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ABSTRACT

A general framework for testing the quality of the segmentation of a multi-spectral satellite image is
proposed. The method is based on the production of synthetic images with the spectral characteristics
of the image pixels extracted from a signature multi-spectral image. The knowledge of the location of
objects in the synthetic image provides a reference segmentation, which allows for a quantitative
evaluation of the quality provided by a segmentation algorithm. The Hammoude metric and three
external similarity indices (Rand, Corrected Rand, and Jaccard) were chosen to perform this evaluation,
but other metrics can also be used. The proposed methodology can be used for any type of satellite
image (or multi-spectral image), set of land cover types, and segmentation algorithms.

A practical application was carried out to illustrate the value of the proposed method. A SPOT
satellite image was used to extract the spectral signature of 8 land cover types. Three test images were
produced using the 8 land cover classes and two different 5 class sub-sets. The segmentation results
provided by a standard algorithm were compared with the reference or expected segmentation. The
results clearly indicate that the quality of a segmentation obtained from a multi-spectral image not only
depends on the geometric properties of the objects present in the image, but also on their spectral
characteristics. The results suggest that a specific evaluation should be carried out for each particular

experiment, as the segmentation results are very dependent on the choice of land cover types.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-spectral images acquired by Earth Observation Satellite
(EOS) are increasingly being used on a variety of applications and
scientific fields. Over the last decade, an alternative approach to
the standard per-pixel analysis has evolved to extract meaningful
information from EOS images. Instead of focusing on individual
image pixels, the object-based image analysis approach consists of
partitioning an EOS image into meaningful image-objects, and
assessing their characteristics through spatial, spectral, and
temporal scale (Hay and Castilla, 2006). One of the reasons for
the development of object-based methods has been the dramatic
increase in commercially available high-resolution digital remote
sensing imagery, with spatial resolutions of 5.0 m and finer (Hay
et al.,, 2005). Also it has been recognised that the image pixel is not
a “natural” element of an image scene. The object-based approach
has been used in several remote sensing application areas, such as
forest monitoring (Dorren et al., 2003; Hay et al, 2005 and
Desclee et al., 2006), land cover mapping (Margal et al., 2005 and
Clevers et al., 2007), and change detection (Im et al., 2008).
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A common element of all object-based image analysis systems
is the segmentation stage, where the image is partitioned in a
number of objects (or segments), which is clearly a critical stage of
the whole process. If the segmentation fails to identify as an
object a given element present in the image, the subsequent
stages will generally be unable to recognise or to classify this
element. It is generally accepted that only a few of the various
image segmentation methods that have been used in image
analysis lead to qualitatively convincing results, which are robust
and applicable under operational settings (Baatz and Schape,
2000). Although the correct evaluation of the segmentation
algorithm used is an important aspect of any object-based image
analysis system, there is no established standard procedure for
the evaluation of segmentation results (Neubert et al., 2008). The
most common approaches are based on discrepancy measures
between the segmentation result and a reference segmentation
(Carleer et al., 2005). There are some examples of EOS image
segmentation evaluations, using reference objects identified
manually (Meinel and Neubert, 2004 and Moller et al., 2007),
but it is usually difficult to have abundant reference segmentation
data for EOS images.

The purpose of this work is to present a framework for the
evaluation of image segmentation algorithms based on the
production of synthetic multi-spectral images. These images are


www.sciencedirect.com/science/journal/cageo
www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2008.11.008
mailto:andre.marcal@fc.up.pt
mailto:andre.marcal@fc.up.pt
mailto:andre.marcal@fc.up.pt

A.R.S. Margal, A.S. Rodrigues / Computers & Geosciences 35 (2009) 1574-1581 1575

produced with controlled characteristics, both spatially and
spectrally, simulating any satellite sensor and set of land cover

types.

2. Segmentation evaluation

Image segmentation is the process of partitioning an image
into a set of non-overlapping regions, whose union is the entire
image. The objective of the image segmentation stage is usually to
identify the object of interest in the image, separating it from the
background, or alternatively to divide the image in a small
number of segments or objects. However, in the case of EOS
images, the number of objects present in the image is normally
very large. This brings a problem of evaluating the segmentation
result, as the commonly used metrics, such as the true detection
rate, average distance or the Hausdorff distance are mostly
suitable for the case of a single interest object (Chalana and
Kim, 1997). Furthermore, there is usually no reference segmenta-
tion to be used for comparison. The proposed methodology based
on synthetic images provides a reference (expected) segmenta-
tion, and makes use of the Hammoude metric, which is a standard
metric that does not favour under-segmentation or over-segmen-
tation, and the external similarity indices Rand, Corrected Rand,
and Jaccard to evaluate quantitatively the segmentation result.
These three indices were chosen because they are all based on the
same variables that can be computed efficiently, even for very
large images, as it is often the case of EOS images.

2.1. Hammoude metric

The Hammoude metric allows for an evaluation of the
similarity between two segmentations proposed for an object
(X and Y) by comparing the number of common and non-common
pixels in the two segmentations (Hammoude, 1988). The
Hammoude metric is computed by

H=[#XUY)— (XNY)]/#XUY) 1)

where X and Y are two binary representations of the segmented
object, and the operator # returns the “number of pixels ON” of a
binary image. The Hammoude metric has values between 0 and 1,
with a value of 1 occurring when there is no intersection between
segmentations (completely dissimilar), and a value of 0 when the
two segmentations are equal. In order to have consistency
between the various parameters used to compare segmentations,
the inverted Hammoude index (H’) is also used, where H = 1-H
(H =1 for a perfect match and H' = 0 for two non-intersecting
objects).

2.2. External similarity indices

The problem of comparing two segmented images can also be
seen as a problem of comparing two classifications (data
partitions), where each object (or segment) is assigned a class
label. The similarity between two segmented images can thus be
evaluated using external indices of cluster validity, which access
the degree to which two classifications of the data agree (Dubes,
1987).

The external indices used here are the Rand coefficient (Rand,
1971), the Corrected Rand coefficient (Hubert and Arabie, 1985),
and the Jaccard coefficient (Dubes, 1987). The computation of
these indices is based on four variables (a, b, ¢, and d) that are
obtained by inspecting the labels assigned to all pairs of patterns
(pixels) in the dataset (image). Each image pixel (i) has two class
labels, X(i) and Y(i), corresponding to the object numbers assigned
by segmentations X and Y. The variable a is computed by counting

the number of pixel pairs that have the same class in X and the
same class in Y Eq. (2a). The variable d corresponds to the number
of pixel pairs with different labels in both X and Y Eq. (2d), while b
and c refer to pixel pairs that are assigned the same label in one of
the classified images and different labels in the other Egs. (2b) and
(2c). The four values (a, b, ¢, and d) sum is the number of ordered
pairs of pixels: atb+c+d = N(N—1)/2, where N is the total number
of image pixels.

a=#( ) :i>j, X(O)=X(@., YO)=Y()) (2a)
b=#{G j):i>j, X0 =X(@), YDO#Y(} (2b)
c=#{(1 ) :i>j, XO#X({, YO =Y() (20)
d=#{{, j):i>j, XO#X(), YD#Y(). (2d)

The Rand coefficient (R) is the relative number of pixel pairs
that are treated in the same way under both classifications
(Dubes, 1987), and is computed by

R=(a+d)/(a+b+c+d. (3)

The Jaccard coefficient (J) is also based on the relative number of
pixel pairs that are treated in the same way under both
segmentations, but discounting the situations where both
classifications assign the two pixels with different classes (d).

J=a/(a+b+o). (4)

Both the Rand and Jaccard indices vary between 0 and 1, with 1
corresponding to perfectly matched classifications. The Corrected
Rand coefficient (CR) is a modified version of the standard Rand
index, proposed by Hubert and Arabie (1985), where the range of
values (0-1) is adjusted so that a fully random classification
would correspond to a value of 0. The Corrected Rand coefficient is
computed by Eq. (5), where R4 is the maximum possible value
for R (Rmax=1) and Rey, is the expected value of R under
randomness (Hubert and Arabie, 1985). In order to have a range
between O and 1 for CR, negative values can be truncated to 0.

CR = (R - Rexp)/(Rmax - Rexp)- (5)

As the patterns considered are the image pixels (N), which
is usually a large number, the very large number of pixel pairs
(~N?/2) could cause computational problems. However, Hubert
and Arabie (1985) presented a combinatorial approach to the
computation of variables a, b, ¢, and d that is computationally very
efficient, making these external similarity indices suitable for
large images with any number of classes, such as the labelled
images produced by segmentation of EOS images.

3. Synthetic image production

A methodology to produce synthetic test images was devel-
oped to simulate a scenario with land parcels of various sizes,
belonging to a number of cover types. Initially, a base image is
produced with rectangular areas (parcels) assigned to different
class labels. A multi-spectral signature image is used to obtain
multi-spectral pixels belonging to each land cover type, and
together with the base image produce the final multi-spectral
synthetic image.

3.1. Base image

A base image is produced given the following parameters: the
number of land cover types (t), the size of the smallest unit (u), the
range of sizes (s) and a repetition parameter (r). The base image
has a total of r’s? parcels of rectangular shape, with sizes from 1x%1
to sxs units. There are 2 single unit parcels (of u by u pixels), and
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Fig. 1. Synthetic base images (u =4, s =4, and r = 2) with 4 and 5 classes, t = 4 (left) and t = 5 (centre), and top left section of corresponding reference segmentation

image (right).

generally r? parcels of i*j units, with i, j=1,..., s. It is worth
noting that two neighbouring parcels always belong to different
classes.

As an example, Fig. 1 shows two base images, with u = 4, s = 4,
and r = 2, one with 4 classes (left) and the other with 5 classes
(centre). The smallest squares on the top left section of this
example have 4 by 4 pixels (1 unit), while the largest ones on the
lower right part of the image have 16 by 16 pixels (4 by 4 units,
s = 4). In this case the repetition parameter (r) is 2, which means
that there are 4 parcels of each size (r?). The whole images are 80
by 80 pixels, with a total of 64 different parcels. There are 4 single
unit parcels (4 by 4 pixels), and generally 4 parcels of i*j units,
withi,j=1,..., 4.

3.2. Multi-spectral synthetic image

To produce a multi-spectral synthetic image from the base
image, a signature image is required with training areas identified
for each land cover type. The multi-spectral synthetic image is
produced, with the same number of bands as the signature image,
by replacing each pixel in the base image by a pixel vector selected
randomly from the corresponding training area. An example is
presented in Fig. 2, where four land cover types were identified in
a 3 band (RGB true colour) signature image. The synthetic multi-
spectral image was produced using the base image of Fig. 1, with
u=4,s=4,r=2,andt=4.

3.3. Evaluation of the segmentation results for the synthetic images

The purpose multi-spectral synthetic image is to evaluate the
performance of a segmentation algorithm. The expected or ideal
segmentation consists of identifying each parcel as an object.
A reference segmentation image is created by assigning a different
object label to each parcel in the base image. A section of the
reference segmentation for the base image used in the previous
sections (u =4, s =4, and r = 2) is presented in Fig. 1 (right). In
this example, the reference segmentation has 64 objects. The
segmentation result (Y) obtained from the application of a
segmentation algorithm to the multi-spectral synthetic image is
compared with the reference segmentation (X).

For the Hammoude metric, a value of Hm is computed for each
object m of X, by comparing it with the object n of Y that contains
the central pixel of m. Average values of H are computed for all
parcels of the same size and for all objects belonging to the same
class, as this information is available in the base image.

Fig. 2. Signature image (left) with 4 land cover types (centre) and resulting
synthetic image (right).

For the external similarity indices, the segmentation images
are divided in sub-images, corresponding to the areas where the
objects have the same size in X. The Rand, Corrected Rand and
Jaccard indices are computed for each sub-image.

As there is normally no difference between the horizontal and
vertical directions, the average values are obtained for parcels of
size i*j and j*i (e.g. no distinction is made between parcels of 2 by
1 and 1 by 2 units). The average indices computed are based on r?
objects for square parcels, and 2*r? objects for the other parcel
sizes.

4. Experimental setup

A practical experiment was carried out to illustrate the
usefulness of the proposed method. Three multi-spectral syn-
thetic images were initially created, and then segmented using the
multi-resolution algorithm in eCognition 2.1 software (Baatz et al.,
2001). The results provided by the segmentation software were
compared with the expected segmentation and analysed using the
proposed indices.

4.1. Synthetic image characteristics

Two base images were created with u = 3,s = 8,and r = 5, one
with t =5 and another with t = 8. These images are 540 by 540
pixels, with a total of 1600 parcels. The smallest parcels of 1 by 1
units are 3 by 3 pixels, and the biggest, of 8 by 8 units, are 24 by
24 pixels. There are 25 parcels for each of eight square sizes
(between 1 by 1 to 8 by 8 units) and 50 rectangular parcels of i by j
units (with i=2 to 8, j=1-7, and i>j). In total there are 36
different parcel sizes.
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Fig. 3. Signature satellite image with training areas for 8 land cover types.

Table 1
Land cover classes used for each test image (TI8—8 classes, TI5d—5 most different
classes, and TI5s—5 most similar classes).

Class Class name TI8 TI5d TI5s

ID

1 Irrigated permanent semi-natural Yes Yes Yes
mountain meadows

2 Non-irrigated permanent semi- Yes No Yes
natural mountain meadows

B Evergreen forest Yes Yes No

4 Deciduous forest Yes Yes Yes

5 Communitarian pastures Yes No Yes

6 Annual crops Yes No Yes

7 Sand Yes Yes No

8 Water Yes Yes No

A SPOT 5 HRG satellite image covering a mountainous
area around Montalegre (Portugal) was used as signature image.
The SPOT image has 4 spectral bands in the visible and near
infrared parts of the electromagnetic spectrum, and a spatial
resolution of 10ms.! A total of 8 land cover types were used,
with training areas identified manually in the signature image.
The section of the SPOT satellite image is presented in Fig. 3
as a RGB colour composite of bands 3, 2, 1 (near infrared, red,
and green). In this figure, two sub-windows where the training
areas were identified are enlarged, and the training areas
used are overlaid on the greyscale versions of these sub-
windows. The details of the land cover classes used are
presented in Table 1. Two sub-sets with 5 out of the 8 classes
were also considered, one where the 5 most different classes were
selected (5d) and another with the 5 most similar classes (5s).
The three sets of classes were used, together with the base image,
to produce three synthetic test images (named TI8, TI5d, and
TI5s). The test images have 4 bands (as the signature satellite
image) and are presented in Fig. 4 as RGB colour composites of
bands 3, 2, 1.

4.2. Image segmentation

The 3 test images were segmented using the multi-resolution
segmentation algorithm, available in eCognition 2.1 software,
with the default parameters: scale—10, color—0.8, shape—0.2,
smoothness—0.9, and compactness—0.1 (Baatz et al., 2001).
Image TI5s was also segmented with different values for the
scale parameter (4, 6, 8, 10, 12, 14, 16, 18, and 20), with the other
parameters kept fixed at the default values. The resulting
segmentations were converted to raster, and the image pixels
labelled with the corresponding object number.

1 SPOT Image. http://www.spot.com.

5. Results

Using the default parameters, the eCognition software seg-
mented the test images in 1563 (TI8), 1596 (TI5d), and 1545 (TI5s)
objects, less than the expected (ideal) number of 1600 objects.
Fig. 5 shows a section of the segmented images produced, TI8
(left), TI5d (centre), and TI5s (right), corresponding to an area
of the base image with parcels of 6 by 1, 6 by 2, and 6 by 3 units
(25 parcels of each size). In this section, the results obtained for
TI5d perfectly match the reference segmentation image, unlike
the other two results. For TI8, about half of the parcels are
segmented exactly, while for the other half there are a few pixel
differences between the two segmentations. For TI5s, there are
considerable differences between the segmentation produced by
the software and the reference segmentation. In two instances
two parcels were segmented into a single object.

5.1. Hammoude metric

The Hammoude metric (H) was computed for each object in
the reference segmentation, comparing it with the conjugate
object in the segmentations produced by eCognition. The average
values of H were: 0.0430 for TI8, 0.0025 for TI5d, and 0.0820 for
TI5s.

The colours assigned to each object in Fig. 5 are the RGB
average of its pixels, with a specific RGB colour composite and
histogram enhancement assigned to each image. An inspection of
this figure not only reveals that the set of classes selected to
produce the synthetic image influences the results, but also that
within each single image there are classes that are more likely to
be correctly segmented than others. The average value of H was,
therefore, computed for each land cover class, for the three test
images, with the results presented in Table 2. There are two
classes that have a perfect score, water and sand, which are
spectrally very different than the remaining classes. For the other
classes, the value of H is higher in the presence of more spectrally
different classes, which results in generally better scores for all
classes in TI5d, followed by TI8 and by TI5s.

The values of H for individual objects were also averaged in
terms of the parcel size. The results are presented in Table 3 for
TI8 and in Table 4 for TI5s. For TI5d, the average values of H were
null for all parcel sizes, except the smallest sized parcels (1 by 1
unit) that had a value of H = 0.1600.

5.2. External similarity indices

The Rand (R), Corrected Rand (CR), and Jaccard (J) indices were
computed for the whole test images and also for all sub-images
corresponding to the various parcel sizes.

As previously stated, the segmentation of TI5d was perfect in
all but the smallest parcels. For the sub-window corresponding to
these parcels (of 1 by 1 units), the similarity indices between the
two segmentation images were R = 0.9872, CR = 0.8555, and
J = 0.7576. All other sub-windows had a perfect score (1), thus the
overall values for TI5d were very high: R = 0.9998, CR = 0.9977,
and | = 0.9962.

For TI8, the overall values for the external similarity indices
were: R = 0.9977, CR = 0.9767, and ] = 0.9623. The values of R are
all above 0.99 except for parcels of 1 by 1 (R =0.9488) and 2 by 1
units (R =0.9827). For most sizes the value of R is even above
0.999. The results for the various sub-windows of TI8 are
presented in Table 5 for CR and in Table 6 for J.

For TI5s, the overall values for the external similarity indices
were: R = 0.9941, CR = 0.9549, and ] = 0.9348. Again the values of
R are all above 0.99, except for the sub-windows with the smallest
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Fig. 4. Synthetic test images TI8 (left), TI5d (centre), and TI5s (right), RGB colour composites of bands 321.

Fig. 5. Detail of images produced by segmentation of TI8 (left), TI5d (centre), and
TI5s (right).

Table 2
Average Hammoude metric for each land cover class and image tested.

Class ID 8 5d 5¢c

1 0.0279 0.0047 0.0445
2 0.1142 2 0.1504
3 0.0080 0.0016 4

4 0.0944 0.0063 0.1083
5 0.0526 2 0.0522
6 0.0468 a 0.0546
7 0.0000 0.0000 2

8 0.0000 0.0000 a

¢ Class not used.

Table 3
Average Hammoude metric for parcels sized i by j units, for TI8.

Sizeij 1 2 3 4 5 6 7 8

1 0.4653

2 0.2523 0.1231

3 0.1400 0.0261 0.0174

4 01397 0.0224 0.0152 0.0131

5 0.0588 0.0213 0.0153 0.0105 0.0181

6 0.0563 0.0222 0.0138 0.0115 0.0080 0.0081

7 0.0562 0.0180 0.0095 0.0087 0.0075 0.0086 0.0134

8 0.0353 0.0264 0.0143 0.0149 0.0117 0.0081 0.0117 0.0041

parcels: 0.8816 (for parcels of 1 by 1 unit), 0.9276 (2 by 1), 0.9797
(3 by 1), and 0.9874 (4 by 1). The results for the various sub-
windows of TI5s are presented in Table 7 for CR and in Table 8 for J.

5.3. Evaluation of a segmentation parameter

The evaluation of one parameter of the segmentation algo-
rithm (the parameter scale) was done using the proposed method
for TI5s. The number of objects produced by the segmentation
process greatly varies with values assigned to the scale parameter,
from 1087 (scale = 20) to 25,990 objects (scale = 4). The closest

Table 4
Average Hammoude metric for parcels sized i by j units, for TI5s.

Sizeij 1 2 3 4 5 6 7 8
1 0.7147

2 0.5857 0.1959

3 0.3183 0.0853 0.0306

4 0.1972 0.0582 0.0315 0.0328

5 0.0635 0.0364 0.0220 0.0190 0.0210

6 0.0819 0.0507 0.0214 0.0203 0.0188 0.0155

7 0.0773 0.0477 0.0173 0.0247 0.0135 0.0555 0.0485
8 0.0784 0.0254 0.0223 0.0260 0.0162 0.0165 0.0396 0.0466
Table 5

Average Corrected Rand coefficient for parcels sized i by j units, for TI8.
Sizeij 1 2 3 4 5 6 7 8
1 0.5868

2 0.8142 0.9194

3 0.8906 0.9988 0.9992

4 0.9187 0.9988 0.9994 0.9997

5 0.9768 0.9988 0.9993 0.9998 0.9992

6 0.9589 0.9986 0.9995 0.9998 0.9999 0.9999

7 0.9596 0.9994 0.9998 0.9997 0.9999 0.9998 0.9989

8 0.9963 0.9990 0.9993 0.9995 0.9993 0.9997 0.9995 1.0000
Table 6

Average Jaccard coefficient for parcels sized i by j units, for TIS.

Sizeij 1 2 3 4 5 6 7 8
1 0.4386

2 0.6993 0.8568

3 0.8119 0.9976 0.9985

4 0.8556 0.9978 0.9988 0.9993

5 0.9573 0.9977 0.9987 0.9996 0.9985

6 0.9270 0.9974 0.9991 0.9996 0.9997 0.9998

7 0.9282 0.9988 0.9996 0.9994 0.9998 0.9997 0.9978

8 0.9929 0.9980 0.9987 0.9991 0.9987 0.9994 0.9991 1.0000

to the reference value occurs for the default value of 10 (1545
objects). The global indices also vary considerably with this
parameter. The best value of H is 0.0821 for scale = 10 and of CR is
0.9910 for scale = 8.

The average value of H for image sub-windows with parcels of
2x2,4x4,6x6 and 8 x 8 units is presented in Fig. 6. The dotted
line is the global value of H. The plot shows that the best choice
for the scale parameter varies with the parcel size: 8 for parcels of
2 x 2 units, 10 or 12 for parcels of 4 x4 and 16-20 for larger
parcels. These results clearly show a strong relationship between



A.RS. Marcal, A.S. Rodrigues / Computers & Geosciences 35 (2009) 1574-1581

Table 7
Average Corrected Rand coefficient for parcels sized i by j units, for TI5s.

Sizeij 1 2 3 4 5 6 7 8

0.3625
0.5178
0.7890
0.8613
0.9730
0.9724
0.9731
0.9543

0.9127
0.9389
0.9928
0.9972
0.9761
0.9976
0.9988

0.9980
0.9974
0.9993
0.9990
0.9992
0.9988

0.9978

0.9995 0.9996
0.9994 0.9993
0.9989 0.9998
0.9980 0.9997

0.9998
0.9959 0.9968
0.9996 0.9972 0.9973

0ONOU A WN —

Table 8
Average Jaccard coefficient for parcels sized i by j units, for TI5s.
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the optimum value for the scale parameter and the size of objects
of interest in the image.

5.4. Discussion

The results presented in the previous sections allow for a
number of considerations to be made. The first is that there is a
very strong dependence of the segmentation quality with the
spectral characteristics of image-objects. This is not surprising, as
most of the decisions on object separation are based on the
spectral signature of image pixels. This is, therefore, an issue that
should be taken into consideration in practical applications of EOS
image segmentation, as land cover types with closer spectral
signatures are much more likely to be merged into unified objects
than distinct land cover types. The segmentation result produced

Sizeij 1 2 3 4 5 6 7 8 for TI5d was almost perfect, as the 5 classes are spectrally very
! 02525 distinct, but the results for the other test images were not so good.
5 03834 0.8459 It is, however, worth noting that classes were deliberately chosen
3 0.6669 0.8901 0.9961 to provide a challenging setting, with only two clearly distinct
4 07711 0.9862 0.9951 0.9958 land cover types (water and sand).
5 09508 09946 0.9986 0.9991 0.9992 The segmentation result obviously depends on the object size
g WELE  QEEE1  QEEEl QSEEHS O2EHS  @:RED and shape. There is a clear relationship between the score of H, R,
7 09511 09953 09985 0.9978 0.9996 0.9922 0.9938 CR. and | with th I si ith h b : hieved
8 09196 09978 09978 09961 09994 09992 09946 0.9949 » and J with the parcel size, with much better results achieve
for larger objects. This can be confirmed in the plots of Fig. 7. In
Fig. 6. Average Hammoude metric for selected sub-sections of TI5s versus scale parameter.
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Fig. 7. Values of R, J, CR and H' for square parcels of x by x units (left) and x by 1 units (right), for TI5s.



1580 A.RS. Margal, A.S. Rodrigues / Computers & Geosciences 35 (2009) 1574-1581

these plots, the values of H, R, CR, and J are presented for squared
parcels as a function of their size (plot on the left) and for
rectangular parcels of x by 1 units as a function of x (right), both
for TI5s. The H, CR, and J values follow similar trends, with much
less variability exhibited by R. One parameter that can
characterise the shape of a parcel is the ratio between interior
and border pixels (rys). For example, for a single unit parcel of 3 by
3 pixels, there is only 1 interior pixel and 8 pixels on the border,
thus the value of ry is 0.125. In the plots of Fig. 7, not only the area
increases with the scale parameter x (x by x or x by 1 units), but
also the values of ry,. Comparing groups of parcels with
approximately the same area, for example, 8 by 1, 4 by 2, and
3 by 3 or 8 by 2, 5 by 3, and 4 by 4. This analysis reveals that the
ryp Tatio seems to be more important than the parcel area in
the segmentation performance. This is again not a surprise, as the
segmentation errors occur mostly in the edges of objects due to
neighbouring objects with close spectral signatures.

The Rand index is not very useful, as almost all sub-windows
are rated highly, reducing the capability to distinguish between
the various results. All other indices (H, CR, and J) provide a
valuable quantification of the segmentation results, which permit
to evaluate the performance of a segmentation algorithm in terms
of objects shape and size. The Hammoude metric has the
advantage of being computed for each individual object in the
reference segmentation, allowing for an overall evaluation of
the segmentation performance for each land cover type. It is
possible to modify algorithms used to compute the external
similarity indices to do a similar type of analysis by creating
multiple sub-windows using the class information from the
base image.

One of the main advantages of the similarity indices as a tool to
evaluate segmentations is the fact that they are easy to compute,
even for images with a very large number of objects. However,
they are based on raster data, which can cause some limitations as
some segmentation algorithms produce vector data that smooth
(interpolate) the object outlines. A direct vector to raster
conversion in these cases would result in a loss of information.
This problem can nevertheless be prevented by using a higher
resolution reference image in the vector to raster conversion.

6. Conclusions

A methodology to evaluate the performance of a segmentation
algorithm applied to a multi-spectral satellite image was
proposed. The approach is based on the production of multi-
spectral synthetic images, reproducing the spectral properties
present in a real satellite image, but with controlled spatial
characteristics of the image-objects. This overcomes one of the
main limitations in the evaluation of segmented satellite images,
which is the lack of a reference segmentation.

The methods used to compare segmentations were the
Hammoude metric and three external similarity indices (Rand,
Corrected Rand, and Jaccard). The information provided by all
these indices was consistent, but the Rand index was found to
have a very limited range on the tests performed. The Hammoude
metric is more convenient to evaluate the performance for distinct
land cover types, while the similarity indices are more effective
for parcel size evaluation. The Jaccard index has the advantage of
being the easiest to compute.

The experiences carried out clearly revealed that the segmen-
tation result obtained for a multi-spectral image not only depend
on the geometric properties of objects present in the image, but
also on their spectral characteristics. In fact, the selection of land
cover types was found to be the single most important factor that
affects the segmentation results. From the geometric point of

view, the ratio between the number of interior and border pixels
of objects was found to be the most meaningful parameter
affecting the segmentation performance. The experiment with
different values assigned to the scale parameter illustrates how
the proposed method can be used to select the optimum values
for the segmentation algorithm parameters, for a specific EOS
image dataset. The tests carried out were simply done to illustrate
the potential of the proposed method, and cannot be seen as an
evaluation of a specific segmentation algorithm.

The methodology proposed can be used for any type of satellite
image (or other type of multi-spectral image), set of land cover
classes, and segmentation algorithm. It can also be used to fine
tune the configuration parameters present in most segmentation
algorithms to achieve the best results for a specific objective.
Although the synthetic images reproduce the spectral character-
istics of land cover types on real EOS images, there will be always
limitations due to the fact that it is not possible to predict all land
cover types and mixtures present on real EOS images. The
addition of other metrics in the future can improve the potential
of the proposed framework for the evaluation of multi-spectral
image segmentation algorithms.

The software developed to create synthetic images and to
compute the Hammoude metric and external similarity indices is
freely available at www.fc.up.pt/sitef. The images used in this
paper are also available in that web site.
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