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Abstract. Grapevine phenology observations are essential for ecological 

adaptability of grape varieties, crop management and crop modelling. Phenological 

events have traditionally been ground based, with observations mainly providing 

information concerning grape varieties over a limited spatial area and few in-

season observations. Time-series of satellite imagery can rapidly provide a 

synoptic and objective view of grape vegetation dynamics that may be used for 

vineyard management. Ten-day VEGETATION image composites from 1999 to 

2007 were used to examine temporal profile in the Normalized Difference 

Vegetation Index (NDVI) and their relationship with ground based observation of 

grapevine phenology. In Portugal is Douro wine region, 2 suitable tests sites with 

over 70% or more of their area occupied by grapevines were selected. A number of 

NDVI metrics were obtained for each year through logistic model adjusted to 

NDVI time series after noise reduction using a Savitzky-Golay filter. The 

comparison of ground-based vineyard phenology and satellite-derived flowering, 

show an average spread deviation of 3 days. The satellite derived full canopy date 

was significantly correlated to the veraison date (r=0.87; n=7; p<0.02). The data 

set provided by the VEGETATION sensor proved to be a valuable tool for 

vineyard monitoring, mainly for inter-annual comparisons on regional scale. 

Keywords: Grapevine, Phenology, Smoothed NDVI, Remote Sensing, SPOT-

VEGETATION 

Introduction 

Premium wine production is limited to regions climatically conducive to potential 

growing grape-variety with balanced composition and varietal typicity and with 

opportune well vineyard management. For these intricate fusions of climate, genetics, 

viticulture and enology, phenological observations have been used by Vintners, in 

some regions, since the Medium Age [1]. 

Vegetation Phenology is the study of the time of recurring of remarkable life-cycle 

events of plants and the causes of inter-annual variability timing with regard to biotic 

and abiotic forces. Vineyard phenological data are essential for making good decision 

during many phases of grapegrowing, for example: selecting a vineyard site, designing 

the plantings, planning of labour and determining the best timing of vineyard 

operations such as soil management, irrigation, pest and disease control, canopy 

management and harvesting [2]. Phenological data also provide a basis for correlative 
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studies with climate and meteorological factors to gauche the behaviour of individual 

varieties, for predicting their behaviour in new wine regions and indicator of possible 

climate change [1, 3]. 

Phenological events have traditionally been ground based, with observations 

mainly concerning grape varieties over a limited spatial area and few in-season 

observations. These measurements, generally performed by technical institutions or 

farmers are subjective, pre-disposed to errors as well as time consuming. 

Earth Observation Satellite (EOS) imagery is a cost-effective means for a rapid 

assessment of the vegetative characteristics of large vineyard areas [4, 5, 6]. However, 

remote sensing measurements are still constrained by the discontinuous nature of 

vineyard canopies and architectural differences imposed by shoot positioning trellis. In 

this case mixed pixels are an integration of vine and inter-row space, that are 

interdependent of canopy size (opacity), canopy density (greenness) and inter-row 

dimension. Vineyard canopy can be considered transparent prior to budbreak, rising 

rapidly with leaf growth to a maximum determined by the total leaf area index. Opacity 

remains high until leaf fall. Through the early season each leaf retains full 

photosynthetic capacity, and so canopy greenness at leaf onset is a function only of 

canopy (and understory) opacity. At the end of the growing season, leaf photosynthesis 

is gradually reduced through senescence. 

In the past few years many vegetation indices extracted from hyperspectral 

imagery have been tested for evaluating grapevine vegetation growth and/or 

pigmentation in Mediterranean vineyards [7, 8], but the Normalized Difference 

Vegetation Index (NDVI) is still the most popular [4, 9, 10]. 

Time-series of satellite imagery can provide a synoptic view of vineyard 

vegetation dynamics by measuring surface reflectance at regular time intervals that 

may be used for vineyard management strategies. In general, time-series NDVI data 

obtained by EOS include various noise components such as atmospheric disturbances, 

solar radiation effects, cloud cover, thus noise reduction or fitting a model to observed 

data is necessary before phenological stages can be determined. Tools for such pre-

processing image data include different smoothing processes, for a review see [11, 12, 

13, 14]. 

Time series of different vegetation indices provided by sensors (e.g. MODIS, 

MERIS, AVHRR and SPOT-VEGETATION) with high revisiting rate (8 to 16 days) 

and coarse resolution (250 to 1000m) have been used for monitoring the phenology not 

only in natural ecosystems but also in crops [15, 16]. However, the use of this kind of 

sensors is limited to extensively contiguous vineyard areas [10]. For this reason, we 

specifically confine our study to Douro region, the Port wine region, located in 

Northeast Portugal where the predominant land cover is vineyard with extensive 

contiguous areas. In Douro region grapevines cover approximately 30% of all the land, 

but there are some municipality where the vineyard represents more than 80% of land 

cover. Vineyards in this region are worked by approximately 32000 farmers, each 

owning an average of 1ha under vines, arising extended contiguous areas with vineyard 

[17]. 

The purpose of this work, which is ongoing, is to evaluate the capability of the 

VEGETATION sensor, to provide quality spectral, spatial and temporal data to identify 

and assess the grapevine phenology recorded on the ground. To examine the decadal 

response of satellite information to vineyard phenology variability, a number of 

different NDVI metrics were obtained through smoothed NDVI time series by double 

logistic model. 
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1. Material and methods 

1.1. Study area 

This work was carried out in Douro region, where viticulture, the main activity, takes 

place under particularly rigorous climateric conditions, on stony soil that the large 

majority vineyards are planted in hillsides part of them with steep sloops. The regional 

climate of Douro is Mediterranean, with evident continental influence and marked 

annual thermal contrast with strong and consistent post-flowering vine water and 

thermal stress. 

The vineyard inter-row space ranges between 1.8 to 2.1m, and individual 

grapevine are separated, along the rows, by 1.0 to 1.1m. The planting density ranges 

between 3500 to 5500 vines per hectare. The single or double Guyot and unilateral and 

bilateral cordons with a height of 1.3 to 1.6m are the techniques most frequently used 

for training vines. The red varieties are predominant and the most noteworthy varietals 

are: Touriga Francesa, Tinta Roriz and Tinta Barroca [17]. 

In general, vineyards inter-row are managed with natural or snowed grass. Due to 

the natural limitations in water of the Mediterranean climate, the growth of the grass 

cover are temporary (between November and the end of spring), due to the choice of 

the species sowed or in the case of the natural autumn and winter grasses, through the 

mechanical or chemical control. 

1.2. Test sites 

As the VEGETATION images have a pixel of 1 km
2

, it is important to select only large 

contiguous areas with vineyard. Two suitable test sites, with most of their area 

occupied by vineyards were selected within Douro region: Douro Western Region 

(DWR) and Douro Eastern Region (DER). A detailed representation of the vineyard 

coverage of these two test sites is presented in figure 1. The test sites have 40 (DWR) 

and 18 (DER) pixels (of 1×1km), in two compact groups of contiguous pixels, all with 

80% or more vineyard coverage. The average vineyard occupancy is 95.3% (DWR) 

and 97.6% (DER). 

1.3. SPOT-VEGETATION data 

The ten-day synthesis (‘S10-composited’) dataset from SPOT-VEGETATION was 

used to produce temporal NDVI profiles for the test sites selected. The software CROP 

VGT [18] was used to crop a section from the satellite images with the Douro region. 

The final image set covers a period of 9 years, from 1999 to 2007, with 36 images from 

each year. For each test site, a total of 324 images were available, between January 

1999 and December 2007. 

The VEGETATION sensor acquires data in four spectral bands in the visible and 

near infrared, ranging from 0.43 to 1.75 μm [18]. Values for NDVI, were calculated 

from the extracted pixel values using the relationship [19]: 

( ) ( )

( ) ( )red  infrarednear  

red - infrarednear  

+

=NDVI

   1 

M. Cunha et al. / A Comparative Study of Satellite and Ground-Based Vineyard Phenology70



where ‘near infrared’ and ‘red’ were the reflectance values in the near infrared and red 

waveband respectively. 

As each NDVI image is obtained by merging data from 10 consecutive days, the 

whole site was considered as a unit, instead of using a pixel by pixel approach. This is 

done to prevent misregistration and other sources of errors to contaminate the temporal 

profiles. The average, median and standard deviation values were computed for each 

image/site, using only the valid pixels. 

A number of PCI Geomatics scripts were developed for a full automatic image 

processing in order to extract the NDVI profiles in each test site. 

1.4. Smoothed process and NDVI metrics 

The process of maximum value compositing applied to‘S10-composited’ dataset is not 

sufficient to eliminate all unrealistic variability from NDVI time series [12]. In order to 

minimize undesirable noise in the composite NDVI time series, two widely used 

smoothing procedures were successively applied: an adaptative Savitzky-Golay filter as 

introduced by [20] to remove outlier and spikier observations and followed by the 

adjustment of a double logistic function to get two smoothed NDVI curves that govern 

the grapevine green-up and senescence [15, 16, 21]. The double logistic function 

models the NDVI, as a function of time (t), using seven parameters: 
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where t, is the time variable in day of year (DOY), k is related to the high asymptotical 

value (no dimension) of NVDI, c and d (day
-1

) denote the slopes at the “left” and 

Figure 1. Location of the two test sites with, the details of vineyard coverage. The gray scale corresponds to 

the fraction of pixel occupied by vineyard. DW- Douro Western and DE- Douro East. 
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“right” inflection points (IP), respectively, and IP
L
 and IP

R
 are the dates (DOY) of these 

two points. The NVDI
Bb

 and NDVI
Lf

 are respectively the NDVI values before the 

Budbreak and during the grapevine dormancy after the leaf fall. 

One advantage of using this double logistic function is that the ascendant (green-

up) and descendent (senescent) parts can differ in shape. The parameters k (eq. 2) 

common to both logistic functions, insures continuity between the grapevine 

development and the senescence part of the curve [15]. 

The parameters of the logistic function were estimated by the Levenberg–

Marquardt algorithm, that requires some reasonable initial guess values [22]. 

To examine the decadal response of satellite information to vineyard phenology 

variability, a number of NDVI metrics were obtained by derivatives of the logistic 

model (eq. 2) adjusted for each year. These satellite-derived phenological metrics were 

compared with traditional ground phenological observations. 

1.5. Ground based phenology 

Traditional ground phenological observations for the years 1999 to 2007 were collected 

on a field located at Adorigo (latitude 40º12’N, longitude 8º23’E) within the DWR test 

site. The phenological stages observed for the period 1999 to 2007 are: Bubbreak (Bb), 

Flowering (Fl) and Veraison (Vr) (table 1). No annual information for Harvest (Hv) 

and Leaf-fall (Lf) were made available. 

Table 1. Statistics of vineyard phenological stage at Douro region. 

Statistics Units Bubbreak
1

 Flowering
2

 Veraison
1

 Harvest
3

 Leaf-fall
3

Average DOY 81.4 143.3 207.2 258 303 

Maximum DOY 91.0 151.0 217.0 --- --- 

Minimum DOY 77.0 138.0 201.0 --- --- 

Coff. Variation % 5.5 2.5 2.8 --- --- 

1- 1999 to 2005; 2- 1999 to 2007; 3– information from regional technical institutions. 

2. Results and discussion 

The average temporal NDVI profiles recorded for each decade (10 days) over the 

period 1999 to 2007 were computed for each test site (figure 2). The NDVI time series 

show a similar pattern for the two test sites (R
2

=0.89, n=36, p<0.000). However, DWR 

shows consistently higher NDVI during the active part of grape vegetative cycle, but 

the NDVI values outside this period are not very different (figure 2). Since the vineyard 

varieties and trellis systems are homogeneous between the two test sites, the NDVI 

differences can be related with the amount of rainfall in each test site: 942 mm (DWR) 

against 579 mm (DER). 

The general shape of the Douro region NDVI temporal profiles is very much what 

could be expected for a vineyard phenology and canopy development (figure 2). 

Grapevine budbreak occurs in March, followed by a period of intensive growth 

during which the shoots elongate and produces leaves very rapidly [2]. The rate of 

NDVI increment is very high during a period of 4 weeks after the budbreak, stage and 

then steadily decreases till the veraison. The period where the rate of NDVI start 

decreases occur coincides with the average date of flowering stage. During the 

budbreak period, important variations in the temporal NDVI profiles over the years 
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(figure 2), could be related with the high transparency of the grapevine canopy and the 

soil cover differences among years. 

The NDVI temporal profile reaches a peak around the grapevine veraison stage, 

decreasing during the rest of the summer (figure 2). With the senescence and the 

yellowing of leaves, the photosynthetically inactive elements in the canopy intercept 

but do not absorve the radiation for photosynthesis [23]. Then the NDVI decreases. 

After the harvest period, with the rainy autumn the NDVI increases during a short 

period and then decreases due to the canopy transparency after the leaf-fall. 

The parameters and statistics of logistic model adequacy are summarized in table 2. 

The coefficient of determination (R
2

) of the logistic function fit (table 2) was always 

greater than 0.94 (p<0.000). 

Table 2. Descriptive statistics of parameters values from fits of logistic model to temporal behaviour of 

NDVI of grapevines in DRW test site. 

R
2

NDVI
Bb

 K c IP
L
 NDVI

Lf
 d IP

R

Statistics

[  ] [  ] [  ] day
-1

 DOY [  ] day
-1

 DOY 

Average 0.96 0.365 0.181 0.88 143.2 0.320 0.83 253.1 

Maximum 0.99 0.453 0.338 1.13 149.2 0.407 3.37 299.8 

Minimum 0.94 0.267 0.097 0.47 131.9 0.249 0.07 205.4 

Cv (%) 2.3 15.7 42.8 24.3 3.7 18.3 139.6 10.9 

R2- Coefficient of determination 

A number of different NDVI metrics were obtained for each year through the 

transitions dates correspond to the times at which the rate of change in curvature of the 

logistic model (eq. 2) exhibit local minima or maxima. Then the first (δ
1
(t)) and second 

(δ
2
(t)) derivatives of the smoothed NDVI curve (eq. 2) are calculated, which represent 

the change and the rate of change in curvature of the logistic model respectively (figure 

3). Vineyard “canopy green-up” (Gu) was considered when a maximum change rate (δ
2

maximum) and a positive change (δ
1
>0) occur. The “full canopy” (Fc) was considered 

when a negative change rate (δ
2
<0) and a turning point from a positive change to a 

Figure 2. Average NDVI temporal plots (median 1999-2007) for the 2 regional test sites and ground based 

phenological stages (pheno): Bb– Budbreak, Fl– Flowering, Vr– Veraison, Hv– Harvest and Lf- Leaf fall. 

Vertical bar are the half part of the 95% interval confidence for the mean. 
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negative [(δ
1
(t) × (δ

1
(t+1)]<0 occurs (figure 3). The parameters of logistic model for 

the year 2000 (figure 3) are: NDVI
Bb

=0.255; K=0.274; c=0.274; IP
L
=155.6; 

NDVI
Lf

=0.357; d=0.360; IP
R
=288.6; coefficient of determination (R

2

)=0.97. The 

values of NDVI metrics obtained by this procedure are summarized in table 3. 
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Figure 3. Original (VGT) and smoothed temporal NDVI profiles by the Savitzky-Golay (SG filter) filter and 

logistic models (Logistic) and rate of changes (δ
2
(t)) and changes ((δ

1
(t)) in curvature of the logistic model 

and respective NDVI metrics: Gu- Green-up; IP
L
 and IP

R
- “left” and “right” inflexion point; Fc- Full canopy; 

Dm- Dormancy. Groun based phenological stages (Pheno): Bb– Budbreak, Fl– Flowering, Vr– Veraison, 

Hv– Harvest and Lf- Leaf fall. All the satellite and phenological data refers to the year 2000. 

The significant negative correlation between NDVI
Bb

 and budbreak date (r=-0.88; 

n=7; p<0.001) could be interpreted as a response of NDVI to inter-row cover crop 

vigour. High NDVI
Bb

 before the budbreak period, generally characterised by vigorous 

vegetation on the inter-row spacing, could be related with high soil moisture at this 

period and/or high temperatures. Since, soil water content is high at budbreak due to 

heavy winter rainfall, it does not restrict vegetation growth early in the season, thus it is 

reasonable to suppose that temperature increase during this period could induce 

drought and advance budbreak. There is ample evidence that budbreak date in 

Mediterranean climate hastened by higher temperature during the latter part of winter 

[2, 23]. 

Table 3. Statistics of NDVI metrics extracted from logistic function 

Statistics Green-up Full Canopy Dormancy 

DOY

Average 128.1 218.1 259.9

Coef. variation (%) 5.8 4.4 9.7

NDVI

Average 0.360 0.470 0.428

Coef. variation (%) 8.7 5.1 9.7

The flowering date was 143 DOY and ranged from 138 to 151 DOY. The 

relationship between the left inflexion date extracted from the logistic model and 

flowering date over the studied years are presenting in figure 3. The satellite derived 

IP
L
 NDVI metrics was found to be significantly correlated with grapevine flowering 

date (r=0.81; n=9; p<0.001). For the period 1999 to 2007, with 9 annual data records, 
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descriptive statistics show that 89% of the cases had differences between ground-based 

vineyard phenology and satellite-derived flowering (IP
L
) below 3 days and the largest 

deviation was 6.5 days (figure 4). The field measurements is always later than the 

flowering satellite based. 
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Figure 4. Relationship between ground based vineyard flowering date (“Pheno”) and left inflexion date (IP
L
)

extracted from the logistic model over the studied years. 

The flowering date marks the transition from the vegetative to the reproductive 

grape physiological process and also the star of fruit set period, a crucial stage for grape 

modelling and vineyard operations [23]. On the other hand, this date is of particular 

interest since it determines any advance or delay in the grape vine cycle. For example, 

the date of flowering is important to determine the date of harvest, because there is a 

constant number of temperature units (mean temperature >10ºC) accumulated during 

the days between flowering and harvest [2, 23]. 

The satellite derived full canopy date (Fc) was found to be significantly correlated 

to the veraison date (r=0.87; n=7; p<0.02). At veraison stage grapevine canopy is fully 

developed and berry ripening processes occur. While berries ripen, the shoot stems 

lignify and becomes canes, the buds become dormant, and some basal leaves abscise [2, 

23].

The right inflexion date (IP
R
) extracted from the logistic model and the dormancy 

(Dm) NDVI metrics, seem to occur in the similar date of harvest and leaf fall. However, 

currently no annual phenological information is available to supports this relationship. 

3. Conclusion 

Ten-day VEGETATION images from 1999 to 2007 were used to examine spatial 

patterns in the NDVI and their relationship with ground based observation of grapevine 

phenology. 

Despiste challenges posed by the discontinuous nature of vineyard canopies, 

according to results obtained in the Douro region, the phenology based on EOS images 

would be a valuable tool for vineyard monitoring. The VEGETATION sensor has 

proven very useful for vineyard monitoring despite the low spatial resolution of the 

M. Cunha et al. / A Comparative Study of Satellite and Ground-Based Vineyard Phenology 75



images. Preliminary results suggest a great sensibility of satellite derived phenological 

metrics to detect flowering and veraison, that are crucial phenological phases, 

respectively for the grapevine reproductive and maturity process. 

The NDVI profile is appropriated for describing general characteristics of the 

vineyard phenology and canopy development. Refinements to the model can allow 

capturing variations within the growing season due to infestation of insects, and 

exceptional drought or temperature which can cause diminished photosynthetic activity, 

leaf discoloration. However, much more field work in different regions and vineyard 

characteristics (mostly the inter-row space), is need before conclusions can be drawn. 

Satellite data provides an efficient procedure to assess at grape phenology since it 

is less time consuming and leads to fewer errors than the traditional phenological 

observations actually used in viticulture. An operational phenological tool based on 

remote sensing data can be implemented for decision support in vineyard management. 
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