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Black holes are ubiquitous

EVIDENCE

Binary systems, one partner M >
∼ 3M⊙ – most

spectacular examples now from centre of our galaxy

Energetic objects with accretion disks: proof that Kerr
black holes exist – iron emission line redshift from within
r < 6M , last stable orbit of Schwarzschild black hole
[Dabrowski et al, Mon. Not. R. Soc. 288, L11 (1997)]

Gamma ray bursters

Active Galactic Nuclei. . .
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But are they really black holes?

The evidence is from the black hole exterior

Need to show that an event horizon exists

Difference between a completely absorbing surface and
“something else” difficult to prove beyond all reasonable
doubt [Abramowicz, Kluzniak and Lasota, Astron.
Astrophys. 396, L31 (2002)]

ALTERNATIVES

Boson condensate stars

. . . (many crazy ideas)

Gravitational vacuum condensate stars (gravastars)
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Quantum gravity + black holes ⇒ problems

BLACK HOLE INFORMATION PARADOX

Hawking 1973: in presence of quantum fields black
holes radiate with (almost) black body spectrum.

Heat capacity negative: rate ∝ M−1, runs away as
M → 0

If it evaporates completely, information is lost

WAYS OUT

Change quantum mechanics to allow unitarity violation

Stable remnant black hole remains

Quantum gravity intervenes near horizon scale; unitarity
is preserved
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Funny business at the event horizon?

In Schwarzschild geometry

ds2 = −A(r) dt2+A−1(r)dr2+r2(dθ2+sin2 θ dφ2), A(r) = 1−
2M

r
.

an infalling observer locally measures energies of other
infalling things to diverge P 0̂ = A(r)−1/2E → ∞.
Should we care?

’t Hooft: black hole holography, brick wall model . . .

Laughlin (et al): quantum gravity phase transitions,
“emergent relativity”. . .

many less respectable characters. . .
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The Mazur-Mottola gravastar

The gravastar (GRAvitational VAcuum condensate STAR of
Mazur and Mottola), gr-qc/0109035, is an onion-like
construction, with 5 layers:

An external Schwarzschild vacuum, with energy
density, ρ = 0, and pressure, P = 0.

A thin shell, with surface density σ+ and surface tension
ϑ+; with radius r+

>
∼ 2M .

A (relatively thin) finite-thickness shell of stiff matter with
equation of state P = ρ; straddling r = 2M where the
horizon would in normal circumstances have formed.

A second thin shell; with radius r− . 2M , and with
surface density σ− and surface tension ϑ−.

A de Sitter interior, with P = −ρ.
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The Mazur-Mottola gravastar

The two thin shells are used to “confine” the stiff matter
in a transition layer straddling r = 2M , while the energy
density in the de Sitter vacuum is chosen to satisfy

4π

3
ρ(2M)3 = M,

In the approximation where the transition layer is
neglected, all of the mass of the resulting object can
then be traced back to the energy density of the de
Sitter vacuum.
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The Mazur-Mottola gravastar

Expect thermodynamic stability

Solves black hole information paradox

BUT

In limit a+ = 2M(1 + ε), ε → 0, wouldn’t something blow
up?

Are there dynamically stable configurations?
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New simplified gravastar

Replace thick stiff matter shell by a thin shell

Leave equation of state of thin shell free, but look for
dynamically stable configurations

Our gravastar is a simple 3-layer model

An external Schwarzschild vacuum, ρ = 0 = p.

A single thin shell, with surface density σ and surface
tension ϑ; with radius a >

∼ 2M .

A de Sitter interior, P = −ρ.

To avoid forming an event horizon, we shall demand

4π

3
ρ(2M)3 . M.
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The mathematical model

Consider the class of geometries

ds2 = −

[

1 −
2m(r)

r

]

dt2+
dr2

1 − 2m(r)/r
+r2(dθ2+sin2 θ dφ2).

Less general than the class of all static spherically
symmetric geometries but sufficiently general to include
both the Schwarzschild and the de Sitter geometries.

Connect two geometries of this type are connected
along a timelike hypersurface at r = a(t), (normal na)

dτ2 =

[

1 −
2m(a(t))

a(t)

]

dt2−
1

1 − 2m(a(t))/a(t)

[

da(t)

dt

]2

dt2,
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Israel–Lanczos–Sen thin-shell formalism

Induced metric on the shell, (τ proper time),

hab = gab − nanb,

hab dxa dxb = −dτ2 + a(τ)2 (dθ2 + sin2 θ dφ2).

Extrinsic curvature

Kab = ha
c hb

d
∇cnd

Junction conditions relate discontinuity in extrinsic
curvature to the surface stress-energy, Sab:

[[Kab]] = −8π

[

Sab −
1

2
S hab

]

; [[Kab−K hab]] = −8π Sab.

. . . [[X]] denotes discontinuity in X across the shell.
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Dynamical analysis

We find

σ = −
1

4πa

[[

√

1 − 2m(a)/a + ȧ2

]]

,(1)

ϑ = −
1

8πa

[[

1 − m/a − m′ + ȧ2 + aä
√

1 − 2m/a + ȧ2

]]

.(2)

where ȧ ≡ da
dτ and m′(a) ≡ dm

da etc.

In fact (2) follows from (1) by energy-momentum
conservation

d

dτ
(σa2) = ϑ

d

dτ
(a2).

Phi in the Sky, Porto, 9 July 2004 – p.12/25



Master equation

Dynamic master equation can be rewritten in a form of
an “energy equation” for a non-relativistic particle,

1

2
ȧ2 + V (a) = E,

with “potential”

V (a)=
1

2

{

1+
4m+(a)m−(a)

m2
s(a)

−

[

ms(a)

2a
+

(m+(a) + m−(a))

ms(a)

]2
}

m−(a) = “mass function” for interior geometry;
m+(a) = “mass function” for exterior geometry;
ms = 4π σ a2 = mass of thin shell;
and “energy” E = 0.
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Stability

∃ strictly stable solution for the shell (against spherically
symmetric radial oscillations) iff ∃ some ms(a) and
some a0 such that we simultaneously have

V (a0) = 0; V ′(a0) = 0; V ′′(a0) > 0.

Quirk: E ≡ 0, the situation where V (a) ≡ 0, which in
non-relativistic mechanics corresponds to neutral
equilibrium, is now converted to a situation of stable
equilibrium in this general relativity calculation. (Since
now, because one is not free to increase the “energy”
E, one has ȧ ≡ 0.)
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Stability

Less stringent notion of stability, “bounded excursion”,
also useful. Suppose we have a2 > a1 such that

V (a1) = 0; V ′(a1) ≤ 0; V (a2) = 0; V ′(a2) ≥ 0;

with V (a) < 0 for a ∈ (a1, a2).

In this situation the motion of the shell remains bounded
by the interval (a1, a2). Although not strictly stable, since
the shell does in fact move, this notion of “bounded
excursion” more accurately reflects some of the aspects
of stability naturally arising in non-relativistic mechanics.

Adding a small negative offset to a strictly stable
potential converts it to one exhibiting “bounded
excursion”

V (a) → V (a) − ε2
Phi in the Sky, Porto, 9 July 2004 – p.15/25



Inverting the potential

Assume V (a), m−(a) and m+(a) given, and invert to find
ms(a) or σ(a):

σ(a) = −
1

4πa

{
√

1 − 2V (a) −
2m+(a)

a

−

√

1 − 2V (a) −
2m−(a)

a

}

For our case m+(a) = M/a (Schwarzschild), and
m−(a) = (4π/3)ρa3 ≡ ka3 (de Sitter), so that

σ(a) ≡
1

4πa

{

√

1 − 2V (a) − 2ka2 −

√

1 − 2V (a) −
2M

a

}

,
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Inverting the potential

The surface tension ϑ(a) is found as a result

ϑ(a) ≡
1

8πa

{

1 − 2V (a) − a V ′(a) − 4ka2

√

1 − 2V (a) − 2ka2

−
1 − 2V (a) − a V ′(a) − M/a

√

1 − 2V (a) − 2M/a

}

.

Cases of interest

V (a) ≡ 0, a degenerate, but physically important case of
static shell ȧ ≡ 0.

V (a) = 1

2
(a − a0)

2 f(a), where f(a) is an arbitrary
positive function which is regular at a0. Trivial: master
equation has unique solution at a = a0 and ȧ = 0, and
all possibility of motion is excluded by fiat.
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Inverting the potential

V (a) = 1

2
(a − a0)

2 f(a) − ε2 gives models stable under
“bounded excursion”.

We consider just the V (a) ≡ 0 (purely static shell) in what
follows.

Stable solutions with a shell satisfying the Dominant
Energy Condition exist if 0 < kM2 < λcr, where
(400000000λ4

cr − 1054320000λ3
cr

+257041039λ2
cr − 19516500λcr + 337500) = 0

i.e., λcr = 0.0243045493773. . .

For parameter values 0 < kM2 < λcr, there will be a
range of values a1 < a < a2 over which the dominant
energy condition is satisfied.
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Surface energy density and tension

a
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Surface energy density
σ (in units M−1), as a
function of radius, a (in
units M ). (kM2 = 1/18;
V (a) ≡ 0.)
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units M−1 ), as a func-
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M ). (kM2 = 1/18;
V (a) ≡ 0.)
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Equation of state: Case 1
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Example: kM2 = 1/18; V (a) ≡ 0.
Surface energy density as a function of surface tension.
Right hand panel shows an enlargement of central region.
The dominant energy condition is violated always.
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Equation of state: Case 2
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Example: kM2 = 1/72; V (a) ≡ 0. Parameter values for which
the dominant energy condition is violated are shown by a thin
line, and parameter values for which the dominant energy
condition is satisfied, viz., 2.124319M < a < 3M , are shown by
a thick line.
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Special geometries: Mazur-Mottola 1

k → 1/(8M2) gives the “Mazur–Mottola limit”
k(2M)3 = M .

To understand the nature of this limit it is convenient to
write

k =
1

8M2(1 + ε)2
, ε >

∼ 0.

Energy density and surface tension are both real for

a ∈ (2M, 2M [1 + ε]).

On kinematic grounds, we have a severely restricted
range of possible motions for the shell.

In limit ε → 0 σ → 0 and ϑ → −∞. OUCH!
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Stiff shell gravastar

We propose a new stable 3-layer limit of Mazur-Mottola
model

Forget about equating exterior mass with that of de
Sitter vacuum

Take a thin shell at a > 2M with stiff equation of state
P = ρ or ϑ = −σ.

For kM2 < 0.0243045493773 . . . there are two values of a
at which we can place a stiff shell in stable gravastars,
the lower value, a1, being in the range
2M < a1 < 2.3005600972496M .

The inner stiff shell case is certainly so close to the
putative horizon that any test to distinguish such an
object from a true Schwarzschild black hole would be
extremely difficult in astrophysical contexts.
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Do I buy it?

PERSONAL PREJUDICES

Something funny ought to happen at the horizon, but
we should preserve the “holey” properties of black holes

Hawking evaporation is a process which has more to do
with quantum field theory than quantum gravity per se

The fundamental quantum dynamics which explains
black hole entropy remain to be found (despite much
work)

As a quantum positivist I advocate the view that
classical space should not exist inside a black hole: we
want a sum over all possible interior geometries
consistent with the surface boundary data

BH holographic principle would be consistent with such
a view; but gravastars not ostensibly so.
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Conclusion

Gravastars are

interesting

better than we expected at the outset

maybe good enough to convince a number of people

would have to be firmly placed in a quantum gravity
context (why is a de Sitter fluid natural?) to convince me
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