Stable gravastars – an alternative to black holes?

Matt Visser and David L. Wiltshire

gr-qc/0310107, Class. Quantum Grav. 21 (2004) 1135-1151

Black holes are ubiquitous

EVIDENCE

- Binary systems, one partner $M \gtrsim 3M_{\odot}$ most spectacular examples now from centre of our galaxy
- Energetic objects with accretion disks: proof that Kerr black holes exist – iron emission line redshift from within r < 6M, last stable orbit of Schwarzschild black hole [Dabrowski et al, Mon. Not. R. Soc. 288, L11 (1997)]
- Gamma ray bursters
- Active Galactic Nuclei...

But are they really black holes?

- The evidence is from the black hole exterior
- Need to show that an event horizon exists
- Difference between a completely absorbing surface and "something else" difficult to prove beyond all reasonable doubt [Abramowicz, Kluzniak and Lasota, Astron. Astrophys. 396, L31 (2002)]

ALTERNATIVES

- Boson condensate stars
- (many crazy ideas)
- Gravitational vacuum condensate stars (gravastars)

Quantum gravity + black holes \Rightarrow **problems**

BLACK HOLE INFORMATION PARADOX

- Hawking 1973: in presence of quantum fields black holes radiate with (almost) black body spectrum.
- Heat capacity negative: rate $\propto M^{-1}$, runs away as $M \rightarrow 0$
- If it evaporates completely, information is lost WAYS OUT
- Change quantum mechanics to allow unitarity violation
- Stable remnant black hole remains
- Quantum gravity intervenes near horizon scale; unitarity is preserved

Funny business at the event horizon?

In Schwarzschild geometry

$$ds^{2} = -A(r) dt^{2} + A^{-1}(r) dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}), A(r) = 1 - \frac{2M}{r}.$$

an infalling observer locally measures energies of other infalling things to diverge $P^{\hat{0}} = A(r)^{-1/2}E \rightarrow \infty$. Should we care?

- 't Hooft: black hole holography, brick wall model ...
- Laughlin (et al): quantum gravity phase transitions, "emergent relativity"...
- many less respectable characters...

The Mazur-Mottola gravastar

The gravastar (*GRAvitational VAcuum condensate STAR of Mazur and Mottola*), gr-qc/0109035, is an onion-like construction, with 5 layers:

- An external Schwarzschild vacuum, with energy density, $\rho = 0$, and pressure, P = 0.
- A thin shell, with surface density σ_+ and surface tension ϑ_+ ; with radius $r_+ \gtrsim 2M$.
- A (relatively thin) finite-thickness shell of stiff matter with equation of state $P = \rho$; straddling r = 2M where the horizon would in normal circumstances have formed.
- ▲ A second thin shell; with radius $r_{-} \leq 2M$, and with surface density σ_{-} and surface tension ϑ_{-} .
- A de Sitter interior, with $P = -\rho$.

The Mazur-Mottola gravastar

• The two thin shells are used to "confine" the stiff matter in a transition layer straddling r = 2M, while the energy density in the de Sitter vacuum is chosen to satisfy

$$\frac{4\pi}{3}\rho(2M)^3 = M,$$

In the approximation where the transition layer is neglected, *all* of the mass of the resulting object can then be traced back to the energy density of the de Sitter vacuum.

The Mazur-Mottola gravastar

- Expect thermodynamic stability
- Solves black hole information paradox

BUT

- In limit $a_+ = 2M(1 + \epsilon)$, $\epsilon \to 0$, wouldn't something blow up?
- Are there dynamically stable configurations?

New simplified gravastar

- Replace thick stiff matter shell by a thin shell
- Leave equation of state of thin shell free, but look for dynamically stable configurations

Our gravastar is a simple 3-layer model

- An external Schwarzschild vacuum, $\rho = 0 = p$.
- A single thin shell, with surface density σ and surface tension ϑ ; with radius $a \gtrsim 2M$.
- A de Sitter interior, $P = -\rho$.
- To avoid forming an event horizon, we shall demand

$$\frac{4\pi}{3}\rho(2M)^3 \lesssim M.$$

The mathematical model

Consider the class of geometries

$$ds^{2} = -\left[1 - \frac{2m(r)}{r}\right] dt^{2} + \frac{dr^{2}}{1 - 2m(r)/r} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Less general than the class of all static spherically symmetric geometries but sufficiently general to include both the Schwarzschild and the de Sitter geometries.
- Connect two geometries of this type are connected along a timelike hypersurface at r = a(t), (normal n^a)

$$d\tau^{2} = \left[1 - \frac{2m(a(t))}{a(t)}\right] dt^{2} - \frac{1}{1 - 2m(a(t))/a(t)} \left[\frac{da(t)}{dt}\right]^{2} dt^{2},$$

Israel–Lanczos–Sen thin-shell formalism

Induced metric on the shell, (τ proper time),

 $h_{ab} = g_{ab} - n_a n_b,$

$$h_{ab} dx^a dx^b = -d\tau^2 + a(\tau)^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

Extrinsic curvature

$$K_{ab} = h_a{}^c h_b{}^d \nabla_c n_d$$

Junction conditions relate discontinuity in extrinsic curvature to the surface stress-energy, S_{ab} :

$$[[K_{ab}]] = -8\pi \left[S_{ab} - \frac{1}{2} S h_{ab} \right]; \qquad [[K_{ab} - K h_{ab}]] = -8\pi S_{ab}.$$

 \ldots [[X]] denotes discontinuity in X across the shell.

Dynamical analysis

We find

(1)
$$\sigma = -\frac{1}{4\pi a} \left[\left[\sqrt{1 - 2m(a)/a + \dot{a}^2} \right] \right],$$

(2)
$$\vartheta = -\frac{1}{8\pi a} \left[\left[\frac{1 - m/a - m' + \dot{a}^2 + a\ddot{a}}{\sqrt{1 - 2m/a + \dot{a}^2}} \right] \right]$$

where $\dot{a} \equiv \frac{da}{d\tau}$ and $m'(a) \equiv \frac{dm}{da}$ etc.

In fact (2) follows from (1) by energy-momentum conservation

$$\frac{d}{d\tau}(\sigma a^2) = \vartheta \frac{d}{d\tau}(a^2).$$

Master equation

Dynamic master equation can be rewritten in a form of an "energy equation" for a non-relativistic particle,

$$\frac{1}{2}\dot{a}^2 + V(a) = E,$$

with "potential"

$$V(a) = \frac{1}{2} \left\{ 1 + \frac{4m_{+}(a)m_{-}(a)}{m_{s}^{2}(a)} - \left[\frac{m_{s}(a)}{2a} + \frac{(m_{+}(a) + m_{-}(a))}{m_{s}(a)}\right]^{2} \right\}$$

 $m_{-}(a) =$ "mass function" for interior geometry; $m_{+}(a) =$ "mass function" for exterior geometry; $m_{s} = 4\pi \sigma a^{2} =$ mass of thin shell; and "energy" E = 0.

Stability

■ ∃ strictly stable solution for the shell (against spherically symmetric radial oscillations) iff \exists some $m_s(a)$ and some a_0 such that we simultaneously have

 $V(a_0) = 0;$ $V'(a_0) = 0;$ $V''(a_0) > 0.$

• Quirk: $E \equiv 0$, the situation where $V(a) \equiv 0$, which in non-relativistic mechanics corresponds to neutral equilibrium, is now converted to a situation of stable equilibrium in this general relativity calculation. (Since now, because one is not free to increase the "energy" E, one has $\dot{a} \equiv 0$.)

Stability

Less stringent notion of stability, "bounded excursion", also useful. Suppose we have $a_2 > a_1$ such that

 $V(a_1) = 0; \quad V'(a_1) \le 0; \quad V(a_2) = 0; \quad V'(a_2) \ge 0;$

with V(a) < 0 for $a \in (a_1, a_2)$.

- In this situation the motion of the shell remains bounded by the interval (a₁, a₂). Although not strictly stable, since the shell does in fact move, this notion of "bounded excursion" more accurately reflects some of the aspects of stability naturally arising in non-relativistic mechanics.
- Adding a small negative offset to a strictly stable potential converts it to one exhibiting "bounded excursion"

$$V(a) \to V(a) - \epsilon^2$$

Inverting the potential

• Assume V(a), $m_{-}(a)$ and $m_{+}(a)$ given, and invert to find $m_{s}(a)$ or $\sigma(a)$:

$$\sigma(a) = -\frac{1}{4\pi a} \left\{ \sqrt{1 - 2V(a) - \frac{2m_+(a)}{a}} \right\}$$

$$-\sqrt{1-2V(a)-\frac{2m_{-}(a)}{a}}$$

• For our case $m_+(a) = M/a$ (Schwarzschild), and $m_-(a) = (4\pi/3)\rho a^3 \equiv ka^3$ (de Sitter), so that

$$\sigma(a) \equiv \frac{1}{4\pi a} \left\{ \sqrt{1 - 2V(a) - 2ka^2} - \sqrt{1 - 2V(a) - \frac{2M}{a}} \right\},$$

Inverting the potential

• The surface tension $\vartheta(a)$ is found as a result

$$\vartheta(a) \equiv \frac{1}{8\pi a} \left\{ \frac{1 - 2V(a) - a \, V'(a) - 4ka^2}{\sqrt{1 - 2V(a) - 2ka^2}} \right\}$$

$$-\frac{1-2V(a)-a \ V'(a)-M/a}{\sqrt{1-2V(a)-2M/a}} \bigg\}.$$

Cases of interest

- $V(a) = \frac{1}{2}(a a_0)^2 f(a)$, where f(a) is an arbitrary positive function which is regular at a_0 . Trivial: master equation has unique solution at $a = a_0$ and $\dot{a} = 0$, and all possibility of motion is excluded by fiat.

Inverting the potential

• $V(a) = \frac{1}{2}(a - a_0)^2 f(a) - \epsilon^2$ gives models stable under "bounded excursion".

We consider just the $V(a) \equiv 0$ (purely static shell) in what follows.

- Stable solutions with a shell satisfying the Dominant Energy Condition exist if $0 < kM^2 < \lambda_{cr}$, where $(40000000 \lambda_{cr}^4 - 1054320000 \lambda_{cr}^3 + 257041039 \lambda_{cr}^2 - 19516500 \lambda_{cr} + 337500) = 0$ i.e., $\lambda_{cr} = 0.0243045493773...$
- For parameter values $0 < kM^2 < \lambda_{cr}$, there will be a range of values $a_1 < a < a_2$ over which the dominant energy condition is satisfied.

Surface energy density and tension

Equation of state: Case 1

Example: $kM^2 = 1/18$; $V(a) \equiv 0$.

Surface energy density as a function of surface tension. Right hand panel shows an enlargement of central region. The dominant energy condition is violated always.

Equation of state: Case 2

Example: $kM^2 = 1/72$; $V(a) \equiv 0$. Parameter values for which the dominant energy condition is violated are shown by a thin line, and parameter values for which the dominant energy condition is satisfied, viz., 2.124319 M < a < 3 M, are shown by a thick line.

Special geometries: Mazur-Mottola 1

- To understand the nature of this limit it is convenient to write

$$k = \frac{1}{8M^2(1+\epsilon)^2}, \qquad \epsilon \gtrsim 0.$$

Energy density and surface tension are both real for

$$a \in (2M, 2M[1+\epsilon]).$$

- On kinematic grounds, we have a severely restricted range of possible motions for the shell.
- In limit $\epsilon \to 0 \ \sigma \to 0$ and $\vartheta \to -\infty$. OUCH!

Stiff shell gravastar

We propose a new stable 3-layer limit of Mazur-Mottola model

- Forget about equating exterior mass with that of de Sitter vacuum
- Take a thin shell at a > 2M with stiff equation of state $P = \rho$ or $\vartheta = -\sigma$.
- For $kM^2 < 0.0243045493773...$ there are two values of a at which we can place a stiff shell in stable gravastars, the lower value, a_1 , being in the range $2M < a_1 < 2.3005600972496 M$.
- The inner stiff shell case is certainly so close to the putative horizon that any test to distinguish such an object from a true Schwarzschild black hole would be extremely difficult in astrophysical contexts.

Do I buy it?

PERSONAL PREJUDICES

- Something funny ought to happen at the horizon, but we should preserve the "holey" properties of black holes
- Hawking evaporation is a process which has more to do with quantum field theory than quantum gravity per se
- The fundamental quantum dynamics which explains black hole entropy remain to be found (despite much work)
- As a quantum positivist I advocate the view that classical space should not exist inside a black hole: we want a sum over all possible interior geometries consistent with the surface boundary data
- BH holographic principle would be consistent with such a view; but gravastars not ostensibly so.

Conclusion

Gravastars are

- interesting
- better than we expected at the outset
- maybe good enough to convince a number of people
- would have to be firmly placed in a quantum gravity context (why is a de Sitter fluid natural?) to convince me