc = {a1a2 . . . ak ∈ (
� +

c)? | ∀i ∈
� +

k , ai ≤ max{a1, . . . , ai−1} + 1}

we can restrict the domain of brute force search to

({0} ∪
� +

c)LIMIT ∩ Lc{0}
?

The languages Lc are regular languages, as they can be described by the regular
expressions

αc =

c
⊕

i=1

i
⊗

j=1

j(1 + . . . + j)?

From these expressions it is easy to get for each n the density of Lc, ρLc
(n), i.e, the

number of strings of length n that are in Lc:

ρLc
(n) =

c
∑

i=1

S(n, i)

where

7

S(n, i) =
1

i!

i−1
∑

j=0

(−1)j

(

i

j

)

(i − j)n

are the Stirling numbers of second kind. And we have

ρLc{0}?(n) =

n
∑

k=0

c
∑

i=1

S(k, i)

For c = 4, we obtain,

ρL4
(n) =

1

3
+

1

4
2n +

1

24
4n

and

ρL4{0}?(n) =
1

3
n −

5

9
+

1

2
2n +

1

18
4n

Finally, the density of L4{0}
? can be compared with that of (

� +
4)?{0}?, noticing that

ρ(� +

4
)?{0}?(n) =

4

3
4n −

1

3

For n = 70, ρL4{0}?(70) ≈ 2135.8 and ρ(� +

4
)?{0}?(70) ≈ 2140.4, which shows that we have

cut the tree in a factor of about 24 (i.e ≈ 1
c!).

4 The result

Running the program for c = 4 took 333501s (less than 4 days) in a Intel Pentium 4 with
a clock rate of 3.0GHz and listed the 29931 maximal game configurations with length
66.

We will not list the complete set of configurations obtained (!), but can here present
the first of the long list of solutions:

[112122213313333133232124144444144422144144144444412223331331331222]

And thus we have confirmed that indeed h(4) = 67.
For c = 3, after less than 0.01s all the maximal configurations of length 24 were listed:

[11212221331333313323212]
[11212221331333331323212]
[11212221331333333323212]

5 Some variations

If we try some variations on the rules of the game, and instead of those stated in section 1
we say that an integer can be placed in a column providing it cannot be

written as the sum of elements of that column, i.e. allowing sums with more
than exactly two parcels, we have a completely different problem. All the structures and
code written before can be used, providing we have new definitions for select_column()
and backtrack_last_move():

� �

void select_column(int col){

int i, j=0, sum;

8

sol[++last] = col;

for(i=LIMIT; i>=1; i--)

if(base[col][i]){

sum = last + i;

if(sum <= LIMIT){

base[col][sum]++;

sums[last][j++] = sum;

}

}

base[col][last]++;

}

void backtrack_last_move(void){

int i=1, col;

col = sol[last];

while(sums[last][i]){

base[col][sums[last][i]]--;

sums[last][i++] = 0;

}

base[col][last --]--;

}
� �

The complexity is now much lower than in the initial problem, as the condition for
a placement to be admissible is much more strict2. The answers for c = 1, 2, 3, 4 are as
follow:

h′(1) = h(1) = 3 The only possible game configuration is obviously

[11]

h′(2) = h(2) = 9 The only maximal configuration is the first that was found for the
original problem,

[11212221]

h′(3) = 22 The only maximal configuration is

[112122213333333333221]

h′(4) = 47 The five maximal game configurations are

[1121222133333333331242444444444444444444444212]
[1121222133333333331244444444444444444444441222]
[1121222133333333331244444444444444444444442221]
[1121222133333333332144444444444444444444441222]
[1121222133333333332144444444444444444444442221]

6 Conclusion

We described a brute-force algorithm used for determining the value of h(4). Adequate
data-structures allowed to test a legal move and backtracking with an O(n) time complex-
ity. We shown how to prune the search tree, maintaining completeness, and represented

2The answer for the problem with c = 4 was given after using only 98.37s in the same P4 3GHz.

9

recurrence relations for the estimate space. The same strategies were used for solving
some variations of the initial problem. We would like to study winning strategies for
each number of columns.

Acknowledgement

We thank the Parallel and Distributed Systems Group of LIACC, and specially Lúıs
Lopes, for the uncluttered CPU-time in khuasar.

10

