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EXAMPLE: MECHANISM OF ACTIVATION OF
PLP-DEPENDENT ENZYMES



PLP-Dependent Enzymes

PLP is a cofactor that plays a vital role in human physiology and has associated over
3% of all enzymes, comprising over 140 different enzymatic activities.
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COMPUTATIONAL DETAILS



Computational Details
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Cluster Model

CLUSTER MODEL =
Substrate +
First shell of residues (at least).
Full QM, 100-200 atoms

Theoretical Level -DFT (108 atoms)

MO06 / 6-31G(d) &

Geometry 53 vp/6-31G(d)
MO06/6-311++G(3df,3pd) &
MO06-2X/6-311++G(3df,3pd) &

Energy

B3LYP/6-311++G(3df,3pd) &
IEFPCM (e=4)

Ornithine Decarboxylase

\\/// o

J Am Chem Soc, 129, 1378, 2007 J Chem Theory Comput, 7, 1177, 2011 Chemistry, 15, 4243, 2009



QM/QM Model
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J Phys Chem B, 114, 12972, 2010. J Chem Theory Comput, 6, 2770, 2010. Acc Chem Res, 41, 689, 2008



QM/QM Model

Outer Layer

\ 4

QM/QM MODEL
8-10 A around substrate.
Two-level QM for geometry.
One-level QM for Energy.

SINGLE POINT ENERGY

Theoretical Level

High Level  MO06 / 6-311++G(3df,2pd)

Low Level B3LYP/ 6-31G(d) + IEFPCM (e=4)

GEOMETRY OPTIMIZATION

Layer Theoretical Level N2 atoms

High Level B3LYP/ 6-31G(d) 66

| \// Low Level AM1 604

J Phys Chem B, 114, 12972, 2010. J Chem Theory Comput, 6, 2770, 2010. Acc Chem Res, 41, 689, 2008



RESULTS



EXAMPLE 1: COMMON REACTION MECHANISM
FOR PLP-DEPENDENT ENZYMES
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Formation of the Internal Aldimine
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Formation of the Internal Aldimine

Imine formation

Inactive enzyme

J Am Chem Soc 2011, 133, 15496



Formation of the Internal Aldimine

Imine formation

Ea= 0.20 kcal /mol
Er=-1.23 kcal/mol
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Formation of the Internal Aldimine

Imine formation

Ea= 43.7 kcal /mol
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Er=-1.23 kcal/mol
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Formation of the Internal Aldimine

Imine formation
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Formation of the Internal Aldimine
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_
o
o

N
o
o

Energy (kcal/mol)

35.0

250

o
o
1

A
o
1 1

-25.0

-35.0 -

Ea= 42.3kcal/mol

Ea= 40.3kcal/mol

Er=-4.1kcal/mol

Direct

Ea= 19.9kcal/mol

Ea= 6.2kcal/mol

|
Er=-1.6kcal/mol

Tyr389

_—

Er=-5.5kcal/mol

Er=-27.0kcal/mol

Cys360 H,O




Formation of the Internal Aldimine
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Formation of the Internal Aldimine

Formation of the Internal Aldimine complete

N N N
Ea= 0.20 kcal /mol JI Ea= 6.20 kcal /mol ,L Ea= 13.5 kcal /mol ,L
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Transimination

70DC-Internal Aldimine 1SRZ-Gemdiamine Intermediate
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Transimination

Transimination reaction

J Chem Theory Comput 2011 7, 1356-1368



Transimination

Transimination reaction

A
3

Internal Aldimine

€_.,
4 N4
°¢



Transimination

Transimination reaction

Ea= 10.8 kcal /mol
Er=-5.7 kcal/mol
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Transimination reaction

Ea= 10.8 kcal /mol
Er=-5.7 kcal/mol
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Transimination

Transimination reaction

Ea= 24.4 kcal /mol
Er= 8.0 kcal/mol

Ea= 10.8 kcal /mol
Er=-5.7 kcal/mol

Internal Aldimine Gemdiamine Intermediate



Transimination

Transimination reaction

Ea= 10.8 kcal /mol
Er=-5.7 kcal/mol
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Transimination

Transimination reaction

Tyr369
Res. X< Cys360
; Water

Ea= 10.8 kcal /mol
Er=-5.7 kcal/mol

Internal Aldimine Gemdiamine Intermediate



Transimination

Transimination reaction — Step 2
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Transimination reaction — Step 2
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Transimination

Transimination reaction

Ea= 10.8 kcal /mol Ea= 12.6 kcal /mol
Er=-5.7 kcal/mol Er=-2.0 kcal/mol

Internal Aldimine Gemdiamine Intermediate
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Transimination reaction
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Transimination

Transimination reaction

Ea= 10.8 kcal /mol Ea= 12.6 kcal /mol Ea= 2.2 kcal /mol
Er=-5.7 kcal/mol Er= -2.0 kcal/mol Er=-4.3 kcal/mol

Internal Aldimine Gemdiamine Intermediate External Aldimine

J Chem Theory Comput 2011 7, 1356-1368



Complete Potential Energy Profile

ém= Energetic span=13.5 kcal/mol (Exp. 17 kcal/mol, decarboxylation)

Rest State 9.1
2000 -14.6
i -14.8
-16.8
Int Aldim
70DC -21.1

Ext Ald
1F3T

J Am Chem Soc 2011, 133, 15496 J Chem Theory Comput 2011 7, 1356



Conclusions

This study provides for the first time an atomic level portrait of the
formation of the imine intermediate and the transimination reaction in a
enzymatic environment.

J Am Chem Soc 2011, 133, 15496 J Chem Theory Comput 2011 7, 1356-1368



Conclusions

;> This study provides for the first time an atomic level portrait of the
formation of the imine intermediate and the transimination reaction in a
enzymatic environment.

E> The mechanism should be common to all PLP dependent enzymes that
have amino acids as substrates.

J Am Chem Soc 2011, 133, 15496 J Chem Theory Comput 2011 7, 1356-1368



Conclusions

E> This study provides for the first time an atomic level portrait of the
formation of the imine intermediate and the transimination reaction in a
enzymatic environment.

E> The mechanism should be common to all PLP dependent enzymes that
have amino acids as substrates.

E> The results explain many unrelated experimental results :

 The conserved Cys360 is required for the activation of the enzymes

* The transimination reaction is favored by Tyr389 or by a conserved water
molecule.

* The role of a hypothetical conserved water molecule has been revealed

J Am Chem Soc 2011, 133, 15496 J Chem Theory Comput 2011 7, 1356-1368



EXAMPLE 2: HYDROLYSIS OF GLYCOSIDIC
BONDS BY £-GAL



>-galactosidase

Catalyses both the hydrolysis and
transglycosylation of polyssacharides

Marked preference for lactose as

substrate

Allolactose is the major transglycosylation
product

Great interest for the food and cosmetic
industries

OBJECTIVE: Understand the catalytic
mech and transglyc stereospecificity




COMPUTATIONAL DETAILS



Hydrolysis of glycosidic bonds— The Hamiltonian

Small Model used to compare DFT functionals using the 6-311++G(2d,2p) basis set

Small Model used to benchmark selected DFT functionals against CCSD(T)/CBS calculations




Benchmarking of DFT Functionals

Very large differences (over 7 Kcal/mol) between E_, of different “reliable” DFT functionals

31 4
Activation Energy (Kcal/mol) Reaction Energy (Kcal/mol)

J Comp Chem, 29, 2565, 2008 Theor Chem Acc, 119, 119, 2011



Benchmarking of DFT Functionals

Very large differences (over 7 Kcal/mol) between E_, of different “reliable” DFT functionals

Small differences (lower than 2.5 kcal/mol) in E;

31 4
Activation Energy (Kcal/mol) Reaction Energy (Kcal/mol)

J Comp Chem, 29, 2565, 2008 Theor Chem Acc, 119, 119, 2011



Benchmarking of DFT Functionals

of different “reliable” DFT functionals

Very large differences (over 7 Kcal/mol) between E

act

J Comp Chem, 29, 2565, 2008 Theor Chem Acc, 119, 119, 2011



LARGE QM/MM MODEL



Independent active sites

Select a single monomer

J Chem Theory Comput, 6, 421, 2010
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Independent active sites X-ray structures have substrate analogs in

Q the “shallow mode”

Select a single monomer g
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Independent active sites X-ray structures have substrate analogs in

Q the “shallow mode”

Select a single monomer g

Dock substrate in the “deep mode”

~

Flexible Receptor Docking ?

J Chem Theory Comput, 6, 421, 2010



MADAMM - Flexible Docking

Introduction Screenshots Download Documentation Contacts

Introduction

Computational capacity has increased dramatically over the last decade making possible the use of more sophisticated and
computationally intensive methods in computer-assisted drug design. However, dealing with receptor flexibility in docking
methodologies is still a thorny issue . The main reason behind this difficulty is the large number of degrees of freedom that have to be
considered in this kind of calculations. However, neglecting it, leads to poor docking results in terms of binding pose prediction in
real-world settings.

In order to overcome these limitations we present an automated procedure called MADAMM that
allows flexibilization of both the receptor and the ligand during a Multi stAged Docking with an
Automated Molecular Modeling protocol. Generally speaking the software uses standard docking
software and molecular mechanics force fields in the core process and a set of scripts that
automates the process without the intervention of the user. In order to simplify the use of
MADAMM a graphical interface has also been developed.

The results obtained with this methodology show that this protocol can lead to dramatic
improvements in both sampling and scoring over conventional single rigid protein docking. We
observe that the orientation of particular residues, at the interface between the protein and the
ligand, have a crucial influence on the way they interact.

At the moment the results indicate that MADAMM can be viewed as a powerful tool for
investigating ligand binding poses, allowing the researcher to understand the importance of
protein flexibility during the binding processes of the ligands. Moreover this program can be
viewed as a valuable tool to predict the binding of ligands in receptors where no experimental
data is available.

A® 2007 Cerqueira et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(hitp://creativecommons.orgflicenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

Proteins, 74, 192, 2009.
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Solvation + CM MD simulation deleted
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J Chem Theory Comput, 6, 421, 2010 J Phys Chem B, 115, 14752, 2011.



deleted

Active site (DFT)
Final energies - QM/MM

BB1K/6-311++G(2d,2p) = 170 atoms

Amber FF = 2700 atoms

20A MM region
Geom — QM/MM
B3LYP/6-31G(d) = 50 atoms

Amber FF = 2700 atoms

Outer 5A MM
shell frozen

J Chem Theory Comput, 6, 421, 2010 J Phys Chem B, 115, 14752, 2011.



J Chem Theory Comput, 6, 421, 2010
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Hydrolysis

Lactose Glucose Galactose

H,O

K., (water) = 10> s, 37 kcal/mol, t,,=22 Myears
K..:(B-gal)= 10%s, 15 kcal/mol t, ,= 0,01 s

Theor Chem Acc, 122, 283, 2009
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Hydrolysis
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Hydrolysis

J. Chem. Theory Comput, 6, 421, 2010.



Hydrolysis

Active site Mg?*
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Transglycosylation
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Transglycosylation
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Transglycosylation
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Transglycosylation

Theor Chem Acc, 122, 283, 2009



Transglycosylation

Exp yield = 100%

Hydrolysed Glu may attack Gal
before dissociation

Galactose-Enzyme
Covalent Intermediate

Theor Chem Acc, 122, 283, 2009



Transglycosylation

Exp. Stereoselectivity reproduced
by QM calculations
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Flux of Information

Long Range System

Accurate H .
Interactions Modelling

Functional Large Hybrid Docking
Bechmarking QM/MM system CM MD simulat.

J. Chem. Theory Comput, 6, 421, 2010 J. Phys. Chem. B, 115, 14752, 2011.



Conclusions

Computational enzymology can give atomic-level insight into reaction

mechanisms

It can be used both to rationalize experimental results and to predict

phenomena difficult/inaccessible to experiments

Further methodologic developments are needed to, e.g., include

sampling over multiple enzyme conformations in the simulations.
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