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2. Spatial range of the atomic interactions

3. Unprecedented chemistry

4. Enzyme flexibility
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Benchmarking Density Functionals

Specific heavy Specific heavy Specific PA an PT of/between
atom transfer atom transfer interactions residues
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Benchmarking Density Functionals

Specific heavy atom
transfer

EXAMPLE:
Hydrolysis of phosphodiester
bonds.

JCTC. 2010, 6, 2281
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HIV-1 Integrase

Integrates HIV-1 viral DNA into the
human DNA.

Important for the treatment of HIV-1
Infection.

Drug discoveryfor Integrase
extremely slow.

Lack of knowledge about structure
and mechanism
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The Hamiltonian

Reactional

Space
Q Long Range
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Hydrolysis of Phosphodiester Bonds by HO'.

(1.023)](1.854) Vacuo —

1.881: Solucao - - -

ET

(1.635)
1.666

(1.632)
1.669

). W ————

B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p)



Hydrolysis of Phosphodiester Bonds by H,O.
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Reference PES: CCSD(T)/CBS.
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Reference PES: CCSD(T)/CBS.

Hydrolysis by H,0 Hydrolysis by HO-
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Performance of 50 Density Funcionals

BLYP

BP86

BPBE
BPW9I1
GI96LYP

HCTH93
HCTH147

HCTH407
MPWLYP
MPWLYP1W

MPWPWI1
OLYP

PBE1W
PBELYP1W
PBERBE
XLYP

H-GGA

BN YR
B3LYPE
B3P86
B3PW91
B97-1
B97-2
B98
BhandH
BhandHLYP
MPW1K

MPW1N
MPW1PW91

MPW1S
MPW3LYP
O3LYP
PBE1PBE

BB95
MO06 - L
MPWB95
TPSSLYP1W
PS5 TIP SS
VSXC

BIB9S
BB1K
MO6
MO6 - 2X
MO6 - HF
MPW1B95
MPW1KCIS

MPWB1K
MPWKCIS1K
PBE1KCIS

TPSS1KCIS
TPSSh




Performance of 50 Density Funcionals

B3LYP: TSs=2,9 kcal/mol; Minima=3,1 kcal/mol; Average=3,0 kcal/mol
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Performance of 50 Density Funcionals

MPWB1K: TSs=0,3 kcal/mol; Minima=1,0 kcal/mol; Average=0,7 kcal/mol

(o)

5
[
=
—
L
I
L
-
=

l l ' v;‘-

MPWB1K MPWI1BS5 PBE1PBE BB1K TPSSh B3LYP




Conclusion

¥ At the end one knows the expectable accuracy of each density
functional.




Conclusion

¥ At the end one knows the expectable accuracy of each density
functional.

¥ One may choose to use B3LYP knowing that the barriers and
reaction energies will be overestimated by about 3kcal/mol.




Conclusion

¥ At the end one knows the expectable accuracy of each density
functional.

¥ One may choose to use B3LYP knowing that the barriers and
reaction energies will be overestimated by about 3kcal/mol.

¥ One may choose to use MPWB1K knowing that the barriers and
reaction energies will be very close to the ones of CCSD(T)/CBS
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Further Reading
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What about the @V/MM interaction?

JCTC, 6,2770, 2010,



. - , I - b o
Il ‘.I.'..I.I.‘...L‘L‘......_L! ;3 _):3 LS1LY

What about the QM/MM interaction?

Mechanical Electrostatic
Embedding | Embedding

JCTC, 6,2770, 2010,



]

o

imarking Density

What about the QM/MM interaction?

Mechanical Electrostatic -
Embedding | Embedding

LdJ Dispersion
Clagsical electrostatics

JCTC, 6,2770, 2010,



What about the QM/MM intera,otion?

Mechanical Electrostatic '
Embedding | Embedding

LdJ Dispersion
Clagsical electrostatics

How reliable are the
“QM” point charges?

JCTC, 6,2770, 2010,



Benchmarking Density Functionals

What about the QM/MM interaction?

Mechanical Electrostatic
Embedding Embedding

v b 4

LdJ Dispersion LdJ Dispersion
Classical electrostatics MM charges interact with pe(r)

\ 4

How reliable are the
“QM” point charges?

JCTC, 6,2770, 2010.



Benchmarking Density Functionals

What about the QM/MM interaction?

Mechanical Electrostatic
Embedding Embedding

v b 4

LdJ Dispersion LdJ Dispersion
Classical electrostatics MM charges interact with pe(r)

v v

How reliable are the
“QM” point charges?

>>T'ime consuming!

JCTC, 6,2770, 2010.
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B-Galactosidase "

W AGg
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vacuum
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‘The Molecular Models of Enzymes

3’ End Processing Strand Transfer
>2.500 atoms >22.000 atoms

Glu221

y . .
" <’ Asp185

JACS, 134, 13436, 2012 JCTC, 10, 5458, 2014
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- Unprecedented Chemistry

Ribonucleotide Reductase

* Abnormal pKas
e Stable carbocations

» Long living aliphatic radicals

Dehydration through radical mechanism

JACS, 127, 5174, 2005 JCTC, 6, 2770, 2010 Chemistry, 13, 8507, 2007
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JACS, 127, 5174, 2005 JCTC, 6,770, 2010 CHEMISTRY, 13, 8507, 2007



The diversity of the Chemical Space

Systematic testing of mechanistic hypotheses

JACS, 127, 5174, 2005 JCTC, 6,770, 2010 CHEMISTRY, 13, 8507, 2007



The diversity of the Chemical Space

Systematic testing of mechanistic hypotheses

Cross-check with all available exp data

JACS, 127, 5174, 2005 JCTC, 6,770, 2010 CHEMISTRY, 13, 8507, 2007
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Averaging conformations
or
checking conformation effect

‘Other methods may

unfold the enzyme

- SE methods
average within their
accuracy
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Example: HIV-1 Protease
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MM layer: 3232 atoms.

Electrostatic embedding in all calculations.



Example: HIV-1 Protease

QM/MM model.

QM layer: 30 atoms.

MM layer: 3232 atoms.

Electrostatic embedding in all calculations.

Extract coordinates every 2 ns of several MD simulations.
Optimize the reactants state.

Scan the distance between the nucleophile and the amide carbon.
Optimize the maximum to a TS, without any constraints.
Frequency calculation.

IRC to identify the reactants.

Optimize the reactants again.
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Activation free energy for 40 different enzyme conformations
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/me Contormation on Kinetics

Activation free energy for 40 different enzyme conformations
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/me Conformation on Kinetics
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Activation free energy (kcal/mol)

.- ﬁﬂuence of Enzyme Conformation on Kinetics 2

AG > ~34 kcal/mol obtained with a different chemical mechanism
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Origin of the fluctuations*
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Origin of the fluctuations?

Differences at the active Differences In protein
Site ? folding?




Why AG_, fluctuates so much?

Active site
AG, =15-20 kcal/mol

/




CHAIN A CHAIN B
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Redistribution of electronic density between the R and the TS. '

CHAIN A

CHAIN B

Reactants Transition State

Substrate

/L Chai n Cha n )\ /k Chaln Cha n /[\

Asp25 Aspl24 Asp25 Aspl24

During the reaction mechanism significant charge
density migrates from Asp25 of chain A to the
substrate (direction A—>B)
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Influence of each residue for AG_,

A set of new calculations was done. In each one a residue was deleted.

We generated 196 mutants, each with a different deletion.

The energy of the reactants and TS recaculated for each mutant.

At the end we will have done 196x40x2= 15.680 QM/MM calculations.




Influence of each residue for AG_,

difference larger than 1 kcal/mol
difference smaller than 1kcal/mol

4
4l ® Chain A Chain B

AAG, (kcal/mol)

0 50 100 150 200

AAG,, by residue (Larger than or smaller than 1 kcal/mol)




Influence of each residue for AG_,
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Influence of each residue for AG_,

Residues withouth charge
Residues with charge
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Influence of each residue for AG_,

Positive residues

Negative residues

Neutral residues

Asp25, H,O, S

4 %—f N

X 4

Residues with AAG> 0.5 kcal/mol.



Influence of each residue for AG_,

Positive residues

Negative residues

Neutral residues

Asp25, H,O, S

Residues with AAG < -0.5 kcal/mol.
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3. Enzyme kinetics may have meaningful contributions ffom the different
conformations the enzyme can adopt.

Methods to check and sample enzyme flexibility should be further developed. It
is important to include conformational changes in the timescale of the enzyme
kinetics, instead of just short scale fluctuations around the starting folding.



1. Enzyme kinetics depends on a spectrum of différent kinds of interatomic
interactions. ¥

The theoretical method should describe a.ll these interactions with con31stent
accuracy. o

2. Enzyme kinetics may have meaningful contributions from medium/long
range interatomic interactions. |

The theoretical model should include all these intera,ctions and treat the with
consistent accuracy.

3. Enzyme kinetics may have meaningful contributions ffom the different
conformations the enzyme can adopt.

Methods to check and sample enzyme flexibility should be further developed. It
is important to include conformational changes in the timescale of the enzyme
kinetics, instead of just short scale fluctuations around the starting folding.

In short, the CONSISTENCY in the correctness of the treatment of all
these aspects is the key for accurate studies of enzyme catalysis.
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