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The Hamiltonian

The adequate Hamiltonian must simultaneously 
describe well a wide range of interactions 

1. Nature of energy contributions
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The Hamiltonian

DFT is the only practical QM theoretical level

Size of the QM region usually 100-500 atoms

Problem: Functional performance is case-dependent



Benchmarking Density Functionals

Benchmarking of the DFT functionals 
before embarking in QM/MM 

calculations is highly advisable
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Specific heavy 
atom transfer

Specific 
interactions

PA an PT of/between 
residues

JCTC. 2010, 6, 2281 JCTC. 2011, 7, 2059 JCTC. 2011, 7, 3898

Specific heavy 
atom transfer

JCTC. 2014, 10, 4842
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Specific heavy atom 
transfer

JCTC. 2010, 6, 2281

EXAMPLE: 
Hydrolysis of phosphodiester 

bonds.
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HIV-‐1	  Integrase	  

Integrates HIV-1 viral DNA into the 
human DNA.

Important for the treatment of HIV-1 
Infection.

Drug discoveryfor Integrase 
extremely slow.

Lack of knowledge about structure 
and mechanism





HIV-‐1	  Integrase	  





The	  Hamiltonian



Accuracy	  of	  Density	  Functionals?



Hydrolysis	  of	  Phosphodiester	  Bonds	  by	  HO-‐.

Vácuo 
Solução

R P

ET

B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p)



Vácuo 
Solução

ET3
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ET1

            R    
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INT3
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          P    

B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p)

Hydrolysis	  of	  Phosphodiester	  Bonds	  by	  H2O.
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Hydrolysis by H20 Hydrolysis by HO-

ΔG*(calculated)  = 38,0 kcal.mol-1	  
  ΔG*(exp.)    ≈ 38,5 kcal.mol-1

ΔG*(calculated) = 34,7 kcal.mol-1	  
   ΔG*(exp.)   ≈ 35 kcal.mol-1

Reference	  PES:	  CCSD(T)/CBS.
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At	  the	  end	  one	  knows	  the	  expectable	  accuracy	  of	  each	  density	  
functional.	  

One	  may	  choose	  to	  use	  B3LYP	  knowing	  that	  the	  barriers	  and	  
reaction	  energies	  will	  be	  overestimated	  by	  about	  3kcal/mol.	  

One	  may	  choose	  to	  use	  MPWB1K	  knowing	  that	  the	  barriers	  and	  
reaction	  energies	  will	  be	  very	  close	  to	  the	  ones	  of	  CCSD(T)/CBS

Conclusion



JPCA, 2007, 111, 10439	  
JCTC, 2010, 6, 2281	  
JCTC, 2011, 7, 2059	  
JCTC, 2011, 7, 3898 	  

JCTC, 10, 4842

Further Reading

Conclusions
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What about the QM/MM interaction?

Mechanical 
Embedding
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Embedding

LJ Dispersion 
Classical electrostatics

How reliable are the  
“QM” point charges?
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Embedding
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Benchmarking Density FunctionalsBenchmarking Density Functionals

What about the QM/MM interaction?

Mechanical 
Embedding

Electrostatic 
Embedding

LJ Dispersion 
Classical electrostatics

LJ Dispersion 
MM charges interact with ρe(r)

>>Time consuming!How reliable are the  
“QM” point charges?

JCTC,	  6,	  2770,	  2010.
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The Molecular Models of Enzymes

          

vacuum 
40 atoms

dielectric 
40 atoms

dielectric 
160 atoms

enzyme 
expl. water

ỎGact ỎGR

Exp. 
ỎGact

Ribonucleotide Reductase

enzyme 
dielectric

BIOPHYS	  J.,	  90,	  2109,	  2006



Exp. 
ỎGact

The Molecular Models of Enzymes

          

vacuum 
35 atoms

dielectric 
35 atoms

dielectric 
227 atoms

vacuum 
2700 atoms

ỎGact ỎGR

β-Galactosidase

JCTC, 6, 421-433, 2010



JCTC, 10, 5458, 2014JACS, 134, 13436, 2012

3’ End Processing 
>2.500 atoms

Strand Transfer 
>22.000 atoms

The Molecular Models of Enzymes
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Solutions for the problem

DsbA	  
pKa (Cys)=3.5 !

JCC 30, 710, 2009         JPCB, 110, 5758, 2006         JCC, 27, 966-975, 2006         JPCB, 112, 2511, 2008

Unprecedented Chemistry

•Abnormal pKas 



Solutions for the problem

π-cation interactions 
stabilize rate-limiting steps

Unprecedented Chemistry

Oxidosqualene cyclase

 JCTC, 7, 2059, 2011. 

•Abnormal pKas 

•Stable carbocations 



Solutions for the problem

Ribonucleotide Reductase

Dehydration through radical mechanism

Chemistry, 13, 8507, 2007JCTC, 6, 2770, 2010JACS, 127, 5174, 2005

32Å

•Abnormal pKas 

•Stable carbocations 

•Long living aliphatic  radicals

Unprecedented Chemistry
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CHEMISTRY, 13, 8507, 2007JCTC, 6, 2770, 2010JACS, 127, 5174, 2005



Benchmarking Density FunctionalsThe diversity of the Chemical Space

Systematic testing of mechanistic hypotheses

CHEMISTRY, 13, 8507, 2007JCTC, 6, 2770, 2010JACS, 127, 5174, 2005



Benchmarking Density FunctionalsThe diversity of the Chemical Space

Cross-check with all available exp data
Systematic testing of mechanistic hypotheses

CHEMISTRY, 13, 8507, 2007JCTC, 6, 2770, 2010JACS, 127, 5174, 2005
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Benchmarking Density FunctionalsEnzyme conformations

Two ≠ problems

Averaging conformations 
or  

checking conformation effect

Generating relevant  
uncorrelated conformations

Opt=CPMD=QMMM MD 
CMD better

Other methods may 
unfold the enzyme

ab initio/DFT 
only checks effects

SE methods 
average within their 

accuracy



Hydrolysis of phosphodiester bonds

Reactants TS Products
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Enzyme conformations
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Example:	  HIV-‐1	  Protease



 QM/MM model.  
 QM layer: 30 atoms.  
 MM layer: 3232 atoms.  
 Electrostatic embedding in all calculations.
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 QM/MM model.  
 QM layer: 30 atoms.  
 MM layer: 3232 atoms.  
 Electrostatic embedding in all calculations.

Example:	  HIV-‐1	  Protease

 Extract coordinates every 2 ns of several MD simulations. 
 Optimize the reactants state. 
 Scan the distance between the nucleophile and the amide carbon. 
 Optimize the maximum to a TS, without any constraints. 
 Frequency calculation. 
 IRC to identify the reactants. 
 Optimize the reactants again.
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Activation free energy for 40 different enzyme conformations
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38 kcal/mol

Activation free energy for 40 different enzyme conformations
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X-ray

ΔGX-ray=13.4 kcal/mol<ΔG>=9 kcal/mol



A
ct

iv
at

io
n 

fre
e 

en
er

gy
 (k

ca
l/m

ol
)

Influence	  of	  Enzyme	  Conformation	  on	  Kinetics

ΔG > ~34 kcal/mol obtained with a different chemical mechanism
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Origin of the fluctuations?

Differences at the active 
site ?

Differences in protein 
folding?

Why	  ΔGact	  fluctuates	  so	  much?



Active site	  
ΔGact> 20 kcal/mol

Active site	  
ΔGact<15 kcal/mol

Active site	  
 ΔGact =15-20 kcal/mol

Why	  ΔGact	  fluctuates	  so	  much?
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-

CHAIN A CHAIN B

During	   the	   reaction	   mechanism	   significant	   charge	  
density	   migrates	   from	   Asp25	   of	   chain	   A	   to	   the	  
substrate	  (direction	  A→B)

Redistribution	  of	  electronic	  density	  between	  the	  R	  and	  the	  TS.
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Influence	  of	  each	  residue	  for	  ΔGact

The energy of the reactants and TS recaculated for each mutant.

A set of new calculations was done. In each one a residue was deleted.

We generated 196 mutants, each with a different deletion.

At the end we will have done 196x40x2= 15.680 QM/MM calculations.
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ΔΔGact	  by	  residue	  (Larger	  than	  or	  smaller	  than	  1	  kcal/mol)

Influence	  of	  each	  residue	  for	  ΔGact

Chain A Chain B
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| ΔΔGact|	  vs.	  distance	  to	  the	  nucleophile
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| ΔΔGact|	  vs.	  distance	  to	  the	  nucleophile,	  discriminating	  charged	  residues

Influence	  of	  each	  residue	  for	  ΔGact
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Residues	  with	  ΔΔG>	  0.5	  kcal/mol.	  

Positive residues

Negative residues

Neutral residues

Asp25, H2O, S

Influence	  of	  each	  residue	  for	  ΔGact

Neg. charge



Residues	  with	  ΔΔG	  <	  -‐0.5	  kcal/mol.	  

Positive residues

Negative residues

Neutral residues

Asp25, H2O, S

Influence	  of	  each	  residue	  for	  ΔGact

Neg. charge
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Conclusions

1. Enzyme kinetics depends on a spectrum of different kinds of interatomic 
interactions.
The theoretical method should describe all these interactions with consistent 
accuracy.

2. Enzyme kinetics may have meaningful contributions from medium/long 
range interatomic interactions.
The theoretical model should include all these interactions and treat the with 
consistent accuracy.

3. Enzyme kinetics may have meaningful contributions from the different 
conformations the enzyme can adopt.
Methods to check and sample enzyme flexibility should be further developed. It 
is important to include conformational changes in the timescale of the enzyme 
kinetics, instead of just short scale fluctuations around the starting folding.

In short, the CONSISTENCY in the correctness of the treatment of all 
these aspects is the key for accurate studies of enzyme catalysis.
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