Why Enzymes are Difficult to Simulate

Pedro Alexandrino Fernandes,

Dep. Chemistry & Biochemistry, University of Porto, Portugal

pedro.fernandes@fc.up.pt

II. The Problem: Enzymes are molecules very difficult to simulate.

II. The Problem: Enzymes are molecules very difficult to simulate.

III. The Solutions: Strategies to simulate enzymes and calculate reaction mechanisms.

V

Hints about the chemical identity and structure of INTs & TSs:

Hints about the chemical identity and structure of INTs & TSs:

kinetics

Hints about the chemical identity and structure of INTs & TSs:

kinetics

mutagenesis

Hints about the chemical identity and structure of INTs & TSs:

kinetics

mutagenesis

spectroscopy

Hints about the chemical identity and structure of INTs & TSs:

kinetics

mutagenesis

spectroscopy

S analogues

Hints about the chemical identity and structure of INTs & TSs:

kinetics

mutagenesis

spectroscopy

S analogues

Exp. data is generally not enough.

Many different mechanistic hypotheses MAY fit the data.

reaction?

reaction?

Fundamental (bio) chemical knowledge

reaction?

Fundamental (bio) chemical knowledge

To design drugs (40-50% are enzyme inhibitors)

reaction?

Fundamental (bio) chemical knowledge

To design drugs (40-50% are enzyme inhibitors)

To design biocatalysts

1. Nature of energy contributions

- 1. Nature of energy contributions
- 2. Spatial range of the atomic interactions

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry
 Enzyme flexibility

β-Galactosidase

Glutathione Transferase

Dipolar and ionic H-bonding

JPCB, 114, 1690, 2010

Glutathione Transferase

Dipolar and ionic H-bonding

PT is the rate-limiting step

JPCB, 114, 12972, 2010.

JPCB, 114, 1690, 2010

CHEM EUR J, 14, 9591, 2008

 β -Galactosidase

Covalent

Dipolar and ionic H-bonding

H bond increases Kcat by 4 orders of magnitude...

CMB-11

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion

FEBS J., 275, 2524, 2008

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion

Published in: Sílvia Osuna; Marcel Swart; Miquel Solà; *J. Phys. Chem. A* **2011,** 115, 3491-3496. DOI: 10.1021/jp1091575Copyright © 2011 American Chemical Society

Published in: Sílvia Osuna; Marcel Swart; Miquel Solà; *J. Phys. Chem. A* **2011,** 115, 3491-3496. DOI: 10.1021/jp1091575Copyright © 2011 American Chemical Society

Oxidosqualene Cyclase

Covalent

0

- Dipolar and ionic H-bonding
- Medium-range general dispersion

JCTC, 7, 2059, 2011.

Thioredoxin Family

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

Thioredoxin Family

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

pKa $\propto \Delta E (S^{-} - SH)$

Thioredoxin Family

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

pKa $\propto \Delta E (S^{-} - SH)$

Thioredoxin Family

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

pKa $\propto \Delta E (S^{-} - SH)$

Thioredoxin Family

- Covalent
- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

pKa $\propto \Delta E (S^{-} - SH)$

Thioredoxin Family

DsbA

pKa(Cys)=3.5

- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

The active sites of Trx and DsbA are superimposable!

Thioredoxin Family

DsbA

pKa(Cys)=3.5

- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

No 1st or 2nd shell interaction over stabilizes the thiolate.

Thioredoxin Family

DsbA

pKa(Cys)=3.5

- Dipolar and ionic H-bonding
- Medium-range general dispersion
- \circ π stacking, π-H-bonds, π-cation
- Medium & long-range coulomb

Long-range coulomb interactions make the difference!

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry
 Enzyme flexibility

 β -Galactosidase

- Covalent (< 3 Å)
- o 1st shell interactions (< 4 Å)

 β -Galactosidase

- Covalent (< 3 Å)
- 1^{st} shell interactions (< 4 Å)
- and shell medium range (<7 Å)
 </p>

β -Galactosidase

- Covalent (< 3 Å)
- \circ 1st shell interactions (< 4 Å)
- 2nd shell medium range (<7 Å)
- Long range coulomb (7-20 Å)

dispersion	∝r-6
dipolar	∝r-3
ionic	$\propto r_{-1}$
but nº atom	s ∝r+3!

3' End Processing >2.500 atoms

Strand Transfer >22.000 atoms

JACS, 134, 13436, 2012

JCTC, 10, 5458, 2014

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry
 Enzyme flexibility

3. Unprecedented Chemistry

Abnormal pKas

3. Unprecedented Chemistry

- Abnormal pKas
- Stable carbocations

3. Unprecedented Chemistry

Ribonucleotide Reductase

- Abnormal pKas
- Stable carbocations
- Long-living radicals

Dehydration through radical mechanism

JACS, 127, 5174, 2005

JCTC, 6, 2770, 2010

CHEMISTRY, 13, 8507, 2007

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry
 Enzyme flexibility

- ${\ensuremath{\, \ensuremath{\scriptstyle o}}}$ Enzyme conformation affects binding pose and $K_{\rm M}$
- Enzyme conformation affects K_{cat}

Static Flexibility:

In general < 1-2 kcal/mol Possible artifact due to =1^{ry} structure Averaged on XR structures

Dynamic Flexibility:

In general < 1-2 kcal/mol Corr time >> MD can cover (µs-ms) Averaged on XR structures

Movement	Timescale	Amplitude	
Small Scale Movements			Geom. Opt
bonds angles side chains	fs-ps	below 1 Å	Classical MD Carr-Parrinello MD QM/MM MD

Movemer	t Timescale	Amplitude
	Small Scale Movemen	nts
bonds angles side chains	fs-ps	below 1 Å
	Medium Scale Moveme	ents
rotamers loops extremities	ns-µs	1-10 Å

Movement	Timescale	Amplitude				
Small Scale Movements						
bonds angles side chains	fs-ps	below 1 Å				
Medium Scale Movements						
rotamers loops extremities	ns-µs	1-10 Å				
Large Scale Movements						
Domains Subunits	µs-ms	5-10 Å				

Movement	Timescale	Amplitude				
Small Scale Movements						
bonds angles side chains	fs-ps	below 1 Å				
Medium Scale Movements						
rotamers loops extremities	ns-µs	1-10 Å				
Large Scale Movements						
Domains Subunits	µs-ms	5-10 Å				
Global Movements						
Folding Association	ms-h	> 10 Å				

Nature of energy contributions
 Spatial range of the atomic interactions
 Unprecedented chemistry
 Enzyme flexibility

Why Enzymes are Difficult to Simulate

Pedro Alexandrino Fernandes,

Dep. Chemistry & Biochemistry, University of Porto, Portugal

pedro.fernandes@fc.up.pt

