M.H. Shahzamanian C.
Independent research fellow at Universidade do Porto

   

Address:
Centro de Matematica Departamento de Matematica
Faculdade de Ciencias Universidade do Porto
Rua do Campo Alegre, 687 4169-007 Porto, Portugal

Office: 2.11B
Phone: +351 22040241
Fax:      +351 220402108 (department)
E-mail: m.h.shahzamanian AT fc DOT up DOT pt
   

 Research interests:
 -Algebra;
 -Finite Semigroup Theory; Group Theory;
 -Nilpotent semigroups;
 -Representation theory of finite monoids;
 -Combinatorics; Discrete Mathematics.

 

Publications:

M.H. Shahzamanian and B. Steinberg. Simplicity of augmentation submodules for transformation monoids. (Submitted), (Pdf file).
J. Almeida, M. Kufleitner and M.H. Shahzamanian. Nilpotency and strong nilpotency for finite semigroups, Q. J. Math. (Accepted), (Pdf file).
J. Almeida and M.H. Shahzamanian. A note on the finite basis and finite rank properties for pseudovarieties of semigroups. Semigroup Forum, 97(1):177–180, 2018, (Pdf file).

J. Almeida and M.H. Shahzamanian. The rank of variants of nilpotent pseudovarieties. (Submitted), (Pdf file).
J. AlmeidaM.H. Shahzamanian and B. Steinberg. The pro-nilpotent group topology on a free group. J. Algebra, 480, 332–345, 2017, (Pdf file).

M.H. Shahzamanian. The congruence $\eta^{\ast}$ on semigroups, Q. J. Math. 67(3), 405–423, 2016, (Pdf file).
E. Jespers and M.H. Shahzamanian. Finite semigroups that are minimal for not being Malcev nilpotent. J. Algebra Appl., 13(8):1450063, 22, 2014, (Pdf file).
E. Jespers and M.H. Shahzamanian. A description of a class of finite semigroups that are near to being Mal¬úcev nilpotent. J. Algebra Appl., 12(5):1250221, 26, 2013, (Pdf file).
E. Jespers and M.H. Shahzamanian. The non-nilpotent graph of a semigroup. Semigroup Forum, 85(1):37-57, 2012, (Pdf file).

M.H. Shahzamanian and B. Davvaz. Roughness in Fuzzy Cayley Graphs. (Submitted).
M.H. Shahzamanian, M. Shirmohammadi and B. Davvaz. Roughness in Cayley graphs. Inform. Sci., 180(17):3362-3372, 2010, (Pdf file).