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À minha mulher Ana Cristina e
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Resumo

Neste trabalho estudamos a estabilidade estat́ıstica, no sentido da variação cont́ınua de
medidas f́ısicas, de certos sistemas dinâmicos caóticos. A nossa atenção centra-se em dois
tipos de sistemas.

O primeiro tipo diz respeito à famı́lia quadrática definida no intervalo I = [−1, 1], dada
pela expressão fa(x) = 1−ax2, para os parâmetros Benedicks-Carleson. Neste conjunto de
medida de Lebesgue positiva de parâmetros situado perto de a = 2, fa exibe crescimento
exponencial da derivada ao longo da órbita cŕıtica e possui uma única medida invariante
absolutamente cont́ınua relativamente a Lebesgue, comummente designada por medida de
Sinai-Ruelle-Bowen (SRB). Mostramos que o volume dos pontos de I que, até um dado
instante, ainda não apresentam crescimento exponencial da derivada ao longo da sua órbita
decai exponencialmente com a passagem do tempo. Provamos ainda que o mesmo é válido
para o volume dos pontos que resistem a apresentar recorrência lenta ao conjunto cŕıtico
até um dado instante. Como consequência obtemos a variação cont́ınua das medidas SRB
na norma L1, e das suas entropias métricas, com o parâmetro no conjunto de Benedicks-
Carleson.

O segundo tipo de sistemas que consideramos é a famı́lia de aplicações de Hénon no
plano dada por fa,b(x, y) = (1 − ax2 + y, bx). Para um conjunto de medida de Lebesgue
positiva de parâmetros – parâmetros de Benedicks-Carleson – estas aplicações de Hénon
apresentam um atractor não-hiperbólico que suporta uma única medida SRB que se desin-
tegra em medidas condicionais absolutamente cont́ınuas com respeito à medida de Lebesgue
1-dimensional em cada folha instável. Provamos que a medida SRB varia continuamente
na topologia fraca com o parâmetro dentro do conjunto de Benedicks-Carleson.
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Abstract

In this work we address the problem of proving statistical stability, in the sense of
continuous variation of physical measures, for certain chaotic dynamical systems. We
consider two types of systems.

The first one is the quadratic family given by fa(x) = 1 − ax2 on I = [−1, 1], for the
Benedicks-Carleson parameters. On this positive Lebesgue measure set of parameters, close
to a = 2, fa presents exponential growth of the derivative along the orbit of the critical
point and has an absolutely continuous Sinai-Ruelle-Bowen (SRB) invariant measure. We
show that the volume of the set of points of I that at a given time fail to present exponential
growth of the derivative decays exponentially as time passes. We also prove that the same
holds for the volume of the set of points of I that are not slowly recurrent to the critical set.
As a consequence we obtain continuous variation of the SRB measures, in the L1 norm,
and associated metric entropies with the parameter on the referred set. For this purpose
we elaborate on the Benedicks-Carleson techniques in the phase space setting.

The second type is the family of Hénon maps in the plane given by fa,b(x, y) = (1 −
ax2 + y, bx). For a positive Lebesgue measure set of parameters – the Benedicks-Carleson
parameter set – these Hénon maps exhibit a non-hyperbolic strange attractor supporting
a unique SRB measure that disintegrates into absolutely continuous conditional measures
with respect to the 1-dimensional Lebesgue measure on each unstable leaf. We prove that
the SRB measures vary continuously in the weak* topology within the set of Benedicks-
Carleson parameters.
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Résumé

Dans ce travail nous étudions la stabilité statistique, en termes de la continuité de
la variation des mesures physiques, pour certains systèmes dynamiques chaotiques. Nous
considérons deux types de systèmes.

Le premier c’est la famille des applications fa(x) = 1 − ax2 avec x ∈ [−1, 1] pour
les paramètres de Benedicks-Carleson. Pour chaqun de ces paramètres il y a une unique
mesure de Sinai-Ruelle-Bowen (SRB) qui est absolument continue par rapport à la mesure
de Lebesgue. Nous montrons que ces mesures SRB et ses entropies métriques varient
continûment avec le paramètre dans l’ensemble de Benedicks-Carleson.

Le deuxième c’est la famille des applications de Hénon sur R2, c’est-à-dire fa,b(x, y) =
(1− ax2 + y, bx). Pour un ensemble de paramètres avec mesure de Lebesgue positive - les
paramètres de Benedicks-Carleson – ces applications ont un attracteur étrange qui supporte
une unique mesure SRB. Nous montrons que ces mesures SRB varient continûment avec
le paramètre dans l’ensemble de Benedicks-Carleson.
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Introduction

In general terms, the study of dynamics focuses on the long term behavior of evolving
systems. As a theory it has grown to touch several branches of Mathematics and other
sciences which interact, motivate and provide examples and applications. Among a wide
list we mention the connections with Physics, Chemistry, Ecology, Economics, Computer
Science, Communications, Meteorology. The main ingredients of a dynamical system are
the phase space, the time and the evolution law governing the time progress of the system.
The phase space is a set, say M , usually with some additional structure like topological,
measurable or differentiable. The elements of M represent the possible states of the system
which are commonly described by observable quantities, like position, velocity, acceleration,
temperature, pressure, population density, concentration and many others. The time may
be discrete or continuous. For discrete systems, time is parametrized by the group Z or the
semigroup N, depending on whether it is reversible or not; while for continuous systems
the time is usually parametrized by R or R+

0 . The evolution law is the rule that represents
the action of time in the phase space. In the case of discrete systems the action is given
by a map f : M → M and the time progress corresponds to successive iterations by f of
each initial state x ∈ M . For continuous time, the action is given by a flow that usually
appears as a solution of a differential equation determining the infinitesimal evolution of
the system at each state x ∈ M . The evolution law in most applications preserves the
additional structure of the phase space. There are natural constructions to pass from a
flow to a map or vice versa; most of the main dynamical phenomena is already present in
the discrete case. In the present exposition we restrict ourselves to discrete time dynamical
systems.

At the end of the 19th century, Poincaré addressed the problem of evolution and sta-
bility of the solar system, which arose many surprising questions and his techniques gave
birth to the Modern Theory of Dynamical Systems as a qualitative study of the asymptotic
evolution of systems. By analogy to Celestial Mechanics, the time evolution of a particular
state x ∈ M is called the orbit of x. Hence, the main goal of this Theory is to study the
typical behavior of orbits for a given dynamical system. The next natural aim is to under-
stand how this behavior changes when we perturb the system and the extent to which it
is robust. In the present work we are specially concerned with this problem of stability of
the systems.

The first fundamental concept of robustness, structural stability , was formulated in the
late 1930’s by Andronov and Pontryagin. It requires the persistence of the orbit topological
structure under small perturbations, expressed in terms of a homeomorphism sending orbits
of the initial system onto orbits of the perturbed one. This concept is tied with the
notion of uniform hyperbolicity introduced by Smale in the mid 1960’s. In fact, structural
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2 INTRODUCTION

stability had been proved for Anosov and Morse-Smale systems. A complete connection
was conjectured by Palis and Smale in 1970: a diffeomorphism is structurally stable if and
only if it is uniformly hyperbolic and satisfies the so-called transversality condition. During
the 1970’s the “if” part of the conjecture was solved due to the contributions of Robbin,
de Melo and Robinson. It was only at the mid 1980’s that Mañé settled the C1-stability
conjecture (perturbations are taken to be small in the C1 topology). The flow case was
solved by Aoki and Hayashi, independently, in the early 1990’s (also in the C1-category).

In spite of these astonishing successes, structural stability proved to be somewhat re-
strictive. Several important models, such as Lorenz flows, Hénon maps and other non-
uniformly hyperbolic systems fail to present structural stability, although some key aspects
of a statistical nature persist after small perturbations. After the 1960’s, the contributions
of Kolmogorov, Sinai, Ruelle, Bowen, Oseledets, Pesin, Katok, Mañé and many others
turned the attention of the study of dynamical systems from a topological perspective to a
more statistical essence and Ergodic Theory experienced an unprecedent development. A
notion of stability with a statistical flavor was introduced by Kolmogorov and Sinai in the
1970’s. It is known as stochastic stability and in broad terms asserts that time-averages
of continuous functions are only slightly affected when iteration by f is perturbed by a
small random noise. In trying to capture this statistical persistence of phenomena, Alves
and Viana [AV02] proposed another notion, called statistical stability , which expresses the
persistence of statistical properties in terms of continuous variation of physical measures as
a function of the evolution law governing the systems. More precisely, consider a manifold
M and a smooth map f : M → M . A physical measure is a Borel probability measure µ
on M for which there is a positive Lebesgue measure set of points x ∈ M called typical
such that

lim
n→∞

1

n

n−1∑
j=0

ϕ
(
f j

a(x)
)

=

∫
ϕdµ, (1)

for any continuous function ϕ : M → R. The set of typical points forms the basin of
µ. Physical measures provide a fairly description of the statistical behavior of orbits in
the sense that, for the large set of points that constitute their basins, computing the time
average of any specific function along their orbits is accomplished simply by integrating
that function with respect to µ (spatial average). Now, suppose that f admits a forward
invariant region U ⊂ M , meaning that f(U) ⊂ U , and there exists a (unique) physical
measure µf supported on U such that (1) holds for Lebesgue almost every point x ∈ U .
Following Alves and Viana [AV02], we say that f is statistically stable (restricted to
U) if similar facts are true for any Ck nearby map g, for some k ≥ 1, and the map
g 7→ µg, associating to each g its physical measure µg, is continuous at f in the weak*
topology (two measures are close to each other if they assign close-by integrals to each
continuous function). Observe that with this definition we are guaranteeing that if a
system is statistically stable then time averages of continuous functions are only slightly
affected when the system is perturbed.

Physical measures are intimately connected with Sinai-Ruelle-Bowen measures (SRB
for short). An f -invariant Borel probability measure µ is said to be SRB if it has a positive
Lyapunov exponent and the conditional measures of µ on unstable leaves are absolutely
continuous with respect to the Riemannian measure induced on these leaves (see Chapter 2,
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Section 3.8 for a more precise definition). The existence of SRB measures for general
dynamical systems is usually a difficult problem. Starting with the work of Sinai, Ruelle
and Bowen, in the case of Axiom A attractors, we know that SRB measures exist and
qualify as physical measures. Moreover, Axiom A diffeomorphisms are statistically stable.

In the case of uniformly expanding or non-uniformly expanding systems, proving the
existence of SRB measures can be reduced, by Birkhoff’s Ergodic Theorem, to the problem
of finding ergodic, absolutely continuous invariant measures. Clearly, these SRB measures
are also physical measures. In 1969, Krzyzewski and Szlenk [KS69] have proved the
existence of such measures for uniformly expanding maps which are also well known to
be statistically stable. The existence of SRB measures for a considerably large set of
one-dimensional quadratic maps exhibiting non-uniformly expanding behavior has been
established in the pioneer work of Jakobson [Ja81]; see also [CE80a, BC85] for different
approaches of the same result. Viana introduced in [Vi97] an open class of maps in higher
dimensions with non-uniformly expanding behavior. Alves in [Al00] proved the existence
of SRB measures for the Viana maps. Motivated by these results, Alves, Bonatti and Viana
[ABV00] obtained general conclusions on the existence of SRB measures for non-uniformly
expanding dynamical systems.

With the Viana maps in mind, Alves and Viana [AV02] built an abstract model to
derive strong statistical stability for these transformations. By strong statistical stability
we mean convergence of the SRB measures in the L1-norm (recall that these SRB mea-
sures are absolutely continuous with respect to Lebesgue measure). Soon after, Alves in
[Al03] showed that, under some general conditions, non-uniformly expanding maps with
slow recurrence to the critical region fit the abstract model in [AV02]. Hence, they are
statistically stable in the strong sense. The conditions at stake have to do with the volume
decay of the tail set, which is the set of points that resist satisfying either the non-uniformly
expanding requirement or the slow recurrence, up to a given time.

Recently, Freitas [Fr05] has proved that the Benedicks-Carleson quadratic maps are
non-uniformly expanding, slowly recurrent to the critical set and the volume of their tail
sets decays sufficiently fast so that the results in [Al03] apply. Thus, these maps are
statistically stable in the strong sense. Similar results had already been obtained by Rychlik
and Sorets [RS97] for Misiurewicz quadratic maps; and by Tsujii [Ts96] for convergence
in the weak* topology. Chapter 1 of this dissertation is essentially the content of [Fr05]
with the following improvement: while in [Fr05] it was obtained that the volume of the
tail set of Benedicks-Carleson quadratic maps decays sub-exponentially, in this work we
conclude the exponential decay.

In the remarkable paper [BC91], Benedicks and Carleson showed that for a positive
Lebesgue measure set of parameters the Hénon map exhibits a non-hyperbolic attractor.
Afterwards, Benedicks and Young in [BY93] proved that each of these non-hyperbolic
attractors supports a unique SRB measure which is also a physical measure. Thus, a
natural question is: are the Hénon maps of the Benedicks-Carleson type statistically stable?
The main result of Chapter 2 is the positive answer to this question.

Let us add that stochastic stability may imply statistical stability if we are allowed to
have a deterministic noise. Although we have stochastic stability for Benedicks-Carleson
quadratic maps (see for example [BY92, BV96]), it does not follow from this that these
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maps are statistically stable. The same is true for the Hénon maps of Benedicks-Carleson
type. In fact, Benedicks and Viana [BV06] showed that these maps are stochastically
stable but statistical stability is not a direct consequence of it.

Before ending, let us mention that one can study the stability of the statistical behavior
of a system in a broader perspective, namely, also investigate the variation of entropy.
Entropy is related to the unpredictability of the system. Topological entropy measures the
complexity of a dynamical system in terms of the exponential growth rate of the number
of orbits distinguishable over long time intervals, within a fixed small precision. Metric
entropy with respect to a physical measure quantifies the average level of uncertainty every
time we iterate, in terms of exponential growth rate of the number of statistically significant
paths an orbit can follow. In [Fr05] it was also shown that the metric entropy with respect
to the SRB measure varies continuously with the parameter within the Benedicks-Carleson
quadratic maps. This was achieved through the use of the results in [AOT] for non-
uniformly expanding maps with slow recurrence to the critical set. The same problem
within Hénon maps is, up to our knowledge, still open.



CHAPTER 1

Statistical stability for Benedicks-Carleson quadratic maps

1. Motivation and statement of results

Our object of study is the logistic family. As regards the asymptotic behavior of orbits
of points x ∈ I = [−1, 1] we know that:

(1) The set of parameters H for which fa has an attracting periodic orbit, is open and
dense in [0, 2].

(2) There is a positive Lebesgue measure set of parameters, close to the parameter
value 2, for which fa has no attracting periodic orbit and exhibits a chaotic be-
havior, in the sense of existence of an ergodic, fa-invariant measure absolutely
continuous with respect to the Lebesgue measure on I = [−1, 1].

(3) There is also a well studied set of parameters where fa is infinitely renormalizable.

The first result is a conjecture with long history, which was finally proved by Graczyk,
Swiatek [GS97] and Lyubich [Ly97, Ly00]. The second one was studied in Jakobson’s
pioneer work [Ja81], in the work of P. Collet and J.P. Eckmann [CE80a, CE80b] and
latter by Benedicks and Carleson in their celebrated papers [BC85, BC91], just to mention
a few. For the third type of parameters we refer to [MS93] where an extensive treatment
of the subject can be found.

The crucial role played by the orbit of the unique critical point ξ0 = 0 on the deter-
mination of the dynamical behavior of fa is remarkable. It is well known that if fa has
an attracting periodic orbit then ξ0 = 0 belongs to its basin of attraction, which is the
set of points x ∈ I whose ω-limit set is the attracting periodic orbit. Also, the basin of
attraction of the periodic orbit is an open and dense full Lebesgue measure subset of I.
See [MS93], for instance. Benedicks and Carleson [BC85, BC91] show the existence of
a positive Lebesgue measure set of parameters BC1 for which there is exponential growth
of the derivative of the orbit of the critical point ξ0. This implies the non-existence of
attracting periodic orbits and leads to a new proof of Jakobson’s theorem.

In this work, we study the regularity in the variation of invariant measures and their
metric entropy for small perturbations in the parameters. We are interested in investigating
statistical stability of the system, that is, the persistence of its statistical properties for
small modifications of the parameters. Alves and Viana [AV02] formalized the concept of
statistical stability in terms of continuous variation of physical measures as a function of
the governing law of the dynamical system. It is not difficult to conclude that if a ∈ H,
and {p, fa(p), . . . , fk−1

a (p)} is the attracting periodic orbit then

ηa =
1

k

k−1∑
i=0

δf i
a(p),

5



6 1. STATISTICAL STABILITY FOR BENEDICKS-CARLESON QUADRATIC MAPS

where δx is the Dirac probability measure at x ∈ I, is a physical measure whose basin
coincides with the basin of attraction of the periodic orbit. Moreover, the quadratic family
is statistically stable for a ∈ H, i.e. the physical measure ηa varies continuously with a ∈ H,
in a weak sense (convergence of measures in the weak* topology).

The infinitely renormalizable quadratic maps also admit a physical measure with the
whole interval I for basin. In fact, any absolutely continuous fa-invariant measure is SRB
and describes (statistically speaking) the asymptotic behavior of almost all points, which
is to say that its basin is I(see pp 348-352 [MS93]).

Benedicks and Young [BY92] proved that for each Benedicks-Carleson parameter a ∈
BC1, there is a unique, ergodic, fa-invariant, absolutely continuous measure (with respect
to Lebesgue measure on I) µa. These SRB measures qualify as physical measures by
Birkhoff’s ergodic theorem and their basin is the whole interval I. Hence, it is a natural
question to wonder if the Benedicks-Carleson quadratic maps are statistically stable.

In the subsequent sections it will be shown that the answer is in the affirmative. In fact,
we will prove that the quadratic family is statistically stable, in strong sense, for a ∈ BC1.
To be more precise, we will show that the densities of the SRB measures vary continuously,
in L1-norm, with the parameter a ∈ BC1. This result relates to those of Tsujii, Rychlik
and Sorets. In [Ts96], Tsujii showed the continuity of SRB measures, in weak topology, on
a positive Lebesgue measure set of parameters. Rychlik and Sorets [RS97], on the other
hand, obtained the continuous variation of the SRB measures, in terms of convergence in
L1- norm, for Misiurewicz parameters, which form a subset of zero Lebesgue measure. We
also would like to refer the work of Thunberg [Th01] who proved that on any full Lebesgue
measure set of parameters there is no continuous variation of the physical measures with
the parameter.

With a view to studying the stability of the statistical behavior of the system in a
broader perspective, we are also specially interested in the variation of entropy. It is
known that topological entropy varies continuously with a ∈ [0, 2] (see [MS93]). This is
not the case with the metric entropy of physical measures. We note that the metric entropy
associated to ηa, with a ∈ H, is zero. H is an open and dense set which means we can find
a sequence of parameters (an)n∈N, such that an ∈ H and thus with zero metric entropy
with respect to the physical measure ηan , accumulating on a ∈ BC1, whose metric entropy
associated with the SRB measure, µa, is strictly positive.

However, we will show that the metric entropy of the SRB measure µa varies contin-
uously on the Benedicks-Carleson parameters, a ∈ BC1. We would like to stress that the
continuous variation of the metric entropy is not a direct consequence of the continuous
variation of the SRB measures and the entropy formula, because log(f ′a) is not continuous
on the interval I.

1.1. Brief description of the strategy. The work developed by Alves and Viana on
[AV02] led Alves [Al03] to obtain sufficient conditions for the strong statistical stability
of certain classes of non-uniformly expanding maps with slow recurrence to the critical
set. By non-uniformly expanding, we mean that for Lebesgue almost all points we have
exponential growth of the derivative along their orbits. Slow recurrence to the critical set
means, roughly speaking, that almost none of the points can have its orbit making frequent
visits to very small vicinities of the critical set.
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Alves, Oliveira and Tahzibi [AOT] determined abstract conditions for continuous vari-
ation of metric entropy with respect to SRB measures. They also obtained conditions
for non-uniformly expanding maps with slow recurrence to the critical set to satisfy their
initial abstract conditions.

In both cases, the conditions obtained for continuous variation of SRB measures and
their metric entropy are tied with the volume decay of the tail set, which is the set of
points that resist to satisfy either the non-uniformly expanding or the slow recurrence to
the critical set conditions, up to a given time.

Consequently, our main objective is to show that on the Benedicks-Carleson set of
parameter values, where we have exponential growth of the derivative along the orbit of
the critical point ξ0 = 0, the maps fa are non-uniformly expanding, have slow recurrence
to the critical set, and the volume of the tail set decays sufficiently fast. In fact, we will
show that the volume of the tail set decays exponentially fast. Finally we apply the results
on [Al03, AOT] to obtain the continuous variation of the SRB measures and their metric
entropy inside the set of Benedicks-Carleson parameters BC1.

We also refer to the recent work [ACP06] from which we conclude, by the non-
uniformly expanding character of these maps, that for almost every x ∈ I and any y
on a pre-orbit of x, one has an exponential growth of the derivative of y.

1.2. Statement of results. In what follows, we will only consider parameter values
a ∈ BC1 that are Benedicks-Carleson parameters, in the sense that for those a ∈ BC1 we
have exponential growth of the derivative of fa (ξ0),∣∣∣

(
f j

a

)′
(fa(ξ0))

∣∣∣ ≥ ecj, ∀j ∈ N, (EG)

where c ∈ [
2
3
, log 2

)
is fixed, and the basic assumption is valid, namely

∣∣f j
a (ξ0)

∣∣ ≥ e−αj, ∀j ∈ N, (BA)

where α is a small constant. Note that BC1 is a set of parameter values of positive Lebesgue
measure, very close to a = 2. (See Theorem 1 of [BC91] or [Mo92] for a detailed version
of its proof).

We say that fa is non-uniformly expanding if there is a d > 0 such that for Lebesgue
almost every point in I = [−1, 1]

lim inf
n→∞

1

n

n−1∑
i=0

log
∣∣f ′a

(
f i

a(x)
)∣∣ > d, (1.1)

while having slow recurrence to the critical set means that for every ε > 0, there exists
γ > 0 such that for Lebesgue almost every x ∈ I

lim sup
n→∞

1

n

n−1∑
j=0

− log distγ

(
f j

a(x), 0
)

< ε, (1.2)

where

distγ(x, y) =

{ |x− y| if |x− y| ≤ γ
0 if |x− y| > γ

. (1.3)
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Observe that by (EG) it is obvious that ξ0 satisfies (1.1) for all a ∈ BC1. However,
with reference to condition (1.2) the matter is far more complicated and one has that ξ0

satisfies it for Lebesgue almost all parameters a ∈ BC1. We provide a heuristic argument
for the validity of the last statement on remark 8.2.

It is well known that the validity of (1.1) Lebesgue almost everywhere (a.e.) derives
from the existence of an ergodic absolutely continuous invariant measure. Nevertheless we
are also interested in knowing how fast does the volume of the points that resist to satisfy
(1.1) up to n, decays to 0 as n goes to ∞. With this in mind, we define the expansion time
function, first introduced on [ALP05]

Ea(x) = min

{
N ≥ 1 :

1

n

n−1∑
i=0

log
∣∣f ′a

(
f i

a(x)
)∣∣ > d, ∀n ≥ N

}
, (1.4)

which is defined and finite almost everywhere on I if (1.1) holds a.e.
Similarly, we define the recurrence time function, also introduced on [ALP05]

Ra(x) = min

{
N ≥ 1 :

1

n

n−1∑
j=0

− log distγ

(
f j

a(x), 0
)

< ε, ∀n ≥ N

}
, (1.5)

which is defined and finite almost everywhere in I, as long as (1.2) holds a.e.
We are now able to define the tail set , at time n ∈ N,

Γa
n = {x ∈ I : Ea(x) > n or Ra(x) > n} , (1.6)

which can be seen as the set of points that at time n have not reached a satisfactory
exponential growth of the derivative or could not be sufficiently kept away from ξ0 = 0.

First we study the volume contribution to the tail set, Γa
n, of the points where fa fails

to present non-uniformly expanding behavior. We claim that in fact, (1.1) a.e. holds to be
true and the volume of the set of points whose derivative has not achieved a satisfactory
exponential growth at time n, decays exponentially as n goes to ∞. In what follows λ
denotes Lebesgue measure on R.

Theorem A. Assume that a ∈ BC1. Then fa is non-uniformly expanding, which is to
say that (1.1) holds for Lebesgue almost all points x ∈ I. Moreover, there are positive real
numbers C1 and τ1 such that for all n ∈ N:

λ {x ∈ I : Ea(x) > n} ≤ C1e
−τ1n.

Second, we study the volume contribution to Γa
n, of the points that fail to be slowly

recurrent to ξ0. We claim that (1.2) a.e. also holds true and the volume of the set of points
that at time n, have been too close to the critical point, in mean, decays exponentially
with n.

Theorem B. Assume that a ∈ BC1. Then fa has slow recurrence to the critical set,
or in other words, (1.2) holds for Lebesgue almost all points x ∈ I. Moreover, there are
positive real numbers C2 and τ2 such that for all n ∈ N:

λ {x ∈ I : Ra(x) > n} ≤ C2e
−τ2n.
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Remark 1.1. The constants d in (1.1), ε, γ in (1.2), c, α from (EG) and (BA) can
be chosen uniformly on BC1. Moreover, the constants C1, τ1 given by theorem A and the
constants C2, τ2 given by theorem B depend on the previous ones but are independent of
the parameter a ∈ BC1. Thus, we may say that {fa}a∈BC1

is a uniform family in the sense
considered in [Al03]. For a further discussion on this subject see section 9.

Remark 1.2. Both theorems easily imply that the volume of the tail set decays to 0 at
least exponentially as n goes to ∞, i.e. for all n ∈ N, λ (Γa

n) ≤ const e−τn, for some τ > 0
and const > 0.

The exponential volume decay of the tail set allows us to apply theorem A from [Al03]
to obtain, in a strong sense, continuous variation of the ergodic invariant measures under
small perturbations on the set of parameters. By strong sense we mean convergence of the
densities of the ergodic invariant measures in the L1 norm.

Corollary C. Let µa be the SRB measure invariant for fa. Then BC1 3 a 7→ dµa

dλ
is

continuous.

Theorems A and B also make it possible to apply corollary C from [AOT] to get the
continuous variation of metric entropy with the parameter.

Corollary D. The entropy of the SRB measure invariant of fa varies continuously
with a ∈ BC1.

Theorem A alone, also allows us to apply corollary 1.2 from [ACP06] to obtain back-
ward contraction on every pre-orbit of Lebesgue almost every point.

Corollary E. For Lebesgue almost every x ∈ I, there exists Cx > 0 and b > 0 such
that

∣∣(fn
a )′ (y)

∣∣ > Cxe
bn, for every y ∈ f−n(x) and for all n ∈ N.

2. Benedicks-Carleson techniques on phase space and notation

The first thing we need to establish is the meaning of “close to the critical set” and
“distant from the critical set”, for which we introduce the following neighborhoods of
ξ0 = 0:

Um =
(−e−m, e−m

)
, U+

m = Um−1, for m ∈ N
and consider a large positive integer ∆ that will indicate when closeness to the critical
region is relevant. In fact, here and henceforth, we define δ = e−∆.

We will use λ to refer to Lebesgue measure on R, although, sometimes we will write
|ω| as an abbreviation of λ(ω), for ω ⊂ R.

We follow [BC85, BC91] and proceed for each point x ∈ I as was done in ξ0, by
splitting the orbit of x into free periods, returns, bound periods, which occur in this order.
Before we explain these concepts we introduce the following notation for the orbit of the
critical point, ξn = fn

a (0), for all n ∈ N0.
The free periods correspond to periods of time in which we are certain that the orbit

never visits the vicinity U∆ = (−δ, δ) of ξ0. During these periods the orbit of x experiences
an exponential growth of its derivative |(fn

a )′(x)|, provided we are close enough to the
parameter value 2. In fact, the following lemma gives a first approach to the set BC1 by
stating that we may have an exponential growth rate 0 < c0 < log 2 of the derivative of
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the orbit of x during free periods, for all a ∈ [a0, 2], where a0 is chosen sufficiently close to
2.

Lemma 2.1. For every 0 < c0 < log 2 and ∆ sufficiently large there exists 1 <
a0(c0, ∆) < 2 such that for every x ∈ I and a ∈ [a0, 2] one has:

(1) If x, fa(x), . . . , fk−1
a (x) /∈ U∆+1 then

∣∣(fk
a )′(x)

∣∣ ≥ e−(∆+1)ec0k;

(2) If x, fa(x), . . . , fk−1
a (x) /∈ U∆+1 and fk

a (x) ∈ U+
∆ , then

∣∣(fk
a )′(x)

∣∣ ≥ ec0k;

(3) If x, fa(x), . . . , fk−1
a (x) /∈ U∆+1 and fk

a (x) ∈ U1, then
∣∣(fk

a )′(x)
∣∣ ≥ 4

5
ec0k.

The proof relies on the fact that f2(x) = 1− 2x2 is conjugate to 1− 2|x|. So it is only
a question of choosing a sufficiently close to 2 for fa to inherit the expansive behavior of
f2. See [BC85] or [Al92, Mo92] for detailed versions. In what follows, we assume that
a0 is sufficiently close to 2 so that c0 ≥ 2

3
.

Due to this exponential expansion outside the critical region one can prove that, for
almost every point x ∈ I, it is impossible to keep its orbit away from U∆. We have a return
of the orbit of a point to the neighborhood of ξ0 = 0 if for some j ∈ N, f j

a(x) ∈ U∆ = (−δ, δ).
So a free period ends with what we call a free return. There are two types of free returns:
the essential and inessential ones. In order to distinguish each type we need a sequence
P0,P1, . . . of partitions of I into intervals. We begin by partitioning U∆ in the following
way:

Im =
[
e−(m+1), e−m

)
, I+

m =
[
e−(m+1), e−(m−1)

)
, for m ≥ ∆,

Im =
(−e−m,−e−(m+1)

]
,I+

m =
(−e−(m−1),−e−(m+1)

]
, for m ≤ −∆.

We say that the return had a depth of µ ∈ N if µ = [− log distδ (f j
a(x), 0)], which is

equivalent to saying that f j
a(x) ∈ I±µ.

Next we subdivide each Im, m ≥ ∆ into m2 pieces of the same length in order to
obtain bounded distortion on each member of the partition. For each m ≥ ∆ − 1 and
k = 1, . . . ,m2, we introduce the following notation

Im,k =

[
e−m − k

λ(Im)

m2
, e−m − (k − 1)

λ(Im)

m2

)

I−m,k = −Im,k , I+
m,k = Im1,k1 ∪ Im,k ∪ Im2,k2 ,

where Im1,k1 and Im2,k2 are the adjacent intervals of Im,k.
The sequence of partitions will be built in full detail on section 4 but we note the

following:
For Lebesgue almost every x ∈ I, {x} = ∩n≥0ωn(x), where ωn(x) is the element of Pn

containing x. For such x there is a sequence t1, t2, . . . corresponding to the instants when
the orbit of x experiences an essential return, which means Im,k ⊂ f ti

a (ωti(x)) ⊂ I+
m,k for

some |m| ≥ ∆ and 1 ≤ k ≤ m2. In contrast we say that v is a free return time for x of
inessential type if f v

a (ωv(x)) ⊂ I+
m,k, for some |m| ≥ ∆ and 1 ≤ k ≤ m2, but f v

a (ωv(x)) is

not large enough to contain an interval Im,k for some |m| ≥ ∆ and 1 ≤ k ≤ m2.
Now let us see some consequences of the returns. Since

|(fn
a )′(x)| =

n∏
j=1

∣∣2af j
a(x)

∣∣ ,
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the returns introduce some small factors in the derivative of the orbit of x. Also if we
define for a point x ∈ I and n ∈ N,

Tn(x) =
1

n

n−1∑
j=0

− log distγ

(
f j

a(x), 0
)
, (2.1)

where γ = e−Θ is the same of condition (1.2) and distγ is given by (1.3). We note that the
only points of the orbit of x that contribute to the sum in (2.1) are those considered to be
deep returns with depth above the threshold Θ ≥ ∆ which is to be determined later. To
compensate for the loss in the expansion of the derivative, we will show that a property
very similar to (BA) holds for the orbit of x ∈ I which can be seen as follows: we allow
the orbit of x to get close to ξ0 but we put some restraints on the velocity of possible
accumulation on ξ0. This will be the basis of the proof of theorem A. As for the proof of
theorem B the strategy will be of different kind, it will be based on a statistical analysis
of the depth of the returns, specially of the essential returns, which, fortunately, are very
unlikely to reach large depths.

Finally, we are lead to the notion of bound period that follows a return during which
the orbit of x is bounded to the orbit of ξ0, or in other words: if at a return the orbit of x
falls in a tight vicinity of the critical point we expect it to shadow the early iterates of ξ0

at least for some period of time.
Let β > 0 be a small number such that β > α; for example, take 10−2 > β = 2α.

Definition 2.2. Suppose x ∈ U+
m. Let p(x) be the largest p such that the following

binding condition holds:∣∣f j
a(x)− ξj(a)

∣∣ ≤ e−βj, for all i = 1, . . . , p− 1 (BC)

The time interval 1, . . . , p(x)− 1 is called the bound period for x.
If p(m) is the largest p such that (BC) holds for all x ∈ I+

m, which is the same to define

p(m) = min
x∈I+

m

p(m, x),

then the time interval 1, . . . , p(m)− 1 is called the bound period for I+
m.

One expects that the deeper is the return, the longer is its associated bound period.
Next lemma confirms this, in particular.

Lemma 2.3. If ∆ is sufficiently large, then for each |m| ≥ ∆, p(m) has the following
properties:

(1) There is a constant B1 = B1(β − α) such that ∀y ∈ fa

(
U|m|−1

)

1

B1

≤
∣∣∣∣
(f j

a)′(y)

(f j
a)′(ξ1)

∣∣∣∣ ≤ B1, for j = 0, 1 . . . , p(m)− 1;

(2) 2
3
|m| < p(m) < 3|m|;

(3)
∣∣(f p

a )′ (x)
∣∣ ≥ e(1−4β)|m|, for x ∈ I+

m and p = p(m).

The proof of this lemma depends heavily on the conditions (EG) and (BA). It can
be found in [Al92, Mo92]. (See [BC85] for a similar version of the lemma but with
sub-exponential estimates).
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We call the attention to the fact that after the bound period not only have we recovered
from the loss on the growth of the derivative caused by the return that originated the bound
period, but we even have some exponential gain.

Also note that nothing prevents the orbit of a point x from entering in U∆ during a
bound period. These instants are called the bound return times.

Hence, we may speak of three types of returns: essential, inessential and bound. The
essential returns are the ones that will play a prominent role in the reasoning. Let, as
before, the sequence t1, t2, . . . denote the instants corresponding to essential returns of the
orbit of x. When n ∈ N is given, we can define sn to be the number of essential returns
of the orbit of x, occurring up to n. We denote by sdn(x) the number of those essential
returns occurring up to n that correspond to deep essential returns of the orbit of x with
return depths above the threshold Θ ≥ ∆. Let ηi denote the depth of the i-th essential
return. Each ti may be followed by bounded returns at times ui,j, j = 1, . . . , u and these
can be followed by inessential returns at times vi,j, j = 1, . . . , v. We will write ηi,j to
denote the depth of the inessential return correspondent to vi,j. Note that each vi,j has
a bound evolution where new bound returns may occur and, although we refer to these
returns later, it is not necessary to introduce here a notation for them. Sometimes, for
the sake of simplicity, it is convenient not to distinguish between essential and inessential
returns, so we introduce the notation z1 < z2 < . . . for the instants of occurrence of free
returns of the orbit of x.

We call attention to the fact that ti, for example, depends on the point x ∈ I considered-
ti(x) corresponds to the i-th instant of essential return of the orbit of x. So, ti, sn, ηi, ui,j,
vi,j, ηi,j and zi, should be regarded as functions of the point x ∈ I.

The sequence of partitions Pn of the set I will be such that all x ∈ ω ∈ Pn have the
same return times and return depths up to n. In fact, if, for example, ti(x) ≤ n for some
x ∈ ω ∈ Pn, then ti and ηi are constant on ω. The same applies to the other above
mentioned functions of x. The construction of the partition will also guarantee that fa has
bounded distortion on each component which will be shown to be of extreme importance.

3. Insight into the reasoning

We are now in condition to sketch the proofs of theorems A and B. The following two
basic ideas are determinant for both the proofs.

(I) Not only the depth of the inessential and bound returns is smaller than the depth
of the essential return preceding them (as we will show in lemmas 5.1 and 5.2) but
also the total sum of the depths of bounded and inessential returns is less than a
quantity proportional to the depth of the essential return preceding them, as we
will show in propositions 5.4 and 5.5.

(II) The chances of occurring a very deep essential return are very small, in fact, they
are less than e−τρ, where τ > 0 is constant and ρ is the depth in question. See
proposition 6.2 and corollary 6.3.

The first one derives from (BA), (EG) and other properties of the critical orbit, while
the main ingredient of the proof of the second is the bounded distortion on each element
of the partition.
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In order to prove theorem A, we define the following sets for a sufficiently large n.

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f i

a(x)| < e−αn
}

. (3.1)

Next, we will see that if x ∈ I − E1(n) then
∣∣(fn

a )′ (x)
∣∣ > edn, for some d = d(α, β) > 0.

Let us fix a large n. Assume that zi, i = 1, . . . , γ are the instants of return of the orbit
of x, either essential or inessential. Let pi denote the length of the bound period associated
with the return zi. We set z0 = 0, whether x ∈ U∆ or not; p0 = 0 if x /∈ U∆ and as usual
if not. We define qi = zi+1 − (zi + pi), for i = 0, 1, . . . , γ − 1 and

qγ =

{
0 if n < zγ + pγ

n− (zγ + pγ) if n ≥ zγ + pγ
.

Finally, let

d = min

{
c,

1− 4β

3

}
− 2α =

1− 4β

3
− 2α. (3.2)

If n ≥ zγ + pγ then

|(fn
a )′(x)| =

γ∏
i=0

∣∣(f qi
a )′(f zi+pi

a (x))
∣∣ |(fpi

a )′(f zi
a (x))| .

Using lemmas 2.1 and 2.3, we have

|(fn
a )′(x)| ≥ e−∆+1ec0

∑γ
i=0 qie

1−4β
3

∑γ
i=0 pi ≥ e−∆+1edne2αn ≥ edn, (3.3)

for n large enough.
If n < zγ + pγ then

|(fn
a )′(x)| = |f ′a(f zγ

a (x))| ∣∣(fn−(zγ+1)
a )′(f zγ+1

a (x))
∣∣

γ−1∏
i=0

∣∣(f qi
a )′(f zi+pi

a (x))
∣∣ |(fpi

a )′(f zi
a (x))| .

Now, by lemmas 2.1 and 2.3 together with the assumption that x ∈ I −E1(n), for n large
enough we have

|(fn
a )′(x)| ≥ |f ′a(f zγ

a (x))| 1
B1

∣∣(fn−(zγ+1)
a )′(1)

∣∣ ec0
∑γ−1

i=0 qie
1−4β

3

∑γ−1
i=0 pi

≥ e−αn 1
B1

ec0(n−(zγ+1))ec0
∑γ−1

i=0 qie
1−4β

3

∑γ−1
i=0 pi

≥ e−αn−log B1e(d+2α)(n−1)

≥ e−2αnedne2αn

≥ edn.

(3.4)

Using (I) and (II) we will show that

λ (E1(n)) ≤ e−τ1n, (3.5)

for a constant τ1(α, β) > 0 and for all n ≥ N∗
1 (∆, τ1). We consider N1(∆, α, B1, d, N∗

1 ) such
that for all n ≥ N1 estimates (3.3), (3.4) and (3.5) hold. Hence for every n ≥ N1 we have
that |(fn

a )′(x)| ≥ edn, except for a set E1(n) of points x ∈ I satisfying (3.5).
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We take E1 =
⋂

k≥N1

⋃
n≥k E1(n). Since ∀k ≥ N1∑

n≥k

λ (E1(n)) ≤ const e−τ1k,

we have by the Borel Cantelli lemma that λ(E1) = 0. Thus on the full Lebesgue measure
set I − E1 we have that (1.1) holds. We note that {x ∈ I : Ea(x) > k} ⊂ ⋃

n≥k E1(n),
where Ea is defined in (1.4). So for k ≥ N1

λ ({x ∈ I : Ea(x) > k}) ≤ const e−τ1k.

At this point we just have to compute an adequate C1 = C1(N1) > 0 such that

λ ({x ∈ I : Ea(x) > n}) ≤ C1e
−τ1n, (3.6)

for all n ∈ N .
For the proof of theorem B, we define for n ∈ N the sets:

E2(n) = {x ∈ I : Tn(x) > ε} . (3.7)

Note that it is the depth of the deep returns that counts for the sum on Tn(x). Taking
note of the basic idea (I), in order to obtain a bound for Tn one only needs to take into
consideration the deep essential returns.

Thus if we define

Fn(x) =
sdn∑
i=1

ηi, (3.8)

where sdn is the number of essential returns with depths above Θ that occur up to n and
ηi their respective depths, we have Tn(x) ≤ C5

n
Fn(x), from which we conclude that

λ(E2(n)) ≤ λ

{
x : Fn(x) >

εn

C5

}
.

Fact (II) and a large deviation argument allow us to obtain for n ≥ N2(Θ)

λ

{
x : Fn(x) >

εn

C5

}
≤ const e−τ2n

where τ2 = τ2(ε, Θ) > 0 is constant, which implies for k ≥ N2∑

n≥k

λ (E2(n)) ≤ const e−τ2k.

Consequently, applying Borel Cantelli’s lemma, we get λ(E2) = 0, where E2 = ∩k≥1 ∪n≥k

E2(n) and finally conclude that (1.2) holds on the full Lebesgue measure set I−E2. Observe
that {x ∈ I : Ra(x) > k} ⊂ ⋃

n≥k E2(n), and thus, for all n ∈ N,

λ ({x ∈ I : Ra(x) > n}) ≤ C2e
−τ2n,

where C2 = C2(N2, τ2) > 0 is constant. Recall that Ra is defined in (1.5).
At this point we would like to bring the reader’s attention to the fact that most proofs

and lemmas that follow are standard, in the sense that they are very resemblant to the
ones on [Al92, BC85, BC91, BY92, Mo92] (just to cite a few), that deal with the same
subject. Nevertheless, we could not find the right version for our needs, either because in
some cases they refer to sub-exponential estimates when we want exponential estimates or
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because the partition is built on the space of parameters instead of the set I, as we wish.
Hence, we decided for the sake of completeness to include them in this work.

4. Construction of the partition and bounded distortion

We are going to build inductively a sequence of partitions P0,P1, . . . of I (modulo a
zero Lebesgue measure set) into intervals. We will also define inductively the sets Rn(ω) ={
z1, . . . , zγ(n)

}
which is the set of the return times of ω ∈ Pn up to n and a set Qn(ω) ={

(m1, k1), . . . , (mγ(n), kγ(n))
}
, which records the indices of the intervals such that f zi

a (ω) ⊂
I+
mi,ki

, i = 1, . . . , zγ(n).
Along with the construction of the partition, we will show, inductively, that for all

n ∈ N0

∀ω ∈ Pn fn+1
a |ω is a diffeomorphism, (4.1)

which is vital for the construction itself.
For n = 0 we define

P0 = {[−1,−δ], [δ, 1]} ∪ {
Im,k : |m| ≥ ∆, 1 ≤ k ≤ m2

}
.

It is obvious that P0 satisfies (4.1). We set R0 ([−1,−δ]) = R0 ([δ, 1]) = ∅ and R0(Im,k) =
{0}.

Assume that Pn−1 is defined, satisfies (4.1), and Rn−1, Qn−1 are also defined on each
element of Pn−1. We fix an interval ω ∈ Pn−1. We have three possible situations:

(1) If Rn−1(ω) 6= ∅ and n < zγ(n−1) + p(mγ(n−1)) then we say that n is a bound time
for ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω), Qn(ω) = Qn−1(ω).

(2) If Rn−1(ω) = ∅ or n ≥ zγ(n−1) + p(mγ(n−1)), and fn
a (ω) ∩ U∆ ⊂ I∆,1 ∪ I−∆,1,

then we say that n is a free time for ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω),
Qn(ω) = Qn−1(ω).

(3) If the above two conditions do not hold we say that ω has a free return situation
at time n. We have to consider two cases:
(a) fn

a (ω) does not cover completely an interval Im,k, with |m| ≥ ∆ and k =
1, . . . , m2. Because fn

a is continuous and ω is an interval, fn
a (ω) is also an

interval and thus is contained in some I+
m,k, for a certain |m| ≥ ∆ and k =

1, . . . , m2, which is called the host interval of the return. We say that n is an
inessential return time for ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω) ∪ {n},
Qn(ω) = Qn−1(ω) ∪ {(m, k)}.

(b) fn
a (ω) contains at least an interval Im,k, with |m| ≥ ∆ and k = 1, . . . , m2, in

which case we say that ω has an essential return situation at time n. Then
we consider the sets

ω′m,k = f−n
a (Im,k) ∩ ω for |m| ≥ ∆

ω′+ = f−n
a ([δ, 1]) ∩ ω

ω′− = f−n
a ([−1,−δ]) ∩ ω

and if we denote by A the set of indices (m, k) such that ω′m,k 6= ∅ we have

ω − {
f−n

a (0)
}

=
⋃

(m,k)∈A
ω′m,k. (4.2)
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By the induction hypothesis fn
a |ω is a diffeomorphism and then each ω′m,k is

an interval. Moreover fn
a (ω′m,k) covers the whole Im,k except eventually for the

two end intervals. When fn
a (ω′m,k) does not cover Im,k entirely, we join it with

its adjacent interval in (4.2). We also proceed likewise when fn
a (ω′+) does not

cover I∆−1,(∆−1)2 or fn
a (ω′−) does not contain the whole interval I1−∆,(∆−1)2 .

In this way we get a new decomposition of ω − {f−n
a (0)} into intervals ωm,k

such that
Im,k ⊂ fn

a (ωm,k) ⊂ I+
m,k,

when |m| ≥ ∆.
We define Pn, by putting ωm,k ∈ Pn for all indices (m, k) such that ωm,k 6= ∅,
with |m| ≥ ∆, which results in a refinement of Pn−1 at ω. We set Rn(ωm,k) =
Rn−1(ω)∪ {n} and n is called an essential return time for ωm,k. The interval
I+
m,k is called the host interval of ωm,k and Qn(ωm,k) = Qn(ω) ∪ {(m, k)}.

In the case when the set ω+ is not empty we say that n is an escape time
or escape situation for ω+ and Rn(ω+) = Rn−1(ω), Qn(ω+) = Qn−1(ω). We
proceed likewise for ω−. We also refer to ω+ or ω− as escaping components.
Note that the points in escaping components are in free period.

To end the construction we need to verify that (4.1) holds for Pn. Since for any interval
J ⊂ I

fn
a |J is a diffeomorphism

0 /∈ fn
a (J)

}
⇒ fn+1

a |J is a diffeomorphism,

all we are left to prove is that 0 /∈ fn
a (ω) for all ω ∈ Pn. So take ω ∈ Pn. If n is a free time

for ω then we have nothing to prove. If n is a return for ω, either essential or inessential,
we have by construction that fn

a (ω) ⊂ I+
m,k for some |m| ≥ ∆, k = 1, . . . , m2 and thus

0 /∈ fn
a (ω). If n is a bound time for ω then by definition of bound period and (BA) we

have for all x ∈ ω

|fn
a (x)| ≥

∣∣∣fn−zγ(n−1)
a (0)

∣∣∣−
∣∣∣fn

a (x)− f
n−zγ(n−1)
a (0)

∣∣∣
≥ e−α(n−zγ(n−1)) − e−β(n−zγ(n−1))

≥ e−α(n−zγ(n−1))
(
1− e−(β−α)(n−zγ(n−1))

)

> 0 since β − α > 0.

Now we will obtain estimates of the length of |fn
a (ω)|.

Lemma 4.1. Suppose that z is a return time for ω ∈ Pn−1, with host interval I+
m,k. Let

p = p(m) denote the length of its bound period. Then

(1) Assuming that z∗ ≤ n − 1 is the next return time for ω (either essential or
inessential) and defining q = z∗ − (z + p) we have, for a sufficiently large ∆,∣∣f z∗

a (ω)
∣∣ ≥ ec0qe(1−4β)|m| |f z

a (ω)| ≥ 2 |f z
a (ω)|.

(2) If z is the last return time of ω up to n − 1 and n is either a free time for ω or
a return situation for ω, then putting q = n − (z + p) we have, for a sufficiently
large ∆,
(a) |fn

a (ω)| ≥ ec0q−(∆+1)e(1−4β)|m| |f z
a (ω)|

(b) |fn
a (ω)| ≥ ec0q−(∆+1)e−5β|m| if z is an essential return.
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(3) If z is the last return time of ω up to n − 1, n is a return situation for ω and
fn

a (ω) ⊂ U1, then putting q = n− (z + p) we have, for a sufficiently large ∆,
(a) |fn

a (ω)| ≥ ec0qe(1−5β)|m| |f z
a (ω)| ≥ 2 |f z

a (ω)|;
(b) |fn

a (ω)| ≥ ec0qe−5β|m| if z is an essential return.

Proof. By the mean value theorem, for some ζ ∈ ω,

|fn
a (ω)| ≥

∣∣∣
(
fn−z

a

)′
(f z

a (ζ))
∣∣∣ |f z

a (ω)| .
Using lemma 2.1 part 2 and lemma 2.3 part 3 we get

|fn
a (ω)| ≥

∣∣(f q
a)′

(
f z+p

a (ζ)
)∣∣ ∣∣(f p

a )′ (f z
a (ζ))

∣∣ |f z
a (ω)|

≥ 4
5
ec0qe(1−4β)|m| |f z

a (ω)|
≥ 4

5
eβ|m|ec0qe(1−5β)|m| |f z

a (ω)|
≥ 2ec0qe(1−5β)|m| |f z

a (ω)| ,
if ∆ is sufficiently large in order to have 4

5
eβ|m| ≥ 2.

Note that part 3a is proved. To demonstrate part 1 it is only a matter of using lemma
2.1 part 2 instead of 3, while for proving part 2a one has to use lemma 2.1 part 1 instead.

To obtain 3b observe that because z is an essential return time Im,k ⊂ f z
a (ω) which

implies λ(f z
a (ω)) ≥ e−|m|

2m2 and so

|fn
a (ω)| ≥ 4

5
eβ|m|ec0qe(1−5β)|m| |f z

a (ω)|
≥ ec0qe(1−5β)|m|e−|m| 2eβ|m|

5m2

≥ ec0qe−5β|m|,

if ∆ is large enough.
The same argument can easily be applied to obtain part 2b. ¤
The next lemma asserts that an escaping component returns considerably large in the

return situation immediately after the escaping time, which means in particular that it will
be an essential return situation.

Lemma 4.2. Suppose that ω ∈ Pt is an escape component. Then in the next return
situation t1 for ω we have that ∣∣f t1

a (ω)
∣∣ ≥ e−β∆.

Proof. Since ω is an escaping component at time t it follows that

f t
a(ω) ⊃ Im,m2 , with |m| = ∆− 1

and so there exists x∗ ∈ ω such that |f t
a(x∗)| = e−∆. Therefore f t+1

a (x∗) = 1 − ae−2∆ ≥
1− 2e−2∆. Thus, if t1 = t + 1 the result would follow easily.

Now suppose that t1 ≥ t + 2. Writing

f t+2
a (x∗) = f2

(
f t+1

a (x∗)
)

+ fa

(
f t+1

a (x∗)
)− f2

(
f t+1

a (x∗)
)

and taking into account that f2 (f t+1
a (x∗)) ≤ f2(1− 2e−2∆), fa(y)− f2(y) ≤ 2− a, ∀y ∈ I,

it follows that
f t+2

a (x∗) ≤ −1 + 4.2e−2∆,
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if we choose a0 sufficiently close to 2 such that

(2− a0) ≤ 8e−4∆. (4.3)

By induction, using the same argument we can state that for k ≥ 2, providing that
−1 + 4k−22e−2∆ ≤ 1 (this is to ensure that we are inside the domain I), we have

f t+k
a (x∗) ≤ −1 + 4k−12e−2∆.

Therefore if −1 + 4t1−t−12e−2∆ ≤ −1
2

then f t1
a (x∗) ≤ −1

2
and so |f t1

a (ω)| ≥ e−β∆, providing
∆ is large enough.

In order to complete the proof it remains to consider the case when −1+4t1−t−12e−2∆ >
−1

2
. Under this condition we have that

2t1−t ≥ e∆. (4.4)

First we note that we can assume f t
a(ω) ⊂ U1 otherwise we have the conclusion immediately.

Now, we know that there is x ∈ ω such that
∣∣f t1

a (ω)
∣∣ ≥

∣∣∣
(
f t1−t

a

)′
(f t

a(x))
∣∣∣
∣∣f t

a(ω)
∣∣

≥
∣∣(h−1)

′
(f t

a(x))
∣∣

∣∣(h−1)′ (f t1
a (x))

∣∣
∣∣∣
(
gt1−t

a

)′
(h−1(f t

a(x)))
∣∣∣ e−∆

(∆− 1)2
,

where h : [−1, 1] → [−1, 1] is the homeomorphism that conjugates f2(x) to the tent map
1− 2|x| and ga = h−1 ◦ fa ◦ h.

Using lemma 3.1 from [Mo92] it follows that

∣∣f t1
a (ω)

∣∣ ≥ L
[
2− 3π

δ3 (2− a)
]t1−t e−∆

(∆− 1)2
,

with

L =

√
1− (

f t1
a (x)

)2

1− (f t
a(x))2 .

Since f t1
a (ω) ⊂ U1,

∣∣f t1
a (ω)

∣∣ ≥
√

1− e−2
[
2− 3π

δ3 (2− a)
]t1−t e−∆

(∆− 1)2

≥ 4
5

[
2− 3π

δ3 (2− a)
]t1−t e−∆

(∆− 1)2

Now, we remark that our choice of a0 can provide that[
2− 3π

δ3 (2− a)
] ≥ ec0 (4.5)

and then since |f t1
a (ω)| ≤ 2, it follows that

ec0(t1−t) ≤ 5
2
e∆(∆− 1)2,

which implies, for ∆ large that t1 − t ≤ 2∆.
Again restraining a0 in such a way that

[
2− 3π

δ3 (2− a)
]2∆ ≥ 22∆−1 (4.6)
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we have

∣∣f t1
a (ω)

∣∣ ≥ 2
5
2t1−t e−∆

(∆− 1)2
.

Taking into account 4.4 we have

∣∣f t1
a (ω)

∣∣ ≥ 2

5(∆− 1)2
≥ e−β∆,

for ∆ large enough. ¤

Lemma 4.3 (Bounded Distortion). For some n ∈ N let ω ∈ Pn−1 be such that fn
a (ω) ⊂

U1. Then there is a constant C(β − α) such that for every x, y ∈ ω

∣∣(fn
a )′ (x)

∣∣
∣∣(fn

a )′ (y)
∣∣ ≤ C

Proof. Let Rn−1(ω) = {z1, . . . , zγ} and Qn−1(ω) = {(m1, k1), . . . , (mγ, kγ)}, be, re-
spectively, the sets of return times and host indices of ω, defined on the construction of
the partition. Note that for i = 1, . . . , γ, f zi

a (ω) ⊂ I+
mi,ki

. Let σi = f zi
a (ω), pi = p(mi),

xi = f i
a(x) and yi = f i

a(y).
Observe that

∣∣∣∣
(fn

a )′(x)

(fn
a )′(y)

∣∣∣∣ =
n−1∏
j=0

∣∣∣∣
f ′a(xj)

f ′a(yj)

∣∣∣∣ =
n−1∏
j=0

∣∣∣∣
xj

yj

∣∣∣∣ ≤
n−1∏
j=0

(
1 +

∣∣∣∣
xj − yj

yj

∣∣∣∣
)

Hence the result is proved if we manage to bound uniformly

S =
n−1∑
j=0

∣∣∣∣
xj − yj

yj

∣∣∣∣ .

For the moment assume that n ≤ zγ + pγ − 1.
We first estimate the contribution of the free period between zq−1 and zq for the sum S

Fq =

zq−1∑
j=zq−1+pk−1

∣∣∣∣
xj − yj

yj

∣∣∣∣ ≤
zq−1∑

j=zq−1+pk−1

∣∣∣∣
xj − yj

δ

∣∣∣∣

For j = zq−1 + pk−1, · · · , zq − 1 we have

λ(σq) ≥ |f zq−j
a (xj)− f zq−j

a (yj)|
=

∣∣(f zq−j
a )′(ζ)

∣∣ · |xj − yj|, for some ζ between xj and yj

≥ ec0(zq−j)|xj − yj|, by Lemma 2.1
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and so

Fq ≤
zq−1∑

j=zq−1+pk−1

e−c0(zq−j) · λ(σq)

δ

≤
∞∑

j=1

e−cj · λ(Imq)

δ
· λ(σq)

λ(Imq)

≤ a1 · λ(σq)

λ(Imq)
for some constant a1 = a1(c).

The contribution of the return zq is∣∣∣∣
xzq − yzq

yzq

∣∣∣∣ ≤
λ(σq)

e−|mq |−2
≤ a2 · λ(σq)

λ(Imq)
where a2 is a constant.

Finally, let us compute the contribution of bound periods

Bq =

pq−1∑
j=1

∣∣∣∣
xzq+j − yzq+j

yzq+j

∣∣∣∣

We have that

|xzq+j − yzq+j| = |(f j
a)′(ζ)| · |xzq − yzq |, for some ζ between xzq and yzq

=
∣∣(f j−1

a )′ (fa(ζ))
∣∣ · |f ′a(ζ)| · |xzq − yzq |

=
∣∣(f j−1

a )′ (fa(ζ))
∣∣ · 2a|ζ| · |xzq − yzq |

≤ B1|(f j−1
a )′(ξ1)| · 2ae−|mq |+1 · λ(σq).

On the other hand, we have

|yzq+j − ξj| = |(f j−1
a )′(θ)| · |yzq+1 − ξ1|

for some θ ∈ [yzq+1, ξ1]. Noting that [yzq+1, ξ1] ⊂ fa

(
U+
|mq |

)
, we apply Lemma 2.3 and get

|yzq+j − ξj| ≥ 1

B1

|(f j−1
a )′(ξ1)| · |yzq+1 − ξ1|

=
1

B1

|(f j−1
a )′(ξ1)| · 2ay2

zq

≥ 1

B1

|(f j−1
a )′(ξ1)| · 2ae−2|mq |−4.

Combining what we know about |xzq+j − yzq+j| and |yzq+j − ξj| we obtain

|xzq+j − yzq+j|
|yzq+j| =

|xzq+j − yzq+j|
|yzq+j − ξj| · |yzq+j − ξj|

|yzq+j|

≤ B2
1

e5

e−|mq | · λ(σq) ·
|yzq+j − ξj|
|yzq+j|

≤ B2
1 · e5 · λ(σq)

λ(Imq)
· e−βj

e−αj − e−βj
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since

|yzq+j| ≥ |ξj| − |yzq+j − ξj| ≥ e−αj − e−βj.

Clearly,
∞∑

j=1

e−βj

e−αj − e−βj
< ∞

and, therefore,

Bq ≤ a3 · λ(σq)

λ(Imq)

for some constant a3 = a3(α− β).
From the estimates obtained above, we get

S ≤ a4 ·
γ∑

q=0

λ(σq)

λ(Imq)
, where a4 = a1 + a2 + a3.

Defining q(m) = max{q : mq = m} and using the fact that λ(σq+1) ≥ 2λ(σq) (lemma
4.1 part 1), we can easily see that

∑

{q:mq=m}
λ(σq) ≤ 2λ(σq(m)),

and so
γ∑

q=0

λ(σq)

λ(Imq)
≤

∑
m≥∆

1

λ(Im)

∑

{q:mq=m}
λ(σq) ≤

∑
m≥∆

2λ(σq(m))

λ(Im)
.

Since
λ(σq(m))

λ(Im)
≤ 10

m2
,

it follows that ∑
m≥∆

2λ(σq(m))

λ(Im)
≤ 20

∑
m≥∆

1

m2
,

which proves that S is uniformly bounded .
Now, if n ≥ zγ + pγ we are left with a last piece of free period to study:

Fγ+1 =
n∑

j=zγ+pγ

∣∣∣∣
xj − yj

yj

∣∣∣∣

We consider two cases. In the first one we suppose that |fn
a (ω)| ≤ e−2∆. Proceeding as

before we have for j = zγ + pγ, . . . , n− 1,

λ(σn) ≥ |fn−j
a (xj)− fn−j

a (yj)|
=

∣∣(fn−j)′(ζ)
∣∣ · |xj − yj|, for some ζ between xj and yj

≥ e−(∆+1)ec0(n−j)|xj − yj|, by Lemma 2.1 part 1.
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So,

Fγ+1 ≤
n∑

j=zγ+pγ

e∆+1e−c0(n−j)λ(σn)

δ

≤
n∑

j=zγ+pγ

e2∆+1e−c0(n−j)e−2∆

≤ e

∞∑
j=1

e−cj ≤ a5,

where a5 is constant.
In the second case we assume that |fn

a (ω)| > e−2∆. Let q1 be the first integer such that
q1 ≥ zγ + pγ, |f q1

a (ω)| > e−2∆. From the previous argumentation we have that
∣∣∣∣
(f q1

a )′(x)

(f q1
a )′(y)

∣∣∣∣ ≤ C.

At this point we consider the time-interval [q1, q2− 1] (eventually empty) defined to be the
largest interval such that i ∈ [q1, q2 − 1] ⇒ yi /∈ U1. Then, using lemma 2.1 part 3 (here
we use for the first time the hypothesis fn

a (ω) ⊂ U1),

q2−1∑
i=q1

|xi − yi|
|yi| ≤ e

q2−1∑
i=q1

|xi − yi| ≤ 3

q2−1∑
i=q1

5
4
e−c0(n−1)|fn

a (ω)|

≤ 15
2

∞∑
i=1

e−ci ≤ a6,

where a6 is a constant.
If q2 = n the lemma is proved. Otherwise writing:

∣∣∣∣
(fn

a )′(x)

(fn
a )′(y)

∣∣∣∣ =

∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣
∣∣∣∣
(f q2

a )′(x)

(f q2
a )′(y)

∣∣∣∣ ,

we observe that in order to obtain the result we need only to bound the first factor. We
do this considering, again, two cases:

1. xq2 ≥ 1
2
. Then since |yq2| ≤ e−1 (by definition of q2), we have |xq2 − yq2| ≥ 1

10
.

Therefore, by lemma 2.1 part 3

4
5
ec0(n−q2) 1

10
≤ |fn

a (ω)| ≤ 1,

which implies that n− q2 ≤ 3
2
log

(
25
2

)
(remember that by hypothesis c0 ≥ 2

3
).

Taking into account the facts: |(fn−q2
a )′(xq2)| ≤ 4n−q2 and |(fn−q2

a )′(yq2)| ≥ 4
5
ec0(n−q2),

we have ∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ ≤ a7,

for some constant a7.
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2. xq2 < 1
2
. We can write (see Lemma 2.2 of [Al92] or Lemma 3.3 of [Mo92] for

details) ∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ = L

∣∣∣∣
(gn−q2

a )′(h−1(xq2))

(fn−q2
a )′(h−1(yq2))

∣∣∣∣ ,

where

L =

√
1− (fn−q2

a (xq2))
2

1− x2
q2

√
1− y2

q2

1− (fn−q2
a (yq2))

2
≤

√
1

1− 1
4

√
1

1− e−2
≤ 3

4
,

h : [−1, 1] → [−1, 1] is the homeomorphism that conjugates f2(x) to the tent map 1− 2|x|
and ga = h−1 ◦ fa ◦ h.

For the second factor, we have (see Lemma 3.1 of [Mo92] for details)
∣∣∣∣
(gn−q2

a )′(h−1(xq2))

(fn−q2
a )′(h−1(yq2))

∣∣∣∣ ≤
(

2 + 3π
δ3 (2− a)

2− 3π
δ3 (2− a)

)n−q2

.

Note that |f q1
a (ω)| > e−2∆ and 4

5
ec0(n−q1)|f q1

a (ω)| ≤ |fn
a (ω)| ≤ 1, from which we conclude

that n− q2 ≤ n− q1 ≤ 4∆. So if a is sufficiently close to 2 in order to have
(

2 + 3π
δ3 (2− a)

2− 3π
δ3 (2− a)

)4∆

≤ 2, (4.7)

then ∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ ≤
8

3
.

¤

5. Return depths and time between consecutive returns

In this section we justify the preponderance of the depths of essential returns over the
depths of bound and inessential returns, stated in basic idea (I). We also get an upper
bound for the elapsed time between two consecutive essential returns.

As we have already mentioned, there are three types of returns: essential, bounded
and inessential, which we denote by t, u and v respectively. Remember that up to time
n, the essential return that occurs at time ti has depth ηi, for i = 1, . . . , sn; each ti might
be followed by bounded returns ui,j, j = 1, . . . , u and these can be followed by inessential
returns vi,j, j = 1, . . . , v.

The following lemma states that the depth of an inessential return is not greater than
the depth of the essential return that precedes it.

Lemma 5.1. Suppose that ti is an essential return for ω ∈ Pti, with Iηi,ki
⊂ f ti

a (ω) ⊂
I+
ηi,ki

. Then the depth of each inessential return occurring on vi,j, j = 1, . . . , v is not greater
than ηi.

Proof. By lemma 4.1 part 1 we have

λ {f vi,j
a (ω)} ≥ 2jλ

{
f ti

a (ω)
} ≥ 2jλ (Iηi,ki

)



24 1. STATISTICAL STABILITY FOR BENEDICKS-CARLESON QUADRATIC MAPS

Thus,

λ {f vi,j
a (ω)} ≥ λ {Iηi,ki

} =
e−ηi (1− e−1)

η2
i

.

But, since vi,j is an inessential return time we must have f
vi,j
a (ω) ⊂ Im,k for some

m ≥ ∆; then, out of necessity, m ≤ ηi, because f
vi,j
a (ω) is too large to fit on some Im,k

with m > ηi. ¤

In the next lemma, we prove a similar result for bounded returns.

Lemma 5.2. Let t be a return time (either essential or inessential) for ω ∈ Pt, with
f t

a(ω) ⊂ I+
η,k. Let p = p(η) be the bound period length associated to this return. Then, for

all x ∈ ω, if the orbit of x returns to U∆ between t and t + p, then the depth of this bound
return will not be grater than η, if ∆ is sufficiently large.

Proof. Consider a point x ∈ ω. We will show that if ∆ is large enough then |f t+j
a (x)| ≥

e−η, ∀j ∈ {1, . . . , p− 1}.
∣∣f j

a(1)
∣∣−

∣∣f t+j
a (x)

∣∣ ≤
∣∣f t+j

a (x)− f j
a(1)

∣∣ ≤ e−βj

which implies that

∣∣f t+j
a (x)

∣∣ ≥
∣∣f j

a(1)
∣∣− e−βj

(BA)

≥ e−αj − e−βj ≥ e−αj
(
1− e(α−β)j

)

≥ e−αj
(
1− e(α−β)

)
, since α− β < 0

≥ e−αp
(
1− e(α−β)

)
, since j < p

≥ e−3αη
(
1− e(α−β)

)
, since p ≤ 3η by lemma 2.3

≥ e−4αη, if we choose a large ∆ so that 1− eα−β ≥ e−αη

≥ e−η, since α <
1

4

¤

The next lemma gives an upper bound for the time we have to wait between two
essential return situations.

Lemma 5.3. Suppose ti is an essential return for ω ∈ Pti, with Iηi,ki
⊂ f ti

a (ω) ⊂ I+
ηi,ki

.
Then the next essential return situation ti+1 satisfies:

ti+1 − ti < 5 |ηi| .
Proof. Let vi,1 < . . . < vi,v denote the inessential returns between ti and ti+1, with

host intervals Iηi,1,ki,1
, . . . , Iηi,v ,ki,v

, respectively. We also consider vi,0 = ti; vi,v+1 = ti+1; for

j = 0, . . . , v + 1, σj = f
vi,j
a (ω) and for j = 0, . . . , v, qj = vi,j+1 − (vi,j + pj), where pj is the

length of the bound period associated to the return vi,j.
We consider two different cases: v = 0 and v > 0.

(1) v = 0
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In this situation ti+1 − ti = p0 + q0. Applying lemma 4.1 part 2b we get that

|σ1| ≥ e−5β|ηi|ec0q0−(∆+1).

Taking into account the fact that |σ1| ≤ 2, we have

c0q0 ≤ 1 + 5β|ηi|+ ∆ + 1

q0 ≤ 8β|ηi|+ 3

2
∆ + 3, since c0 ≥ 2

3

q0 ≤ 9β|ηi|+ 3

2
∆, for ∆ large enough so that β|ηi| > 3.

Therefore,

ti+1 − ti = p0 + q0

≤ 3|ηi|+ 9β|ηi|+ 3

2
∆

≤ 4|ηi|+ ∆, since 9β <
1

2
≤ 5|ηi|.

(2) v > 0

In this case, ti+1 − ti =
∑v

j=0(pj + qj). We separate this sum into three parts and
control each separately:

ti+1 − ti = p0 +

(
v−1∑
j=1

pj +
v−1∑
j=0

qj

)
+ (pv + qv)

(i) For p0 we have by lemma 2.3 that p0 ≤ 3|ηi|.
(ii) By lemma 4.1 we get

|σ1| ≥ ec0q0e−5β|ηi| and
|σj+1|
|σj| ≥ ec0qje(1−5β)|ηi,j |,

for j = 1, . . . , v − 1. Now, we observe that pj ≤ 3|ηi,j| ≤ 4(1− 5β)|ηi,j| and qj ≤ 4c0qj, for
all j = 0, . . . , v. This means that controlling the second parcel resumes to bound

v−1∑
j=1

(1− 5β)|ηi,j|+
v−1∑
j=0

c0qj. (5.1)

We achieve our goal by noting that (5.1) corresponds to the growth rate of the size of the
σj, which cannot be very large, since every σj, j = 1, . . . , v is contained in some Im,k ⊂ U∆.
Writing

|σv| = |σ1|
v−1∏
j=1

|σj+1|
|σj| ,
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and taking into account that σv ∈ Iηi,v ,ki,v
, with |ηi,v| ≥ ∆ and thus |σv| ≤ e−(∆+1), it

follows that

exp

{
−5β|ηi|+

v−1∑
j=0

c0qj +
v−1∑
j=1

(1− 5β)|ηi,j|
}
≤ exp{−(∆ + 1)}

and consequently
v−1∑
j=1

(1− 5β)|ηi,j|+
v−1∑
j=0

c0qj ≤ 5β|ηi| − (∆ + 1)

(iii) For the last term pv + qv we proceed in a very similar manner to what we did in
the case v = 0. By lemma 4.1we have

|σv+1|
|σv| ≥ ec0qv−(∆+1)e(1−4β)|ηi,v| ≥ ec0qv−(∆+1)e(1−5β)|ηi,v |.

From part 1 of lemma 4.1 we have |σv| ≥ 2v−1|σ1| ≥ |σ1|, from which we get

2 ≥ |σv+1| ≥ |σ1| |σv+1|
|σv|

and consequently

exp {−5β|ηi|+ c0qv − (∆ + 1) + (1− 5β)|ηi,v|} ≤ elog 2

implying

c0qv + (1− 5β)|ηi,v| ≤ ∆ + 2 + 5β|ηi|.
Putting together the three parts we get

ti+1 − ti = p0 +

(
v−1∑
j=1

pj +
v−1∑
j=0

qj

)
+ (pv + qv)

≤ p0 + 4

{
v−1∑
j=1

(1− 5β)|ηi,j|+
v−1∑
j=0

c0qj + c0qv + (1− 5β)|ηi,v|
}

≤ 3|ηi|+ 4 {5β|ηi| − (∆ + 1) + (∆ + 1) + 1 + 5β|ηi|}
≤ 3|ηi|+ 40β|ηi|+ 4

≤ 4|ηi|.
¤

The next two propositions allow us to obtain a bound for Tn(x) (see (2.1) for definition)
by a quantity proportional to 1

n
Fn(x) (defined in (3.8)).

In the proof of the following proposition we will use directly and for the first time the
condition known as the free assumption for the critical orbit. This condition essentially
asserts that the set of Benedicks-Carleson parameters is built in such a way that the amount
of time spent by the critical orbit in bound periods totally makes up a small fraction of
the whole time (see [BC91, Section 2] or [Mo92, condition FA(n)]).
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Proposition 5.4. Let t be a free return time (either essential or inessential) for ω ∈ Pt

with f t
a(ω) ⊂ I+

η,k. Let p = p(η) be the bound period associated with this return. Let S denote
the sum of the depths of all the bound returns plus the depth of the return that originated
the bound period. Then S ≤ C3η, with constant C3 = C3(α).

Proof. Recall that by lemma 2.3 we know that 2
3
η ≤ p ≤ 3η. Let x ∈ ω. We say that

a bound return is of level i if, at the moment of this bound return, x has already initiated
exactly i bindings to the critical point ξ0 and all of them are still active. By active we
mean that the respective bound periods have not finished yet. To illustrate, suppose that
u1 is the first time between t and t + p that the orbit of x enters U∆. Obviously, at this
moment, the only active binding to ξ0 is the one initiated at time t. Thus, u1 is a bound
return of level 1. Now, at time u1, the orbit of x establishes a new binding to the critical
point which ends at the end of the corresponding bound period that we denote by p1 which
depends on the depth η1 of the bound return in question. During the period from u1 to
u1 +p1 new returns may happen and their level is at least 2 since there are at least 2 active
bindings: the one initiated at t and the one initiated at u1. If u1 + p1 < t + p then new
bound returns of level 1 may occur after u1 + p1.

We may redefine the notion of bound period so that the bound periods are nested (see
[BC91], section 6.2). This means that we may suppose that no binding of level i extends
beyond the bound period of level i− 1 during which it was initiated.

Taking into account the free assumption condition for the critical orbit we may assume
that in a period of length n ∈ N, the time spent by the critical orbit in bound periods is
at most αn (see [Mo92, condition FA(n)]).

Since, when a point initiates a binding with ξ0, it shadows the early iterates of the
critical point, the same applies to any of these points x ∈ ω bounded to ξ0. Thus in
the period of time from t to t + p, the orbit of x can spend at most the fraction of time
αp in bound periods. So if l denotes the number of bound returns of level 1, u1, . . . , ul

their instants of occurrence, η1, . . . ηl their respective depths and p1, . . . , pl their respective
bound periods, then we have by lemma 2.3 and the above observation that:

2
3

l∑
i=1

ηi ≤
l∑

i=1

pi ≤ αp ≤ 3αη

from where we easily obtain
∑l

i=1 ηi ≤ 5αη. The same argument applies to the bound
returns of level 2 within the i-th bound period of level 1. So if li denotes the number of
bound returns of level 2 within the i-th bound period of level 1, ui1, . . . , uili their instants of
occurrence, ηi1, . . . ηil their respective depths and pi1, . . . , pil their respective bound periods,
then we have

2
3

li∑
j=1

ηij ≤
li∑

i=1

pij ≤ αpi ≤ 3αηi

from where we easily obtain
∑l

i=1

∑li
j=1 ηij ≤ (5α)2η.

Thus a simple induction argument gives that

S ≤
∞∑
i=0

(5α)iη ≤ C3η,
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where

C3 =
1

1− 5α
, (5.2)

remember that by choice 5α < 1. ¤

Proposition 5.5. Let t be an essential return time for ω ∈ Pt with Iη,k ⊂ f t
a(ω) ⊂ I+

η,k.
Let p0 denote the associated bound period. Let S denote the sum of the depths of all the free
inessential returns before the next essential return situation. Then S ≤ C4η, with constant
C4 = C4(β).

Proof. Suppose that v is the number of inessential returns before the next essential
return situation of ω, which occur at times v1, . . . , vv, with respective depths η1, . . . , ηv and
respective bound periods p1, . . . , pv. Also denote by vv+1 the next essential return situation
of ω. Let σi = f vi

a (ω).
By lemma 4.1 we get

|σ1| ≥ ec0q0e−5β|η| and
|σj+1|
|σj| ≥ ec0qie(1−5β)|ηi|,

where qi = vi+1 − (vi + pi), for i = 0, . . . , v. We also know that |σv+1| ≤ 2.
Since

|σv+1| = |σ1|
v∏

i=1

|σi+1|
|σi| ,

we have that

exp

{
c0q0 − 5βη +

v∑
i=1

(c0qi + (1− 5β)ηi)

}
≤ e,

from where we obtain that

v∑
i=1

(c0qi + (1− 5β)ηi) ≤ 5βη + 1,

which easily implies that S ≤ C4η, where

C4 =
6β

1− 5β
(5.3)

. ¤

From these propositions we easily conclude that

Tn(x) ≤ C5

n
Fn(x)

with

C5 = C5(α, β) = (C3 + C3C4). (5.4)
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6. Probability of an essential return reaching a certain depth

Now, that we know that only the essential returns matter, we prove that the chances of
very deep essential returns occurring are very small. In fact, the probability of an essential
return hitting the depth of ρ will be shown to be less than e−τρ, with τ > 0.

We must make our statements more precise and we begin by defining a probability
space. We define the probability measure λ∗ on I by renormalizing the Lebesgue measure
so that λ∗(I) = 1. We may now speak of expectations E(·), events and their probability
of occurrence.

For each x ∈ I, let un(x) denote the number of essential return situations of x between
1 and n, sn(x) be the number those which are actual essential return times and sdn the
number of the latter that correspond to deep essential returns of the orbit of x with return
depths above a threshold Θ ≥ ∆. Observe that un(x) − sn(x) is the exact number of
escaping situations of the orbit of x, up to n.

Given the integers 0 ≤ s ≤ 3n
2Θ

, s ≤ u ≤ n and s integers ρ1, . . . , ρs, each greater than
or equal to Θ, we define the event:

Au,s
ρ1,...,ρs

(n) =



x ∈ I : un(x) = u, sdn(x) = s, and the depth of the i-th deep essen-

tial return is ρi ∀i ∈ {1, . . . , s}



 .

Remark 6.1. Observe that the upper bound 3n
2Θ

for the number of deep essential returns
up to time n derives from the fact that each deep essential return originates a bound period
of length at least 2

3
Θ (see lemma 2.3). Since during the bound periods there cannot be any

essential return, the number of deep essential returns occurring in a period of length n is
at most n

2
3
Θ
.

Proposition 6.2. Given the integers 0 ≤ s ≤ 3n
2Θ

and s ≤ u ≤ n, consider s integers
ρ1, . . . , ρs, each greater than or equal to Θ. If Θ is large enough, then

λ∗
(
Au,s

ρ1,...,ρs
(n)

) ≤
(

u

s

)
Exp

{
−(1− 6β)

s∑
i=1

ρi

}

Proof. Fix n ∈ N and take ω0 ∈ P0. Note that the functions un, sn and sdn are
constant in each ω ∈ Pn. Let ω ∈ ω0 ∩ Pn be such that un(ω) = u. Then, there is a
sequence 1 ≤ t1 ≤ . . . ≤ tu ≤ n of essential return situations. Let ωi denote the element of
the partition Pti that contains ω. We have ω0 ⊃ ω1 ⊃ . . . ⊃ ωu = ω. Consider that ωj = ∅
whenever j > u. For each j ∈ {0, . . . , n} we define the set:

Qj =
⋃

ω∈Pn∩ω0

ωj,

and its partition
Qj = {ωj : ω ∈ Pn ∩ ω0}.

Let ω ∈ Pn be such that sdn(ω) = s. Then, we may consider 1 ≤ r1 ≤ . . . ≤ rs ≤ u with ri

indicating that the i-th deep essential return occurs in the ri-th essential return situation.
Now, set V (0) = Q0 = ω0. Fix s integers 1 ≤ r1 ≤ . . . ≤ rs ≤ u. Next, for each j ≤ u we
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define recursively the sets V (j). Although the set V (u) will depend on the fixed integers
1 ≤ r1 ≤ . . . ≤ rs ≤ u, we do not indicate this so that the notation is not overloaded.
Suppose that V (j − 1) is already defined and ri−1 < j < ri. Then, we set

V (j) =
⋃

ω∈Qj

ω
⋂

f−tj
a (I − UΘ)

⋂
V (j − 1).

If j = ri then we define

V (j) =
⋃

ω∈Qj

ω
⋂

f−tj
a (Iρi

∪ I−ρi
)
⋂

V (j − 1)

Observe that for every j ∈ {1, . . . , u} we have |V (j)|
|V (j−1)| ≤ 1. Therefore, we concentrate

in finding a better estimate for |V (ri)|
|V (ri−1)| . Consider that ωri

∈ Qri
∩ V (ri − 1) and let

ωri−1 ∈ Qri−1 ∩ V (ri − 1) contain ωri
. We have to consider two situations depending on

whether tri−1 is an escaping situation or an essential return.
Let us suppose first that tri−1 was an essential return with return depth η. Then,

|ωri
|

|ωri−1| ≤
|ωri

|
|ω̂ri−1| , where ω̂ri−1 = ωri−1 ∩ f

−tri
a (U1)

≤ C

∣∣∣f tri
a (ωri

)
∣∣∣

∣∣∣f tri
a (ω̂ri−1)

∣∣∣
, by the mean value theorem and lemma 4.3

≤ C
2e−ρi

e−5βη
, by lemma 4.1 part 3b and definition of ωri

Note that when ri−1 = ri − 1 then η = ρi−1 ≥ Θ. If, on the other hand, ri−1 > ri − 1 then
tri−1 is an essential return with depth η < Θ ≤ ρi−1. Then in both situations we have

|ωri
|

|ωri−1| ≤ 2C
e−ρi

e−5βρi−1
.

When tri−1 is an escape situation instead of using lemma 4.1 we can use lemma 4.2 and
obtain

|ωri
|

|ωri−1| ≤ 2C
e−ρi

e−β∆
≤ 2C

e−ρi

e−5βρi−1
.

Observe also that if ω̂ri−1 6= ωri−1 then, because we are assuming that ωri
6= ∅, we have

λ
(
f

tri
a (ω̂ri−1)

)
≥ e−1 − e−Θ ≥ e−5βρi−1 , for large Θ.

At this point we have

|V (ri)| =
∑

ωri∈Qri∩V (ri−1)

|ωri
|

|ωri−1| |ωri−1|

≤ 2Ce−ρie5βρi−1

∑

ωri∈Qri∩V (ri−1)

|ωri−1|

≤ 2Ce−ρie5βρi−1|V (ri − 1)|.
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We are now in conditions to obtain that

|V (u)| ≤ (2C)sExp

{
−(1− 5β)

s∑
i=1

ρi

}
e5βρ0|V (0)|

where ρ0 is given by the interval ω0 ∈ P0. If ω0 = I(η0,k0) with |η0| ≥ ∆ and 1 ≤ k0 ≤ η2
0,

then ρ0 = |η0|. If ω0 = (δ, 1] or ω0 = [−1,−δ), then we can take ρ0 = 0.
Now, we have to take into account the number of possibilities of having the occurrence

of the event V (u) implying the occurrence of the event Au,s
ρ1,...,ρs

(n). The number of possible

configurations related with the different values that the integers r1, . . . rs can take is
(

u
s

)
.

Hence, it follows that

λ∗
(
Au,s

ρ1,...,ρs
(n)

) ≤ (2C)s

(
u

s

)
Exp

{
−(1− 5β)

s∑
i=1

ρi

} ∑
ωo∈P0

e5β|ρ0||ω0|

≤ (2C)s

(
u

s

)
Exp

{
−(1− 5β)

s∑
i=1

ρi

} 
2(1− δ) +

∑

|η0|≥∆

e5βη0e−|η0|




≤ 3(2C)s

(
u

s

)
Exp

{
−(1− 5β)

s∑
i=1

ρi

}
, for ∆ large enough

≤
(

u

s

)
Exp

{
−(1− 6β)

s∑
i=1

ρi

}
.

The last inequality results from the fact that sΘ ≤ ∑s
i=1 ρi and the freedom to choose a

sufficiently large Θ. ¤
Fix n ∈ N, the integers 1 ≤ s ≤ n

2
3
Θ
, s ≤ u ≤ n and integer j ≤ s. Given an integer

ρ ≥ Θ, consider the event

Au,s
ρ,j (n) =



x ∈ I : un(x) = u, sdn(x) = s, and the depth of the j-th deep

essential return is ρ



 .

Corollary 6.3. If ∆ is large enough, then

λ∗
(
Au,s

ρ,j (n)
) ≤

(
u

s

)
e−(1−6β)ρ

Proof. Since Au,s
ρ,j (n) =

⋃
ρi≥Θ

i 6=j

Au,s
ρ1,...,ρj−1,ρ,ρj+1,...,ρs

(n), then by proposition 6.2 we have

λ∗
(
Au,s

ρ,j (n)
) ≤

(
u

s

)
e−(1−6β)ρ

( ∞∑
η=Θ

e−(1−6β)η

)s−1

≤
(

u

s

)
e−(1−6β)ρ,

as long as Θ is sufficiently large so that
∑∞

η=Θ e−(1−6β)η ≤ 1. ¤

Remark 6.4. Observe that the bound for the probability of the event Au,s
ρ,j (n) does not

depend on the j ≤ s chosen.
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Remark 6.5. Observe that proposition 6.2 and corollary 6.3 also apply when Θ = ∆
in which case we have sdn = sn.

7. Non-uniform expansion

According to section 3 to finish the proof we only need to show that

λ (E1(n)) ≤ e−τ1n, ∀n ≥ N∗
1

for some constant τ1(α, β) > 0 and an integer N∗
1 = N∗

1 (∆, τ1).
For each x ∈ I, recall that un(x) denotes the number of essential return situations of x

between 1 and n, and sn(x) the number of those which correspond to essential returns of
the orbit of x. In this section we consider that the threshold Θ = ∆. Also remember that
un(x)− sn(x) is the exact number of escaping situations the orbit of x goes through until
the time n.

We define the following events:

Au,s
ρ (n) =



x ∈ I : un(x) = u, sn(x) = s and there is one essential return

reaching the depth ρ



 ,

for fixed n ∈ N, s ≤ n and ρ ≥ ∆;

Aρ(n) =
{
x ∈ I : ∃t ≤ n : t is essential return time and |f t

a(x)| ∈ Iρ

}
,

for fixed n and ρ ≥ ∆.
Now, because Au,s

ρ (n) =
⋃s

j=1 Au,s
ρ,j (n), by corollary 6.3, we have

λ∗
(
Au,s

ρ (n)
) ≤

s∑
j=1

λ∗
(
Au,s

ρ,j (n)
) ≤ s

(
u

s

)
e−(1−6β)ρ. (7.1)

Observing that Aρ(n) =
⋃ 3n

2∆
s=1

⋃n
u=s As

ρ(n), then by (7.1) we get

λ∗ (Aρ(n)) ≤
3n
2∆∑
s=1

n∑
u=s

λ∗
(
Au,s

ρ (n)
) ≤

3n
2∆∑
s=1

n∑
u=s

s

(
u

s

)
e−(1−6β)ρ

≤ e−(1−6β)ρ

3n
2∆∑
s=1

s

n∑
u=s

(
n

s

)
≤ ne−(1−6β)ρ

3n
2∆∑
s=1

s

(
n

s

)

≤ n

(
n
3n
2∆

)
e−(1−6β)ρ

3n
2∆∑
s=1

s ≤ 4n3

∆

(
n
3n
2∆

)
e−(1−6β)ρ.

By the Stirling formula, we have

√
2πmmme−m ≤ m! ≤

√
2πmmme−m

(
1 +

1

4m

)
,

which implies that (
n
3n
2∆

)
≤ const

(n)n

(n− 3n
2∆

)n− 3n
2∆ ( 3n

2∆
)

3n
2∆

.
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So, if we choose ∆ large enough we have

(
n
3n
2∆

)
≤ const

((
1 +

3
2∆

1− 3
2∆

)(
1 +

1− 3
2∆
3

2∆

) 3
2∆

1− 3
2∆

)(n− 3n
2∆

)

≤ consteh(∆)n,

where h(∆) → 0, as ∆ →∞. The last inequality derives from the fact that each factor in
the middle expression can be made arbitrarily close to 1 by taking ∆ sufficiently large.

Since we know, by lemmas 5.1 and 5.2, that the depths of inessential and bound returns
are not greater than the depth of the essential return preceding them we have, for all
n ≥ N ′

1, where N ′
1 is such that αN ′

1 ≥ ∆,

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f i

a(x)| < e−αn
} ⊂

∞⋃
ρ=αn

Aρ(n).

Consequently, taking τ1 = (1−6β)α
4

and ∆ large enough such that h(∆) ≤ (1−6β)α
2

λ∗(E1(n)) ≤ const4n3

∆
eh(∆)n

∞∑
ρ=αn

e−(1−6β)ρ

≤ const′ 4n3

∆
eh(∆)ne−(1−6β)αn

≤ const′ 4n3

∆
e−2τ1n

≤ e−τ1n,

when n ≥ N∗
1 , where N∗

1 is such that N∗
1 ≥ N ′

1 and for all n ≥ N∗
1 we have

const′ 4n3

∆
e−τ1n ≤ 1. (7.2)

8. Slow recurrence to the critical set

As referred in section 3, we are left with the burden of having to show that for all
n ∈ N, and for a given ε, we may choose a small γ = e−Θ such that

λ∗{E2(n)} ≤ λ∗
{

x : Fn(x) >
εn

C5

}
≤ e−τ2n,

in order to complete the proof.
We achieve this goal, by means of a large deviation argument. Essentially we show that

the moment generating function of Fn is bounded above by eh(Θ)n, where h(Θ)
Θ→∞−−−→ 0;

then we use the Tchebychev inequality to obtain the desired result.

Lemma 8.1. Take 0 < t ≤ 1−6β
3

. If Θ is sufficiently large, then there exists N2 ∈ N
such that for all n ≥ N2 we have E

(
etFn

) ≤ eh(Θ)n. Moreover h(Θ) → 0, as Θ →∞.
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Proof.

E
(
etFn

)
= E

(
et

∑s
i=1 ηi

)
=

∑

u,s,(ρ1,...,ρs)

et
∑s

i=1 ρiλ∗
(
Au,s

ρ1,...,ρs
(n)

)

≤
∑

u,s,(ρ1,...,ρs)

et
∑s

i=1 ρi

(
u

s

)
e−3t

∑s
i=1 ρi , by proposition 6.2

≤
∑
u,s,R

(
u

s

)
ζ(s, R)e−2tR,

where ζ(s,R) is the number of integer solutions of the equation x1 + . . .+xs = R satisfying
xi ≥ Θ for all i. We have

ζ(s,R) ≤ #{solutions of x1 + . . . + xs = R, xi ∈ N0} =

(
R + s− 1

s− 1

)
.

By the Stirling formula, we may write

√
2πmmme−m ≤ m! ≤

√
2πmmme−m

(
1 +

1

4m

)
,

which implies that (
R + s− 1

s− 1

)
≤ const

(R + s− 1)R+s−1

RR(s− 1)s−1
.

So, if we choose Θ large enough we have

ζ(s,R) ≤
(
const

1
R

(
1 + s−1

R

) (
1 + R

s−1

) s−1
R

)R

≤ etR.

The last inequality derives from the fact that sΘ ≤ R, and so each factor in the middle
expression can be made arbitrarily close to 1 by taking Θ sufficiently large.

Continuing from where we stopped,

E
(
etFn

) ≤
∑
u,s,R

(
u

s

)
etRe−2tR

≤
∑
u,s,R

(
u

s

)
e−tR

≤
∑
u,s

(
u

s

)
, for Θ sufficiently large.

Now, we have

∑
u,s

(
u

s

)
≤

3n
2Θ∑

s=1

n∑
u=s

(
u

s

)
≤ n

3n
2Θ∑

s=1

(
n

s

)
≤ n

3n
2Θ∑

s=1

(
n
3n
2Θ

)
≤ 3n2

2Θ

(
n
3n
2Θ

)
.
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Using the Stirling formula again, and arguing like in section 7 it follows that we may take
N2 = N2(Θ) ∈ N sufficiently large so that for all n ≥ N2 we obtain

E
(
etFn

) ≤ eh(Θ)n,

where h(Θ) → 0, as Θ →∞. ¤
If we take t = 1−6β

3
and Θ large enough so that τ2 = tε

C5
− h(Θ) > 0, then we have

λ∗
(

Fn >
εn

C5

)
≤ e

−t εn
C5 E

(
etFn

)
, by Tchebychev’s inequality

≤ e
− tεn

C5 eh(Θ)n, by lemma 8.1

≤ e−τ2n.

Consequently, λ∗{E2(n)} ≤ e−τ2n, for all n ≥ N2.

Remark 8.2. Since the growth properties of the space and parameter derivatives along
orbits are equivalent (see lemma 4 of [BC85] or lemma 3.4 of [Mo92]), it is possible to
build a similar partition on the parameters as Benedicks and Carleson ([BC85, BC91])
did when they built BC1. Then, using the same kind of arguments as in sections 6 and
8, it is not difficult to bound, on a full Lebesgue measure subset of BC1, the value of
C5

n
Fn(ξ0) = C5

n

∑sdn

i=1 ηi, where ηi stands for the depth of the i-th deep essential return of
the orbit of ξ0. This way one obtains the validity of condition (1.2) for the critical point
ξ0, on a full Lebesgue measure subset of BC1.

9. Uniformness on the choice of the constants

As referred in remark 1.1 all constants involved must not depend on the parameter
a ∈ BC1. Because there are many constants in question and because they depend on each
other in an intricate manner we dedicate this section to clarifying their interdependencies.

We begin by considering the constants appearing in (EG) and (BA) that determine the
space BC1 of parameters. So we fix c ∈ [2

3
, log 2] and 0 < α < 10−3.

Then, we consider β > 0 of definition 2.2 concerning the bound period, to be a small
constant such that α < β < 10−2. A good choice for β would be β = 2α.

We next fix a sufficiently large ∆ such that we have validity on all estimates throughout
the text. Most of the times the choice of a large ∆ depends on the values of α and β. Note
that at no time does the choice of a large ∆ depend on the parameter value considered.

After fixing ∆ we choose 2
3
≤ c0 ≤ log 2 (take, for example, c0 = c), and compute

a0 given by lemma 2.1, and such that (4.3), (4.5), (4.6) and (4.7) hold. Note that this
might bring about a reduction in the set of parameters since we will only have to consider
parameter values on BC1∩[a0, 2] which is still a positive Lebesgue measure set. If necessary
we redefine BC1 to be BC1 ∩ [a0, 2].

Finally, we fix any small ε > 0 referring to (1.2), and explicit the dependence of the
rest of the constants in the table 1

In conclusion, all the constants involved depend ultimately on α, β, ∆ and ε, which
were chosen uniformly on BC1, thus we may say that (fa)a∈BC1 is a uniform family in the
sense referred to in [Al03].
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Constant Dependencies Main References
B1 α, β lemma 2.3
C α, β lemma 4.3
d α, β (1.1) and (3.2)
τ1 α theorem A and section 7
N∗

1 α, ∆, τ1 (7.2)
N1 ∆, α, B1, d, N∗

1 section 3
C1 N1, τ1 theorem A and (3.6)
C3 α (5.2)
C4 β (5.3)
C5 α, β (5.4)
Θ ε, C5, ∆ sections 5 and 8
γ Θ section 2
N2 Θ section 8
τ2 ε, C5, Θ theorem B and section 8
C2 N2, τ2 theorem B and section 3

Table 1. Constants interdependency



CHAPTER 2

Statistical stability for Hénon maps of Benedicks-Carleson type

1. Motivation and statement of the result

Hénon [He76] proposed the two-parameter family of maps

fa,b : R2 −→ R2

(x, y) 7−→ (1− ax2 + y, bx)

as a model for non-linear two-dimensional dynamical systems. Numerical experiments for
the parameters a = 1.4 and b = 0.3 indicated that fa,b has a global attractor. Hénon
conjectured that this dynamical system should have a “strange attractor” and that it
should be more favorable to analysis than the Lorenz system.

In principle most initial points could be attracted to a long periodic cycle, so it was
not at all a priori clear that the attractor seen by Hénon in his computer pictures was not
a long stable periodic orbit. However, in an outstanding paper, Benedicks and Carleson
[BC91] managed to prove that what Hénon conjectured was true - not for the parameters
(a, b) = (1.4, 0.3) that Hénon studied - but for small b > 0. In fact, for such small b > 0
values fa,b is strongly dissipative, and may be seen as an “unfolded” version of a quadratic
map in the interval. Simple arguments show that for these values of b there is a forward
invariant region which by successive iterations of fa,b accumulates in a topological attractor
that coincides with the closure of the unstable manifold W of a fixed point z∗ of fa,b. The
Benedicks-Carleson Theorem states that as long as b > 0 is kept sufficiently small there is a
positive Lebesgue measure set of parameters a ∈ [1, 2] (very close to a = 2) for which there
is a dense orbit in W along which the derivative grows exponentially fast, which makes it
a non-trivial transitive non-hyperbolic attractor. We denote by BC this positive Lebesgue
measure set of parameters to which we refer as the Benedicks-Carleson parameter set.

This remarkable breakthrough and the techniques developed in [BC91] promoted the
emergence of several results not specific to the context of Hénon maps. In the basis
of this enlargement of the perspective is the work of Mora and Viana [MV93]. They
proposed a renormalization scheme that when applied to a generic unfolding of a homoclinic
tangency associated to a dissipative saddle reveals the presence of Hénon-like families,
which they proved to share the same properties studied by Benedicks and Carleson for the
original Hénon family. This means that chaotic attractors arise abundantly in dynamical
phenomena.

Continuing the study of the dynamical properties of Hénon maps, Benedicks and Young
[BY93] developed the machinery even further to obtain that every attractor occurring for
each parameter (a, b) ∈ BC supports a unique SRB measure νa,b which they also proved to
be a physical measure. Afterwards, Benedicks and Viana [BV01] showed that the basins
of these SRB measures have no holes, that is Lebesgue - a.e. point whose orbit converges

37
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to the attractor is νa,b - generic , meaning that the time average of any continuous function
evaluated along its orbit equals the space average of the continuous function computed
with respect to νa,b.

The statistical properties of the Hénon maps of the Benedicks-Carleson type were car-
ried on by Benedicks and Young [BY00] who built “Markov extensions” of these maps
to prove the exponential decay of correlations. In fact, they demonstrate that for Hölder
continuous observables φ, ψ : R2 → R and for every (a, b) ∈ BC, there is a real number
τ < 1 and a constant C = C(φ, ψ) such that∣∣∣∣

∫
φ(ψ ◦ fn

a,b)dνa,b −
∫

φdνa,b

∫
ψdνa,b

∣∣∣∣ ≤ Cτn,

for all n ∈ N. Moreover, the stochastic process φ, φ ◦ fa,b, φ ◦ f 2
a,b, . . . satisfies the Central

Limit Theorem, i.e.

1√
n

n−1∑
i=0

(
φ ◦ f i

a,b −
∫

φdνa,b

)

converges in distribution to the Gaussian lawN (0, σ). Young [Yo98] extended these results
to a wider setting, namely, to dynamical systems that admit a horseshoe with infinitely
many branches and variable return times. In doing so she provided a general scheme that
unifies the proofs of this kind of results in several situations, like billiards with convex
scatterers, Axiom A attractors, piecewise hyperbolic maps, logistic maps and Hénon maps.

Despite being metrically significant, the strange attractors appearing for the Benedicks-
Carleson parameters are very fragile under small perturbations of the map. In fact, Ures
[Ur95] showed that the Benedicks-Carleson parameters can be approximated by other pa-
rameters for which the Hénon map has a homoclinic tangency associated to the fixed point
z∗. Hence, according to Newhouse’s famous results [Ne74, Ne79], under small perturba-
tions one may force the appearance of infinitely many attractors in the neighborhood of
W . Nevertheless, Benedicks and Viana [BV06] showed that the Hénon maps in BC are
remarkably stable under small random noise (stochastic stability). Let us elaborate on this
by giving a heuristic explanation of the result. Let (a, b) ∈ BC, f = fa,b and z be a point in
the basin of ν = νa,b. Now, every time we iterate we consider that a small random mistake
is committed. This way, we obtain a “pseudo”- trajectory {zj}∞j=0 where z0 = z and for
all j ≥ 1 each zj is a random variable supported on a small neighborhood of f(zj−1) (one
may suppose that zj is uniformly distributed in a ball of radius ε around f(zj−1), for small
ε > 0). Stochastic stability means that as long as the noise level is small (i.e. ε is small)
then for every continuous φ : R2 → R,

1

n

n−1∑
i=0

φ(zj) is close to

∫
φdν.

At this point we emphasize the resemblance between the statistical properties proved for
Hénon maps and the logistic family. This aspect is certainly related with the fact that the
b values are extremely small which make the diffeomorphisms fa,b to present 1-dimensional
behavior. This parallelism is evident when we compare the results in the papers concerning
the 1-dimensional case [BC85, BY92, Yo92, BV96] and their 2-dimensional versions in
[BC91, BY93, BY00, BV06], which are considerably much harder to prove. Regarding
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the convergence of physical measures, Thunberg [Th01] proved that, in the quadratic
family, there are sequences of parameters an converging to a Benedicks-Carleson parameter
a for which the systems exhibit attracting periodic orbits such that the Dirac measures
supported on them converge in the weak* topology to the SRB measure correspondent
to the parameter a. Moreover, there are also sequences of the same type such that the
Dirac measures do not converge to the SRB measure associated to a. Since both the
Dirac measures supported on the attracting periodic orbits and the SRB measures of the
Benedicks-Carleson quadratic maps are physical measures, it means that one cannot expect
statistical stability on a full Lebesgue measure set of parameters. However, the results in
[Fr05] show that within the Benedicks-Carleson parameter set, which has positive Lebesgue
measure, there is strong statistical stability (see also [Ts96] and [RS97] for similar results).
In the 2-dimensional case, Ures [Ur96] proved a partial analogue of Thunberg’s result.
Namely, he showed that the SRB measures νa,b corresponding to (a, b) ∈ BC can be
approximated by Dirac measures supported on sinks. The existence of a 2-dimensional
analogous result to the second part of Thunberg’s work is unknown to us. However,
regarding the statistical stability within the Benedicks-Carleson parameters we prove here
that for every fa,b with (a, b) ∈ BC, if we perturb a, b within the Benedicks-Carleson
parameter set then time averages of continuous functions keep close. More precisely

Theorem F. For each (a, b) ∈ BC let νa,b denote the SRB measure of fa,b. Consider
the set M(R2) of the Borel probability measures defined in R2 with the weak* topology.
Then the map

BC −→ M(R2)
(a, b) 7−→ νa,b

is continuous.

2. Insight into the reasoning

We consider a sequence of parameters (an, bn)n∈N ∈ BC converging to (a0, b0) ∈ BC.
Let (νn)n∈N and ν0 denote the respective SRB measures. Our goal is to show that νn

converges to ν0 in the weak* topology. We prove this by showing that every subsequence
(νni

)i∈N contains a subsequence convergent to ν0. Let us give some details on how to find
this convergent subsequence.

The main problem we have to overcome is the need of comparing measures supported
on different attractors. Our strategy is to look for a common ground where the construction
of the SRB measure for every parameter is rooted. To do so, we start by noting that each
of these maps admits a horseshoe Λa,b with infinitely many branches and variable return
times (we will drop the indices when we refer to properties that apply to all these objects)
obtained by intersecting two transversal families of local stable and unstable curves. Be-
sides, Λ intersects each local unstable curve in a positive Lebesgue measure Cantor set,
and for each z ∈ Λ it is possible to assign a positive integer R(z) defining the return time
function R : Λ → N which indicates that z returns to Λ after R(z) iterates. The hyper-
bolic properties of Λ and the good behavior of R allow us to build a Markov extension
that organizes the dynamics of these Hénon maps. Thus, one needs to show first that for
nearby parameters the corresponding horseshoes are also close. We remark that for each
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parameter there is not a unique horseshoe with the required properties. Therefore, what
we can establish is that for a given parameter (a, b) and a chosen horseshoe Λa,b, if we
consider a small perturbation (a′, b′), then it is possible to build a horseshoe Λa′,b′ with the
desired hyperbolic properties and which is close to Λa,b.

These horseshoes play an important role in a construction of the SRB measures that
suits our purposes. Actually, fR : Λ → Λ preserves a measure ν̃ with absolutely continuous
conditional measures on local unstable curves with respect to the Lebesgue measure on
each curve; the good behavior of the function R ensures that the saturation of ν̃ is an SRB
measure, and by uniqueness it follows that the saturation of ν̃ is the SRB measure. To prove
the continuous dependence of these SRB measures on the parameter, Λ is collapsed along
stable curves yielding a quotient space Λ̄, which can be thought inside a fixed local unstable
curve γ̂u, and whose elements are represented by the intersection of the corresponding
stable curve with γ̂u. This way our task is reduced to analyze fR : Λ̄ → Λ̄. This map
is piecewise uniformly expanding and its Perron-Frobenius operator has a spectral gap
under the usual aperiodicity conditions; so there is an fR-invariant density with respect
to Lebesgue measure on γ̂u. As γ̂u is nearly horizontal, we can think of ρ̄ as a function
defined on a subset of the x-axis. The advantage of this perspective is that it gives us the
desired common domain for these densities, providing the first step in the verification of
the continuity.

Therefore, the steps for the construction of the convergent subsequence are the follow-
ing:

• Fix a parameter (a0, b0) ∈ BC and a respective horseshoe Λ0.
• Pick any sequence of parameters (an, bn) ∈ BC such that (an, bn) → (a0, b0) as

n →∞ and consider fn = fan,bn for all n ∈ N0.
• Construct for every n ∈ N an horseshoe Λn adequate to fn and such that it gets

closer to Λ0 as n →∞.
• Collapse Λn and consider the fR

n -invariant densities ρ̄n. Realize them as functions
defined on an interval of the x-axis and belonging to a closed disk of L∞. Apply
Banach-Alaoglu Theorem to derive a convergent subsequence ρ̄ni

→ ρ̄∞.

• Employ a technique used by Bowen in [Bo75] to lift the fR-invariant measure
from the quotient space Λ̄ to an fR-invariant measure on the horseshoe Λ. This
way we obtain measures ν̃ni

and ν̃∞, defined on Λni
and Λ0, respectively.

• Verify that all the measures ν̃ni
and ν̃∞ desintegrate into conditional absolutely

continuous measures on unstable leaves.
• Saturate the measures ν̃ni

and ν̃∞. These saturations are fni
-invariant and f0-

invariant, respectively, and have absolutely continuous conditional measures on
unstable leaves. The uniqueness of the SRB measures ensures that the saturation
of ν̃ni

is νni
(the fni

-invariant SRB measure) and that of ν̃∞ is ν0 (the f0-invariant
SRB measure).

• Finally, show that this construction yields νni
→ ν0 in the weak* topology.

3. Dynamics of Hénon maps on Benedicks-Carleson parameters

In this section we provide information regarding the dynamical properties of the Hénon
maps f = fa,b, corresponding to the Benedicks-Carleson parameters (a, b) ∈ BC. We do not
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intend to give an exhaustive description but rather a brief summary of the most relevant fea-
tures whose main ideas are scattered through the papers [BC91, BY93, MV93, BY00].
We recommend the summary in [BY93] and Chapter 4 of [BDV05] where the reader can
find a comprehensive description of the techniques and results regarding Hénon-like maps,
including a revision of the referred papers; both texts inspired our summary. The survey
[LV03] provides a deep discussion about the exclusion of parameters which are the basis
of Benedicks-Carleson results. Concerning the 1-dimensional case we also refer the paper
[Fr05] in which a description of the Benedicks-Carleson techniques in the phase space
setting can be found.

3.1. One-dimensional model. The pioneer work of Jakobson [Ja81] establishing
the existence of a positive Lebesgue measure set of parameters where the logistic family
presents chaotic behavior paved the way for a better understanding of the dynamics beyond
the non-hyperbolic case. The analysis of the Hénon maps made by Benedicks and Car-
leson, triggered by the work of Collet-Eckmann [CE80a, CE80b] and Benedicks-Carleson
[BC85] themselves, was a major breakthrough in that direction. A key idea is the expo-
nential growth of the derivative along the critical orbit, introduced in [CE83]. In their
remarkable paper [BC91], Benedicks and Carleson manage to establish, in a very creative
fashion, a parallelism between the estimates for the 1-dimensional quadratic maps and the
Hénon maps. This connection supports the use of 1-dimensional language in the present
paper and compels us to remind the results in Section 2 of [BC91]. In there, it is proved
the existence of a positive Lebesgue measure set of parameters, say BC1 , within the family
fa : [−1, 1] → [−1, 1], given by fa(x) = 1− ax2 verifying

(1) there is c > 0 (c ≈ log 2) such that |Dfn
a (fa(0))| ≥ ecn for all n ≥ 0;

(2) there is a small α > 0 such that |fn
a (0)| ≥ e−αn for all n ≥ 1.

The idea, roughly speaking, is that while the orbit of the critical point is outside a
critical region we have expansion (see Subsection 3.1.1); when it returns we have a serious
setback in the expansion but then, by continuity, the orbit repeats its early history regaining
expansion on account of (1). To arrange for (1) one has to guarantee that the losses at the
returns are not too drastic hence, by parameter elimination, (2) is imposed. The argument
is mounted in a very intricate induction scheme that guarantees both the conditions for
the parameters that survive the exclusions.

We focus on the maps corresponding to Benedicks-Carleson parameters and study the
growth of Dfn

a (x) for x ∈ [−1, 1] and a ∈ BC1. For that matter we split the orbit in free
periods and bound periods. During the former we are certain that the orbit never visits the
critical region. The latter begin when the orbit returns to the critical region and initiates
a bound to the critical point, accompanying its early iterates. We describe the behavior of
the derivative during these periods in Subsections 3.1.1 and 3.1.2.

The critical region is the interval (−δ, δ), where δ = e−∆ > 0 is chosen small but much
larger than 2− a. This region is partitioned into the intervals

(−δ, δ) =
⋃

m≥∆

Im,
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where Im = (e−(m+1), e−m] for m > 0 and I−m = −Im for m < 0; then each Im is further
subdivided into m2 intervals {Im,j} of equal length inducing the partition P of [−1, 1] into

[−1,−δ) ∪
⋃
m,j

Im,j ∪ (−δ, 1]. (3.1)

Given J ∈ P , we let nJ denote the interval n times the length of J centered at J .
3.1.1. Expansion outside the critical region. There is c0 > 0 and M0 ∈ N such that

(1) If x, . . . , fk−1
a (x) /∈ (−δ, δ) and k ≥ M0, then |Dfk

a (x)| ≥ ec0k;
(2) If x, . . . , fk−1

a (x) /∈ (−δ, δ) and fk
a (x) ∈ (−δ, δ), then |Dfk

a (x)| ≥ ec0k;
(3) If x, . . . , fk−1

a (x) /∈ (−δ, δ), then |Dfk
a (x)| ≥ δec0k.

3.1.2. Bound period definition and properties. Let β = 14α. For x ∈ (−δ, δ) define p(x)
to be the largest integer p such that

|fk
a (x)− fk

a (0)| < e−βk, ∀k < p. (3.2)

Then

(1) 1
2
|m| ≤ p(x) ≤ 3|m|, for each x ∈ Im;

(2) |Df p
a (x)| ≥ ec′p, where c′ = 1−4β

3
> 0.

The orbit of x is said to be bound to the critical point during the period 0 ≤ k < p. We
may assume that p is constant on each Im,j.

3.1.3. Distortion of the derivative. The partition P is designed so that if ω ⊂ [−1, 1]
is such that, for all k < n, fk(ω) ⊂ 3J for some J ∈ P , then there exists a constant C
independent of ω, n and the parameter so that for every x, y ∈ ω,

|Dfn
a (x)|

|Dfn
a (y)| ≤ C.

3.1.4. Derivative estimate. Suppose that

|f j
a(x)| ≥ δe−αj, ∀j < n. (3.3)

Then there is a constant c2 > 0 such that

|Dfn
a (x)| ≥ δec2n. (3.4)

A proof of this fact can be found in [Fr05, Section 3] where it is also shown that there is
κ > 0 such that

|{x ∈ [−1, 1] : |f j
a(x)| ≥ e−αj, ∀j < n}| ≥ 2− const e−κn.

As an easy consequence, it is deduced that Lebesgue almost every x has a positive Lya-
punov exponent. Moreover, we have a positive Lebesgue measure set of points x ∈ [−1, 1]
satisfying (3.3), and so (3.4), for all n ∈ N.

3.2. General description of the Hénon attractor. The following facts are ele-
mentary for f = fa,b with (a, b) inside an open set of parameters.

Each f has a unique fixed point in the first quadrant z∗ ≈ (
1
2
, 1

2
b
)

. This fixed point is
hyperbolic with an expanding direction presenting a slope of order −b/2 and a contractive
direction with a slope of approximately 2. The respective eigenvalues are approximately
−2 and b/2. In [BC91] it is shown that if we choose a0 < a1 < 2 with a0 sufficiently
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near 2, then there exists b0 sufficiently small when compared to 2 − a0 such that for all
(a, b) ∈ [a0, a1]× (0, b0], the unstable manifold of z∗, say W , never leaves a bounded region.
Moreover, its closure W is an attractor in the sense that there is an open neighborhood U
of W such that for every z ∈ U we have fn(z) → W as n →∞.

3.2.1. Hyperbolicity outside the critical region. Let δ be at least as small as in our
1-dimensional analysis and assume that b0 ¿ 2 − a0 ¿ δ. The critical region is now
(−δ, δ) × R. A simple calculation shows that outside the critical region Df preserves the
cones {|s(v)| ≤ δ} (see [BY93] Subsection 1.2.3), where s(v) denotes the slope of the vector
v. For z = (x, y) /∈ (−δ, δ)× R and a unit vector v with s(v) ≤ δ, we have essentially the
same estimates as in 1-dimension. That is, there is c0 > 0 and M0 ∈ N such that

(1) If z, . . . , fk−1(z) /∈ (−δ, δ)× R and k ≥ M0 then |Dfk(z)v| ≥ ec0k;
(2) If z, . . . , fk−1(z) /∈ (−δ, δ)× R and fk(z) ∈ (−δ, δ)× R then |Dfk(z)v| ≥ ec0k;
(3) If z, . . . , fk−1(z) /∈ (−δ, δ)× R then |Dfk(z)v| ≥ δec0k.

3.3. The contractive vector field. For A ∈ GL(2,R) and a unit vector v, if v 7→
|Av| is not constant, let e(A) denote the unit vector maximally contracted by A. We
will write en(z) := e(Dfn(z)) whenever it makes sense. Observe that if we have some
sort of expansion in z, say |Dfn(z)v| > 1 for some vector v, then en(z) is defined and
|Dfn(z)en(z)| ≤ bn since det(Dfn(z)) = (−b)n.

The following general perturbation lemma is stated in [BY00] and clarifies the asser-
tions of Lemma 5.5 and Corollary 5.7 in [BC91], where the proofs can be found. Given
A1, A2, . . ., we write An := An . . . A1; all the matrices below are assumed to have determi-
nant equal to b.

Lemma 3.1 (Matrix Perturbation Lemma). Given κ À b, exists λ with b ¿ λ <
min(1, κ) such that if A1 . . . , An, A′

1 . . . , A′
n ∈ GL(2,R) and v ∈ R2 satisfy

|Aiv| ≥ κi and ‖Ai − A′
i‖ < λi ∀i ≤ n,

then we have, for all i ≤ n:

• |A′iv| ≥ 1
2
κi;

• ^(Aiv,A′iv) ≤ λ
i
4 .

From the Matrix Perturbation Lemma, it follows that if for some κ and v, we have
|Df j(z0)v| ≥ κj for all j ∈ {0, . . . , n}, then there is a ball of radius (λ/5)n about z0 on
which en is defined and |Dfnen| ≤ 2(b/κ)n. Assuming that κ is fixed and en is defined in
a ball Bn around z0 the following facts hold (see [BC91, Section 5], [BY93, Section 1.3.4]
or [BY00, Section 1.5]):

(1) e1 is defined everywhere and has slope equal to 2ax +O(b);
(2) there is a constant C > 0 such that for all z1, z2 ∈ Bn,

|en(z1)− en(z2)| ≤ C|z1 − z2|;
(3) for z1 = (x1, y1), z2 = (x2, y2) ∈ Bn with |y1 − y2| ≤ |x1 − x2|

|en(z1)− en(z2)| = (2a +O(b))|x1 − x2|;
(4) for m < n, |en − em| ≤ O(bm) on Bn.
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From this point onward we restrict ourselves to the Hénon maps of the Benedicks-
Carleson type, that is, we are considering f = fa,b for (a, b) ∈ BC.

3.4. Critical points. The cornerstone of Benedicks-Carleson strategy is the critical
set in W denoted by C , that plays the role of the critical point 0 in the 1-dimensional
model. The critical points correspond to homoclinic tangencies of Pesin stable and unstable
manifolds. For z ∈ W , let τ(z) ∈ TzR2 denote a unit vector tangent to W at z. For each
ζ ∈ C, the vector τ(ζ) is contracted by both forward and backward iterates of the derivative.
In fact, we have limn→∞ en(ζ) = τ(ζ), which can be thought as the moral equivalent to
Df(0) = 0 in 1-dimension. The following subsections refer to [BC91], mostly Sections 5
and 6 (see also [BY93, Section 1.3.1]).

3.4.1. Rules for the construction of the critical set. The critical set C is located in
W ∩ (−10b, 10b) × R. There is a unique z0 ∈ C on the roughly horizontal segment of
W containing the fixed point z∗. The part of W between f 2(z0) and f(z0) is denoted
by W1 and called the leaf of generation 1. Leaves of generation g ≥ 2 are defined by
Wg := f g−1W1\

⋃
j≤g−1 Wj. We assume that (a, b) is sufficiently near (2, 0) so that

⋃
g≤27 Wg

consists of 226 roughly horizontal segments linked by sharp turns near x = ±1, y = 0, and
that

⋃
g≤27 Wg ∩ (−δ, δ)× R consists of 226 curves whose slope and curvature are ≤ 10b –

in [BC91] such a curve is called C2(b). In each of them there is a unique critical point
For g > 27, assume that all critical points of generation ≤ g − 1 are already defined.

Consider a maximal piece of C2(b) curve γ ⊂ Wg. If γ contains a segment of length 2%g

centered at z = (x, y), where % verifies b ¿ % ¿ e−72, and there is a critical point z̃ = (x̃, ỹ)
of generation ≤ g−1 with x = x̃ and |y− ỹ| ≤ bg/540, then a unique critical point z0 ∈ C∩γ
of generation g is created satisfying the condition |z0 − z| ≤ |y − ỹ|1/2. These are the only
critical points of generation g.

Observe that the exact position of a critical point is unaccessible since its definition
depends on the limiting relation limn→∞ en(ζ) = τ(ζ). So the strategy in [BC91] is
to produce approximate critical points ζn of increasing order which are solutions of the
equation en(z) = τ(z). Once an approximate critical point is born, parameters are excluded
to ensure that a critical point ζ ∈ C is created nearby. Moreover, |ζn − ζ| = O(bn).

3.4.2. Dynamical properties of the critical set. The parameter exclusion procedure lead-
ing to BC is designed so that every z ∈ C has the following properties:

• there is c ≈ log 2 and C independent of b such that for all n ∈ N0,

|Dfn(z)
(

0
1

)| ≥ ecn and |Dfn(z)τ | ≤ (Cb)n; (UH)

• there is a small number α > 0, say α = 10−6, such that for all n ∈ N
dist(fn(z), C) ≥ e−αn. (BA)

The precise meaning of “dist” in the last equation will be described in Section 3.5.1. The
uniform hyperbolicity expressed in (UH) is analogous to condition (1) in Subsection 3.1
while the basic assumption stated in (BA) is the surface analogue to condition (2) of the
1-dimensional model.

One of the reasons why the Benedicks-Carleson proof is so involved is that in order to en

be defined in the vicinity of critical points, one has to require some amount of hyperbolicity
which is exactly what one wants to achieve (see (UH) above). This difficulty is overcome by
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working with finite time approximations and imposing slow recurrence in a very intricate
induction scheme. Once an approximate critical point ζn of order n is designated one
studies its orbit. When it comes near C, there is a near-interchange of stable and unstable
directions – hence a setback in hyperbolicity. But then the orbit of ζn follows for some time
the orbit of some ζ̃ ∈ C of earlier generation and regains hyperbolicity on account of (UH)

for ζ̃. To arrange (UH) at time n+1 for ζn, it is necessary to keep the orbits from switching
stable and unstable directions too fast, so by parameter exclusion we impose (BA). At this
stage it is possible to define en+1 and thus find a critical point approximation of order n+1,
denoted by ζn+1. The information is updated and the process is repeated. Fortunately, a
positive Lebesgue measure set of parameters survives the exclusions.

3.5. Binding to critical points. The critical point 0 in the 1-dimensional context
plays a dual role. Firstly, the distance to the critical point is a measure of the norm of
the derivative, which is the reason why a recurrence condition like (2) of Subsection 3.1
can be used to bound the loss of expansion when an orbit comes near the critical point
and to obtain the exponential growth expressed in (1) of Subsection 3.1. Secondly, during
the bound, period information of the early iterates of the critical point is passed through
continuity to the points returning to the critical region. In order to replicate this in the
Hénon family, for every return time n of the orbit of z ∈ W (z may belong to C) we must
associate a suitable binding critical point for fn(z) so that we can have some meaning of
the distance of fn(z) to the critical set. The suitability depends on the validity of two
requirements: tangential position and correct splitting.

3.5.1. Tangential position and distance to the critical set. Let z ∈ W and n be one of its
return time to the critical region. Let ζ ∈ C. Essentially we say that fn(z) is in tangential
position with respect to ζ if its horizontal distance to ζ is much larger than the vertical
distance. In fact we will use the notion of generalized tangential positions introduced in
[BY93, Section 1.6.2] instead of the original one from [BC91] (see [BY93, Section 1.4.1]).
For z ∈ W we say that (x′, y′) is the natural coordinate system at z if (0, 0) is at z, the x′

axis is aligned with τ(z) and the y′ axis with τ(z)⊥.

Definition 3.2. Let c > 0 be a small number much less than 2a, say c = 10−2, and
let ζ ∈ C. A point z is said to be in tangential position with respect to ζ, if z = (x′, y′)
with |y′| ≤ cx′2, in the natural coordinate system at ζ.

In [BC91, Section 7.2] it is arranged that for every ζ ∈ C and any n-th return to the

critical region, there is a critical point ζ̂ of earlier generation with respect to which fn(ζ) is
in tangential position. This is done through an argument known as the capture procedure
(see also [BY93, Section 2.2.2]) which essentially consists in showing that when a critical
orbit ζ ∈ C experiences a free return at time n, then fn(ζ) is surrounded by a fairly
regular collection of C2(b) segments {γj} of W which are relatively long and of earlier

generations. In fact, we have gen(γj) ≈ 3j, length(γj) ≈ %3j
and dist(fn(z), γj) ≈ b3j

,
where 3j < θn and θ ≈ 1

| log b| . Some (maybe all) of these captured segments will have

critical points and most locations of fn(ζ) will be in tangential position with respect to
one of these critical points. Bad locations of fn(ζ) correspond to deleted parameters. This
is another subtlety of Benedicks-Carleson proof: every time a critical point is created it
causes a certain amount of parameters to be discarded so we cannot afford to have too
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many critical points; however, we must have enough critical points so that a convenient
one, in tangential position, may be found every time a return occurs.

In [BY93] it is shown that this kind of control when a critical orbit returns can be
extended to all points in W . Thus, for any return of the orbit of z ∈ W to the critical region
there is an available binding critical point with respect to which the tangential position
requirement holds. In fact [BY93, Lemma 7] guarantees that one can systematically assign
to each maximal free segment γ ⊂ W intersecting the critical region a critical point z̃(γ)
with respect to which each z ∈ γ are in tangential position. When the orbit of z ∈ W
returns to the critical region, say at time n, we denote by z(fn(z)) ∈ C a critical point
with respect to which fn(z) is in tangential position.

These facts lead us to the notion of distance to the critical set. We do not intend to
give a formal definition but rather introduce a concept that gives an indication of closeness
to the critical set. In [BC91] and [BY93] two different perspectives of distance to the
critical set have been introduced. In [BY00, Section 2] this notion is cleaned up and these
two different perspectives are seen to translate essentially the same geometrical facts. Let
z ∈ W . If z = (x, y) /∈ (−δ, δ) × R we consider that dist(z, C) = |x|; if z ∈ (−δ, δ) × R
then we pick any critical point ζ ∈ C with respect to which z is in tangential position
and let dist(z, C) = |z − ζ|. In order to this notion make sense one has to verify that if

ζ̂ ∈ C is a different critical point with respect to which z is also in tangential position then
|z− ζ| ≈ |z− ζ̂|. This is exactly the content of [BY00, Lemma 1’], where it is proved that

|z − ζ|/|z − ζ̂| = 1+O(max(b, d2)), for d = min(|z−ζ|, |z− ζ̂|). As observed in [BY00] for
a better understanding of the distance of a given point z ∈ W ∩ (−δ, δ)×R to the critical
set, one should look at the angle between τ(z) and em(z), the most contracted vector at
z of a convenient order m. The reason for this is that, at the critical points, this angle is
extremely close to 0; actually it tends to 0 if we let m go to infinity.

3.5.2. Bound period and fold period. Let z ∈ W ∩ (−δ, δ)×R be in tangential position
with respect to ζ ∈ C. Then z initiates a binding to ζ of length p, where p = p(z, ζ) is the
largest k such that

|f j(z)− f j(ζ)| < e−βj, ∀j < k

where β = 14α. We say that in the next p iterates, z is bounded to ζ. It is convenient to
modify slightly the above definition of p so that the bound periods become nested. This
means that if the orbit of z returns to the critical region before p then the bound period
initiated at that time must cease before the end of the bound relation to ζ. This is done
in [BC91, Section 6.2]. It is further required that if the bound relation between z and ζ
is still in effect at time n, which is a return time for both, then z(fn(ζ)) = z(fn(z)).

An additional complication arises in the Hénon maps: the folding. To illustrate it,
let γ ⊂ W be a C2(b) segment containing a critical point ζ. The practically horizontal
vector τ(ζ) will be sent by Df into an approximately vertical direction, which is the typical
contracting direction of the system, and will be contracted forever. After few iterations γ
develops very sharp bends at the iterates of ζ, which induce an unstable setting near the
bends. In fact, if we pick a point z ∈ γ very close to ζ, its iterates diverge very fast from
the bends which means that after some time, say n, depending on how close z and ζ are,
the vector τ(fn(z)) will be practically aligned with the horizontal direction again, which,
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on the contrary, is the typical expanding direction of the system. The interval of time that
the tangent direction takes to be horizontal again is called the fold period.

The actual definition of fold period is given in [BC91, Sections 6.2 and 6.3]; here, we
stick to the previous heuristic motivation and to the following properties. If z ∈ W has a
return at time n, the fold period of fn(z) with respect to z(fn(z)) ∈ C is a positive integer
l = l(fn(z), z(fn(z))) such that

(1) 2m ≤ l ≤ 3m, where (5b)m ≤ |fn(z)− z(fn(z))| ≤ (5b)m−1;
(2) l/p ≤ const/| log b|, that is the fold period associated to a return is very short

when compared to the bound period initiated at that time.

3.5.3. Correct splitting and controlled orbits. In order to duplicate the 1-dimensional
behavior not only one assigns a binding critical point every time a return to the critical
region occurs but also one would like to guarantee that the loss of hiperbolicity due to the
return is in some sense proportional to the distance to the critical set. This is achieved
through the notion of correct splitting.

Definition 3.3. Let z ∈ W , v ∈ TzR2, n ∈ N be a return time for z and consider
z(fn(z)) ∈ C with respect to which fn(z) is in tangential position. We say that the vector
Dfn(z)v splits correctly with respect to z(fn(z)) ∈ C if and only if we have that

3|fn(z)− z(fn(z))| ≤ ^(Dfn(z)v, el(fn(z))) ≤ 5|fn(z)− z(fn(z))|,
where l is the fold period associated to the return.

Now we are in condition of defining controlled orbits.

Definition 3.4. Let z ∈ W and v ∈ TzR2 and N ∈ N. We say that the pair (z, v) is
controlled on the time interval [0, N) if for every return n ∈ [0, N) of the orbit of z to the
critical region, there is z(fn(z)) ∈ C with respect to which fn(z) is in tangential position
and Dfn(z)v splits correctly with respect to z(fn(z)) ∈ C. We say that the pair (z, v) is
controlled during the time interval [0,∞) if it is controlled on [0, N) for every N ∈ N.

One of the most important properties of f proved in [BC91] is that for every ζ ∈ C, the
pair (ζ,

(
0
1

)
) is controlled during the time interval [0,∞). This fact supports the validity

of the 1-dimensional estimates in the surface case.
We say that the pair (z, v) is controlled on [j, 0) with −∞ < j < 0, if (f j(z), Df j(z)v)

is controlled on [0,−j) and that (z, v) is controlled on (−∞, 0) if it is controlled on [j, 0)
for all j < 0. In [BY93, Proposition 1] it is proved that if the orbit of z ∈ W never hits
the critical set C then the pair (z, τ(z)) is controlled in the time interval (−∞,∞).

3.6. Dynamics in W . As referred, [BY93, Proposition 1] shows that every orbit of
z ∈ W can be controlled using those of C, just as it was done for critical orbits in [BC91].
This means that each orbit in W can be organized into free periods and bound periods.
To illustrate, consider z belonging to a small segment of W around the fixed point z∗. By
definition z is considered to be free at this particular time. The first forward iterates of z
are also in a free state , until the first return to the critical region occurs, say at time n.
Then since the pair (z, τ(z)) is controlled there is z(fn(z)) with respect to which fn(z) is
in tangential position and Dfn(z)τ splits correctly. During the next p iterates we say that
z is bound to the critical point z(fn(z)). If fn(z) ∈ C then the bound period is infinite;
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otherwise, after the time n + p the iterates of z are said to be in free state once again and
history repeats itself.

This division of the orbits into free periods, bound periods and the special design of
the control of orbits through the tangential position and correct splitting requirements
allowed [BY93] to recover the one dimensional estimates. In fact, the loss of expansion at
the returns is somehow proportional to the distance to the binding critical point and it is
completely overcome at the end of the bound period.

The following estimates, unless otherwise mentioned, are proved in [BY93, Corollary 1].

(1) Free period estimates.
(a) Every free segment γ has slope less than 2b/δ, and γ ∩ (−δ, δ)×R is a C2(b)

curve (Lemmas 1 and 2 of [BY93]);
(b) There is c0 > 0 and M0 ∈ N such that if z is free and z, . . . , fk−1(z) /∈

(−δ, δ)× R with k ≥ M0 then |Dfk(z)τ | ≥ ec0k;
(c) There is c0 > 0 such that if z is free, z, . . . , fk−1(z) /∈ (−δ, δ) × R and

fk(z) ∈ (−δ, δ)× R then |Dfk(z)τ | ≥ ec0k.
(2) Bound period estimates.

There is c ≈ log 2 such that if z ∈ (−δ, δ) × R is free and initiates a binding to
ζ ∈ C with bound period p, then
(a) If e−m−1 ≤ |z − ζ| ≤ e−m, then 1

2
m ≤ p ≤ 5m;

(b) |Df j(z)τ | ≥ |z − ζ|ecj for 0 < j < p.
(c) |Df p(z)τ | ≥ ec p

3 .
(3) Orbits ending in free states.

There exists c1 > 1
3
log 2 such that if z ∈ W ∩ (−δ, δ) × R is in a free state, then

|Df−j(z)τ | ≤ e−c1j, for all j ≥ 0 ([BY93, Lemma 3]).

3.6.1. Derivative estimate. The next derivative estimate can be found in [BY00, Sec-
tion 1.4]. It is the 2-dimensional analogue to the 1-dimensional derivative estimate ex-
pressed in Subsection 3.1.4. Consider n ∈ N and a point z belonging to a free segment of
W and satisfying, for every j < n

dist(f j(z), C) ≥ δe−αj. (SA)

Then there is a constant c2 > 0 such that

|Dfn(z)τ | ≥ δec2n. (EE)

Essentially this estimate is saying that if we have slow approximation to the critical set
(or, in other words, a (BA) type property), then we have exponential expansion along the
tangent direction to W .

3.6.2. Bookkeeping and bounded distortion. For x0 ∈ R, we let P[x0] denote the partition
P defined in (3.1) after being translated from 0 to x0. Similarly, if γ is a roughly horizontal
curve in R2 and z0 = (x0, y0) ∈ γ, we let P[z0] denote the partition of γ that projects
vertically onto P[x0] on the x-axis. Once γ and z0 are specified, we will use Im,j to denote
the corresponding subsegment of γ.

Let γ ⊂ (−δ, δ) × R be a segment of W . We assume that the entire segment has the
same itinerary up to time n in the sense that:

• all z ∈ γ are bound or free simultaneously at any moment;
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• if 0 = t0 < t1 < . . . < tq are the consecutive free return times before n, then for all

j ≤ q the entire segment f tjγ has a common binding point ζj ∈ C and f tjγ ⊂ 5Ij
m,k

for some Ij
m,k ∈ P[ζj ].

Then there exists C1 > 0 independent of γ and n such that for all z1, z2 ∈ γ

|Dfn(z1)τ |
|Dfn(z2)τ | ≤ C1.

This result can be found in [BY93, Proposition 2].

3.7. Dynamical and geometric description of the critical set. The construction
of the critical set seems to be done according to a quite discretionary set of rules. However,
as observed in [BY93] there are certain intrinsic characterizations of C. Corollary 1 of
[BY93] gives the following dynamical description of C. Let z ∈ W . Then

z lies on a critical orbit ⇔ lim sup
n→∞

|Dfn(z)τ | < ∞ ⇔ lim sup
n→∞

|Dfn(z)τ | = 0.

In fact, z ∈ C if and only if |Df j(z)τ | ≤ e−c1|j|, for all j ∈ Z, i.e. the critical points
correspond to the tangencies of Pesin stable manifolds with W which endow an homoclinic
type behavior.

The critical set C has also a nice geometric characterization. Given ζ ∈ W , κ(ζ) denotes
the curvature of W at ζ. From the curvature computations in [BC91, Section 7.6] (see
also [BY93, Section 2.1.3]) one gets that

z ∈ C ⇔ κ(z) ¿ 1 and κ(fn(z)) > b−n, ∀n ∈ N.

This means that one can look at the critical points as the points that are sent into the
folds of W .

3.8. SRB measures. We begin by giving a formal definition of Sinai-Ruelle-Bowen
measures (SRB measures). Let f : M → M be an arbitrary C2 diffeomorphism of a finite
dimensional manifold and let µ be an f invariant probability measure on M with compact
support. We will assume that µ-a.e. point, there is a strictly positive Lyapunov exponent.
Under these conditions, the unstable manifold theorem of Pesin [Pe78] or Ruelle [Ru79]
asserts that passing through µ-a.e. z there is an unstable manifold which we denote by
γu(z).

A measurable partition L of M is said to be subordinate to γu (with respect to the
measure µ) if at µ-a.e. z, L(z) is contained in γu(z) and contains an open neighborhood
of z in γu(z), where L(z) denotes the atom of L containing z. By Rokhlin’s desintegration
theorem there exists a family {µLz } of conditional measures of µ with respect to the partition
L (see for example [BDV05, Appendixes C.4 and C.6]).

Definition 3.5. Let f : M → M and µ be as above. We say that µ is an SRB
probability measure if for every measurable partition L subordinate to γu, we have that
{µLz } is absolutely continuous with respect to Lebesgue measure in γu(z) for µ-a.e. z.

In [BY93] it is proved that fa,b admits an SRB measure νa,b, for every (a, b) ∈ BC.
Moreover, νa,b is unique (hence ergodic), it is a physical measure, its support is W a,b and
(fa,b, νa,b) is isomorphic to a Bernoulli shift.
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4. A horseshoe with positive measure

In order to obtain decay of correlations for Hénon maps of the Benedicks-Carleson
type, Benedicks and Young build, in [BY00], a set Λ of positive SRB-measure with good
hyperbolic properties. Λ has hyperbolic product structure and it may be looked at as
a horseshoe with infinitely many branches and unbounded return times; it is obtained
by intersecting two families of C1 stable and unstable curves. Dynamically, Λ can be
decomposed into a countable union of s-sublattices, denoted Ξi, crossing Λ completely
in the stable direction, with a Markov type property: for each Ξi there is Ri ∈ N such
that fRi(Ξi) is an u-sublattice of Λ, crossing Λ completely in the unstable direction. The
intersection of Λ with every unstable leaf is a positive 1-dimensional Lebesgue measure set.
Before continuing with an overview of the construction of such horseshoes, we mention that
Young [Yo98] has extended the argument in [BY00] to a wider setting and observed that
similar horseshoes can be found in other situations. We will refer to [Yo98] for certain
facts not specific to Hénon maps.

Let Γu and Γs be two families of C1 curves in R2 such that

• the curves in Γu, respectively Γs, are pairwise disjoint;
• every γu ∈ Γu meets every γs ∈ Γs in exactly one point;
• there is a minimum angle between γu and γs at the point of intersection.

Then we define the lattice associated to Γu and Γs by

Λ := {γu ∩ γs : γu ∈ Γu, γs ∈ Γs}.
For z ∈ Λ let γu(z) and γs(z) denote the curves in Γu and Γs containing z, respectively.

We say that Ξ is an s-sublattice (resp. u-sublattice) of Λ if Λ and Ξ have a common
defining family Γu (resp. Γs) and the defining family Γs (resp. Γu) of Λ contains that of Ξ.
A subset Q ⊂ R2 is said to be the rectangle spanned by Λ if Λ ⊂ Q and ∂Q is made up of
two curves from Γs and two from Γu.

Next, we state Proposition A from [BY00] which asserts the existence of two lattices
Λ+ and Λ− with essentially the same properties; for notation simplicity statements about
Λ apply to both Λ+ and Λ−.

Proposition 4.1. There are two lattices Λ+ and Λ− in R2 with the following properties.

(1) (Topological Structure) Λ is the disjoint union of s-sublattices Ξi, i = 1, 2 . . .,
where for each i, exists Ri ∈ N such that fRi(Ξi) is a u-sublattice of Λ+ or Λ−.

(2) (Hyperbolic estimates)
(a) Every γu ∈ Γu is a C2(b) curve; and exists λ1 > 0 such that for all z ∈ γu∩Qi,

|DfRi(z)τ | ≥ λRi
1 ,

where τ is the unit tangent vector to γu at z and Qi is the rectangle spanned
by Ξi.

(b) For all z ∈ Λ, ζ ∈ γs(z) and j ≥ 1 we have

|f j(z)− f j(ζ)| < Cbj,

(3) (Measure estimate) Leb(Λ ∩ γu) > 0, ∀γu ∈ Γu.
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(4) (Return time estimates) Let R : Λ → N be defined by R(z) = Ri for z ∈ Ξi. Then
there are C0 > 0 and θ0 < 1 such that on every γu

Leb{z ∈ γu : R(z) ≥ n} ≤ C0θ
n
0 , ∀n ≥ 1.

The proof of Proposition 4.1 can be found in Sections 3 and 4 of [BY00]. Since we will
need to prove the closeness of these horseshoes for nearby Benedicks-Carleson parameters
and this involves slight modifications in the construction of the horseshoes itselves, we will
include, for the sake of completeness, the basic ideas of the major steps leading to Λ.

Consider the leaf of first generation W1 and the unique critical point z0 = (x0, y0) ∈ C
on it. Take the two outermost intervals of the partition P[x0] as in Subsection 3.6.2 and
denote them by Ω+

0 and Ω−
0 ; they support the construction of the lattices Λ+ and Λ−,

respectively. Again we use Ω0 to simplify notation and statements regarding to it apply to
both Ω+

0 and Ω−
0 .

Let h : Ω0 → R be a function whose graph is the leaf of first generation W1, when
restricted to the set Ω0 × R and H : Ω0 → W1 be given by H(x) = (x, h(x)).

4.1. Leading Cantor sets. The first step is to build the Cantor set that constitutes
the intersection of Λ with the leaf of first generation W1. We build a sequence Ω0 ⊃ Ω1 ⊃
Ω2 . . . such that for every z ∈ H(Ωn), dist(f j(z), C) ≥ δe−αj, for all j ∈ {1, 2, . . . , n}.
This is done by excluding from Ωn−1 the points that at step n fail to satisfy the condi-
tion dist(fn(H(x)), C) ≥ δe−αn. Then we define the Cantor set Ω∞ =

⋂
n∈NΩn. By the

derivative estimate in Subsection 3.6.1, on H(Ω∞), the condition (SA) holds and thus
|Dfn(z)τ(z)| > ec1n, for all n ∈ N.

Remark 4.2. We observe that there is a difference in the notation used in [BY00]: in
here, the sets Ωn (with n = 0, 1, . . . ,∞) are the vertical projections in the x-axis of the
corresponding sets in [BY00].

Remark 4.3. We note that the procedure leading to Ω∞ is not unique. Ω∞ is obtained
by successive exclusions of points from the set Ω0. These exclusions are made according
to the distance to a suitable binding critical point every time we have a free return to
[−δ, δ] × R. Certainly, the choice for the binding critical point in not unique which leads
to different exclusions. However, by the results referred in Subsection 3.5.1 all suitable
binding points are essentially the same and these possible differences in the exclusions are
insignificant in terms of the properties we want Ω∞ to have: slow approximation to the
critical set and expansion along the tangent direction to W .

4.2. Construction of long stable leaves. The next step towards building Λ involves
the construction of long stable curves, γs(z), at every z ∈ H(Ω∞). This is done in Lemma
2 of [BY00]; let us review the inductive procedure used there.

The contracting vector field of order 1, e1, is defined everywhere so we may consider
the rectangle Q0(ω0) = ∪z∈ω0γ1(z), where γ1(z) denotes the e1-integral curve segment 10b
long to each side of z ∈ ω0 and ω0 = H(Ω0). Let also Q1

0(ω0) denote the Cb-neighborhood
of Q0(ω0) in R2. We observe that by (1) of Section 3.3 the γ1 curves in Q0(ω0) have slopes
≈ ±2aδ depending on whether Ω0 refers to Ω+

0 or Ω−
0 .

Suppose that for every connected component ω ∈ H(Ωn−1) we have a strip foliated
by integral curves of en, Qn−1(ω) = ∪z∈ωγn(z), where γn(z) denotes the en-integral curve
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segment 10b long to each side of z ∈ ω. From [BY00, Section 3.3] one deduces that the
vector field en+1 is defined on a 3(Cb)n neighborhood of each curve γn(z), if z ∈ H(Ωn).
Consider the (Cb)n- neighborhood of Qn−1(ω) in R2, denoted by Q1

n−1(ω). If ω̃ ⊂ ω is a
connected component of H(Ωn) then Qn(ω̃) = ∪z∈ω̃γn+1(z) is defined and

Q1
n(ω̃) ⊂ Q1

n−1(ω), (4.1)

where Q1
n(ω̃) is a (Cb)n+1- neighborhood of Qn(ω̃) in R2.

To fix notation, for some ω ⊂ H(Ω0) and n ∈ N, when defined, Qn(ω) = ∪z∈ωγn+1(z)
denotes a rectangle foliated by integral curves of en+1 passing through z ∈ ω and 10b long
to each side of z. Besides, Q1

n(ω) is a (Cb)n+1- neighborhood of Qn(ω) in R2.
To finish the construction of γs(z), for each z ∈ H(Ω∞), take the sequence of connected

components ωi ⊂ H(Ωi) containing z. We have {z} = ∩iωi. Let zn denote the right end
point of ωn−1. Then γn(zn) converges in the C1- norm to a C1-curve γs(z) with the
properties stated in Proposition 4.1. The curve γn(zn) acts as an approximate long stable
leaf of order n. Note that the choice of the right end point is quite arbitrary; in fact any
curve γn(ζ) with ζ ∈ ωn−1 suits as an approximate stable leaf of order n.

4.3. The families Γu and Γs. The final step in the construction of Λ is to specify
the families Γu and Γs. Set

Γs := {γs(z) : z ∈ Ω∞},
where γs(z) is obtained as described in Subsection 4.2. Consider Γ̃u := {γ ⊂ W :

γ is a C2(b) segment connecting ∂sQ0}, where Q0 is the rectangle spanned by the family
of curves Γs, i.e., Q0 ⊃

⋃
z∈H(Ω∞) γs(z) and ∂Q0 is made up from two curves of Γs. Set

Γu := {γ : γ is the pointwise limit of a sequence in Γ̃u}.

4.4. The s-sublattices and the return times. Recall that we are interested in two
lattices Λ+ and Λ−. Therefore, when we refer to return times we mean return times from
the set Λ+ ∪ Λ− to itself; in particular, a point in Λ+ may return to Λ+ or Λ−. However,
in order to simplify we just write Λ.

We anticipate that the return time function R : Λ → N is constant in each γs ∈ Γs,
so R needs only to be defined in Λ ∩ H(Ω0) = H(Ω∞). Moreover, since H : Ω0 → W1 is
a bijection we may also look at R as being defined on Ω∞. We will build partitions on
subsets of Ω0 and use 1-dimensional language. For example, fn(z) = ζ for z, ζ ∈ H(Ω∞)
means that fn(z) ∈ γs(ζ); similarly, for subsegments ω, ω∗ ⊂ H(Ω0), fn(ω) = ω∗ means
that fn(ω) ∩ Λ, when slid along γs curves back to H(Ω0), gives exactly ω∗ ∩ Λ. For an
interval I ⊂ Ωn−1 such that fn(H(I)) intersects the critical region, P|fn(H(I)) refers to
P[z̃] where z̃ ∈ C is a suitable binding critical point for all fn(H(I)) whose existence is a
consequence of Lemma 7 from [BY93], mentioned in Subsection 3.5.1.

We will construct sets Ω̃n ⊂ Ωn and partitions P̃n of Ω̃n so that Ω̃0 ⊃ Ω̃1 ⊃ Ω̃2 . . . and
z ∈ H(Ω̃n−1 \ Ω̃n) if and only if R(z) = n. Let P̂ be the partition of H(Ω0 \ Ω∞) into
connected components. In what follows A ∨ B is the join of the partitions A and B, that
is A ∨ B = {A ∩B : A ∈ A, B ∈ B}.
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Definition 4.4. An interval I ∈ Ωn is said to make a regular return to Ω0 at time n
if

(i) all of fn(H(I)) is free;
(ii) fn(H(I)) ⊃ 3H(Ω0).

Remark 4.5. The constant 3 in the definition of regular return is quite arbitrary. In
fact its purpose is to guarantee that fn(H(I)) traverses Q0 by wide margins. When n is a
regular return of a certain segment I for a fixed parameter it may happen that n does not
classify as a regular return of a perturbed parameter even though the image of I after n
iterates by the perturbed dynamics crosses Q0 by wide margins. We overcome this detail
simply by considering that if (ii) holds with 2 instead of 3 for any perturbed parameter
then we consider n as a regular return for the perturbed dynamics. Observe that no harm
results from making this assumption since it is still guaranteed that Q0 is traversed by
wide margins.

4.4.1. Rules for defining Ω̃n, P̃n and R.

(0) Ω̃0 = Ω0, P̃0 = {Ω̃0}.
Consider I ∈ P̃n−1.

(1) If I does not make a regular return to Ω0 at time n, put I ∩ Ωn into Ω̃n and set
P̃n|(I ∩ Ωn) = H−1 ((f−nP)|(H(I ∩ Ωn))).

(2) If I makes a regular return at time n, we put Ĩ = H−1 (H(I) \ f−n(H(Ω∞)))∩Ωn

in Ω̃n, and let P̃n|Ĩ = H−1
(
(f−nP ∨ f−nP̂)|H(Ĩ)

)
. For z ∈ H(I) such that

fn(z) ∈ H(Ω∞), we define R(z) = n.
(3) For z ∈ H(∩n∈N0Ω̃n), set R(z) = ∞.

4.4.2. Definition of the s-sublattices. Each Ξi in Proposition 4.1 is a sublattice corre-
sponding to a subset of Λ∩W1 of the form f−n(H(Ω∞))∩Λ∩H(I), where I ∈ P̃n−1 makes a
regular return at time n. We will use the notation Υn,j = H−1 (f−n(H(Ω∞)) ∩ Λ ∩H(I)).
Note that R(H(Υn,j)) = n and Υn,j determines univocally the corresponding s-sublattice.
For this reason we allow some imprecision by referring ourselves to Υn,j as an s-sublattice.

In order to prove the assertions (1) and (2) of Proposition 4.1 one needs to verify that
fRi(Ξi) is an u-sublattice which requires to demonstrate that fRi(Ξi) matches completely
with Λ in the horizontal direction. If Ξi corresponds to some Υn,j, then the matching of
the Cantor sets will follow from the inclusion

fn(H(I ∩ Ω∞)) ⊃ H(Ω∞). (4.2)

It is obvious that H(Ω∞) ⊂ fn(H(I)) by definition of regular return. Nevertheless, (4.2)
is saying that if z ∈ H(I) and fn(z) hits H(Ω∞), after sliding along a γs curve, then
z ∈ H(I) ∩ H(Ω∞). This is proved in Lemma 3 of [BY00]. In particular, we may write
Υn,j = H−1 (f−n(H(Ω∞)) ∩H(I)).

4.5. Reduction to an expanding map. The Hénon maps considered here are per-
turbations of the map f2,0(x, y) = (1 − 2x2, 0) whose action is horizontal. Also, as we
have seen, the horizontal direction is typically expanding. This motivates considering the
quotient space Λ̄ obtained by collapsing the stable curves of Λ; i.e. Λ̄ = Λ/ ∼, where
z ∼ z′ if and only if z′ ∈ γs(z). We define the natural projection π̄ : Λ → Λ̄ given by
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π̄(z) = γs(z). As implied by assertion (1) of Proposition 4.1, fR : Λ → Λ takes γs leaves
to γs leaves (see Lemma 2 of [BY00] for a proof). Thus, we may define the quotient map

fR : Λ̄ → Λ̄. Observe that each Ξ̄i is sent by fR homeomorphically onto Λ̄. Besides we
may define a reference measure m̄ on Λ̄, whose representative on each γu ∈ Γu is a finite
measure equivalent to the restriction of the 1-dimensional Lebesgue measure on γu∩Λ and
denoted by mγu .

One can look at fR as an expanding Markov map (see Proposition B of [BY00] for
precise statements and proofs). Moreover, the corresponding transfer operator, relative to
the reference measure m̄, has a spectral gap (see Section 3 of [Yo98], specially Proposition

A). It follows that fR has an absolutely continuous invariant measure given by ν̄ = ρ̄dm̄,
with M−1 ≤ ρ̄ ≤ M for some M > 0 (see [Yo98, Lemma 2]).

5. Proximity of critical points

In this section we show that up to a fixed generation we have closeness of the critical
points for nearby Benedicks-Carleson parameters. This is the content of Proposition 5.3
which summarizes this section. Its proof involves a finite step induction scheme on the
generation level. We prepare it by proving first the closeness of critical points of genera-
tion 1 in Lemma 5.1. Afterwards, in Lemma 5.2 we obtain the closeness of critical points
of higher generations using the information available for lower ones.

Recall that since fa,b is C∞, then the unstable manifold theorem ensures that W is Cr

for any r > 0. Moreover, W varies continuously in the Cr topology with the parameters in
compact parts. As we are only considering parameters in BC, for each of these dynamics
there is a unique critical point ẑ of generation 1 situated on the roughly horizontal segment
of W containing the fixed point z∗.

Lemma 5.1. Let (a, b) ∈ BC, ε > 0 be given and ẑ be the critical point of generation 1
of fa,b. There exists a neighborhood U of (a, b) such that, if (a′, b′) ∈ U ∩BC and ẑ′ denotes
the critical point of fa′,b′ of generation 1, then |ẑ− ẑ′| < ε. Moreover, if τ(ẑ) and τ(ẑ′) are

the unit vectors tangent to W and W ′ at ẑ and ẑ′ respectively, then |τ(ẑ)− τ(ẑ′)| < ε.

Proof. Consider the disk γ = W1 ∩ [−10b, 10b] × R. There is a neighborhood U of
(a, b) such that for every (a′, b′) ∈ U there exists a disk γ′ ⊂ W ′ which is ε2-close to γ in
the Cr topology. It is clear that both γ and γ′ are C2(b) curves and there are ẑ ∈ γ and
ẑ′ ∈ γ′ critical points of fa,b and fa′,b′ respectively. Our goal is to show that |ẑ − ẑ′| < ε.
The strategy is to pick an approximate critical point ẑM of ẑ and then prove the existence
of an approximate critical point ẑ′M of ẑ′ sufficiently close to ẑM in order to conclude that,
if we choose M large enough, we get the desired closeness of ẑ and ẑ′ (see Figure 1). Take

z z

z'' z' z'M

M

M

ε
γ
γ'2

Figure 1. Possible configuration of the critical points and their approximates

M ∈ N so that bM < ε2 ≤ bM−1. Let ẑM ∈ γ be such that eM(ẑM) = τ(ẑM). Note that
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|ẑ− ẑM | < CbM . Let ẑ′′M ∈ γ′ be such that |ẑM − ẑ′′M | < ε2 and |τ(ẑM)− τ(ẑ′′M)| < ε2. Now,
ẑ′′M may not be the approximate critical point ẑ′M we are looking for, but we will show
that it is very close to ẑ′M . In fact, we assert that the angle between e′M(ẑ′′M) and τ(ẑ′′M)
is of order ε2, which allows us to find a nearby ẑ′M as a solution of e′M(z′) = τ(z′), which
ultimately is very close to the critical point ẑ′.

Before we prove this last assertion we must guarantee that the vector field e′M is defined
in a neighborhood of ẑ′′M and for that we must have some expansion. Since ẑ is a critical
point of fa,b, then

∣∣DfM
a,b(ẑ)

(
0
1

)∣∣ > ecM . If necessary we tighten U so that for every z in a

compact set of R2,
∣∣DfM

a,b(z)
(
0
1

)−DfM
a′,b′(z)

(
0
1

)∣∣ is small enough for having
∣∣DfM

a′,b′(ẑ)
(
0
1

)∣∣ >

ecM/2, which implies that e′M is well defined in a ball of radius 3CbM−1 > 3Cε2 around ẑ.
Note that b ¿ λ and the Matrix Perturbation Lemma applies.

We take U sufficiently small so that |e′M(ẑ′′M)− eM(ẑ′′M)| < ε2. This is possible because
e′M(z) and eM(z) are the maximally contracted vectors of DfM

a′,b′(z) and DfM
a,b(z), respec-

tively. Thus it is only a matter of making DfM
a′,b′(z) very close to DfM

a,b(z), for every z in
a compact set. Hence

|e′M(ẑ′′M)− τ(ẑ′′M)| < |e′M(ẑ′′M)− eM(ẑ′′M)|+ |eM(ẑ′′M)− eM(ẑM)|+ |eM(ẑM)− τ(ẑM)|
+ |τ(ẑM)− τ(ẑ′′M)|

< ε2 + C|ẑM − ẑ′′M |+ 0 + ε2

< Cε2

Writing z = (x, y) and taking into account that γ′ is nearly horizontal we may think of it as
the graph of γ′(x). Let us also ease on the notation so that τ(x) and e′M(x) denote the slopes
of the respective vectors at z = γ′(x). We know that |dτ/dx| < 10b, |de′M/dx| = 2a +O(b)
and |d2e′M/dx2| < C. As a consequence we obtain ẑ′M such that e′M(ẑ′M) = τ(ẑM) and

x''

2a

e'M

τ

cε2-cε2

-3cε

3cε2

2

x'

Figure 2. Solution of e′M(z) = τ(z)

|ẑ′M − ẑ′′M | < Cε2/3 (see Figure 2). Now since there is a unique critical point ẑ′ in γ′ we
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must have |ẑ′ − ẑ′M | < Cε2, which yields

|ẑ − ẑ′| ≤ |ẑ − ẑM |+ |ẑM − ẑ′′M |+ |ẑ′′M − ẑ′M |+ |ẑ′M − ẑ| < Cε2 < ε,

as long as ε is sufficiently small.
Concerning the inequality |τ(ẑ) − τ(ẑ′)| < ε, simply observe that since γ and γ′ are

C2(b) curves we have

|τ(ẑ)− τ(ẑ′)| < |τ(ẑ)− τ(ẑM)|+ |τ(ẑM)− τ(ẑ′′M)|+ |τ(ẑ′′M)− τ(ẑ′M)|+ |τ(ẑ′M)− τ(ẑ′)|
< 10b|ẑ − ẑM |+ ε2 + 10b|ẑ′′M − ẑ′M |+ 10b|ẑ′M − ẑ′|
< ε.

¤

As a consequence of Lemma 5.1 we have that for a sufficiently small U we manage
to make W ′

1 (the leaf of W ′ of generation 1) to be as close to W1 (the leaf of W of
generation 1) as we want. This is important because the leaves of higher generations are
defined by successive iterations of the first generation leaf. We also remark that by the
rules of construction of the critical set we may use the argument of Lemma 5.1 to obtain
proximity of the critical points up to generation 27. For higher generations we need the
following lemma.

Lemma 5.2. Let N ∈ N, (a, b) ∈ BC and ε > 0 be given. Assume there exists a
neighborhood U of (a, b) such that for each (a′, b′) ∈ U ∩ BC and any critical point ẑ of
fa,b of generation g < N , there is a critical point ẑ′ of fa′,b′ of the same generation with
|ẑ − ẑ′| < ε. If a critical point ẑ of fa,b is created at step g + 1, then we may tighten U so
that a critical point ẑ′ of generation g + 1 is created for fa′,b′ and |ẑ − ẑ′| < ε. Moreover,
if τ(ẑ) and τ(ẑ′) are the unit vectors tangent to W and W ′ at ẑ and ẑ′ respectively, then

|τ(ẑ)− τ(ẑ′)| < ε.

Proof. As we are only interested in arbitrarily small ε, we may assume that ε < bN .
Suppose that a critical point ẑ of generation g + 1 is created for fa,b. Then, by the rules
of construction of critical points, there are z = (x, y) lying in a C2(b) segment γ ⊂ W
of generation g + 1 with γ extending beyond 2%g+1 to each side of z and a critical point
z̃ = (x, ỹ) of generation not greater than g such that |z − z̃| < b(g+1)/540. Moreover,
|ẑ − z| < |z − z̃|1/2.

Taking γ as a compact disk of W , there is a neighborhood U of (a, b) such that for
every (a′, b′) ∈ U we can find a disk γ′ ⊂ W ′ of generation g + 1 which is ε2-close to γ in
the Cr-topology. It is clear that γ′ is a C2(b) curve. Our aim is to show that a critical
point ẑ′ of fa′,b′ and generation g + 1 is created in the segment γ′ with |ẑ − ẑ′| < ε.

By the inductive hypothesis there is z̃′ = (x̃′, ỹ′) a critical point of fa′,b′ such that
|z̃ − z̃′| < ε. Let z′ = (x̃′, y′) belonging to γ′. Since γ′ is ε2-close to γ in the Cr topology
and ε < bN , which is completely insignificant when compared to %g+1 < %N (recall that
% À b), we may assume that γ′ extends more than 2%g+1 to both sides of z′. Moreover,
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letting ζ ′ = (x, η′) ∈ γ′ we have

|z̃′ − z′| < |z̃′ − z̃|+ |z̃ − z|+ |z − ζ ′|+ |ζ ′ − z′|
< ε + b

g+1
540 + 2ε2 + 2ε

. b
g+1
540 ,

where we used the fact that ε < bN ¿ b
N
540 < b

g+1
540 (see Figure 3). By the rules of

γ
γ'


<ε

<ε2

b
g+1

540

~z
~z'

z

z'ζ'

Figure 3. Possible relative position of the critical points

construction of critical points, a unique critical point ẑ′ of generation g + 1 is created in
the segment γ′. We are left to show that |ẑ − ẑ′| < ε. For that we repeat the argument in
the proof of Lemma 5.1. ¤

Corollary 5.3. Let N ∈ N, (a, b) ∈ BC and ε > 0 be given. There is a neighborhood
U of (a, b) such that if (a′, b′) ∈ U ∩ BC then, for any critical point ẑ of fa,b of generation
smaller than N , there is a critical point ẑ′ of fa′,b′ of the same generation such that |ẑ−ẑ′| <
ε. Moreover if τ(ẑ) and τ(ẑ′) are the unit vectors tangent to W and W ′ at ẑ and ẑ′

respectively, then |τ(ẑ)− τ(ẑ′)| < ε.

Proof. The proof is just a matter of collecting the information in the Lemmas 5.1 and
5.2 and organize it in a finite step induction scheme.

(1) First obtain the proximity of the critical points of generation 1, which has already
been done in Lemma 5.1.

(2) Then realize that the same argument in the proof of Lemma 5.1 also gives the
proximity of the 226 critical points of generation smaller than 27. (See the rules
of construction of critical points in Subsection 3.4.1).

(3) Apply the inductive step stated in Lemma 5.2 to obtain the proximity of critical
points of higher and higher generation.

(4) Stop the process when the proximity of all critical points of generation smaller
than N is achieved.

Naturally every time we apply Lemma 5.2 to increase the generation level for which the
conclusion of the proposition holds, we may need to decrease the size of the neighborhood
U . However, because the number of critical points of a given generation is finite and the
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statement of the proposition is up to generation N , at the end we still obtain a neighbor-
hood containing a non-degenerate ball around (a, b) where the proposition holds. ¤

6. Proximity of leading Cantor sets

Attending to Lemma 5.1, we may assume that Ω0 = Ω′
0. Let h, h′ : Ω0 → R be functions

whose graphs are the leaves of first generation W1 and W ′
1 respectively, when restricted

to the set Ω0 × R. Given an interval I ⊂ Ω0 the segments ω = H(I) and ω′ = H ′(I)
are respectively the subsets of W1 and W ′

1 which correspond to the images in the graph
of h and h′ of the interval I. Accordingly, if x ∈ Ω0 then z = H(x) = (x, h(x)) and
z′ = H ′(x) = (x, h′(x)). See Figure 4.

W1

W'1

H(I)

I

Ω

H(Ω  )

H'(Ω  )0

0

0

H'(I)

x

z'

z

Figure 4

Our goal in this section is to show the proximity of the Cantor sets Ω∞ for close
Benedicks-Carleson parameters. More precisely, given any ε > 0 we will exhibit a neigh-
borhood U of (a, b) such that |Ω∞4 Ω′

∞| < ε for all (a′, b′) ∈ U ∩BC, where 4 represents
symmetric difference between two sets. In the process, we make a modification in the first
steps of the procedure described in Subsection 4.1 to build Ω′

∞, which carries only minor
differences with respect to the set we would obtain if we were to follow the rules strictly.
Ultimately, this affects the construction of the horseshoes Λ′. However, the horseshoes
are not uniquely determined and we will evince that the modifications introduced leave
unchanged the properties that they are supposed to have.

Lemma 6.1. Given ε > 0, there exists N1 ∈ N such that |Ωn \ Ω∞| < ε for every
(a, b) ∈ BC and n ≥ N1.

Proof. This is a consequence of [BY00, Lemma 4] where it is proved that

|Ωn−1 \ Ωn|
|Ωn−1| ≤ C1δ

1−3βe−α(1−3β)n. (6.1)

This inequality follows from the fact that any connected component ω ∈ H(Ωn−1) grows
to reach a length |fn(ω)| ≥ δ3βe−3αβn, while the subsegment of fn(ω) to be deleted in the
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construction of Ωn has length at most 4δe−αn; then, simply take bounded distortion into
consideration.

From (6.1) one easily gets

|Ωn \ Ω∞| =
+∞∑
j=0

|Ωn+j \ Ωn+j+1|

≤ C1δ
1−3β

+∞∑
j=1

e−α(1−3β)(n+j)|Ωn+j−1|

≤ C1δ
1−3β|Ωn|

+∞∑
j=1

e−α(1−3β)(n+j)

≤ C1δ
1−3β e−α(1−3β)(n+1)

1− e−α(1−3β)

Hence, choose N1 sufficiently large so that

C1δ
1−3β e−α(1−3β)(N1+1)

1− e−α(1−3β)
< ε.

¤
Observe that, as a consequence of the unstable manifold theorem, for every ε > 0 and

n ∈ N, there exists a neighborhood U of (a, b) such that for every (a′, b′) ∈ U we have

max
{
‖H −H ′‖r , ‖fa,b ◦H − fa′,b′ ◦H ′‖r , . . . ,

∥∥fn
a,b ◦H − fn

a′,b′ ◦H ′∥∥
r

}
< ε, (6.2)

where r ≥ 2 and ‖ · ‖r is the Cr-norm in Ω0. In what follows Ω∞ = ∩n∈NΩn is built as
described in Section 4.1 for f = fa,b.

Lemma 6.2. Let n ∈ N and (a, b) ∈ BC be given and I be a connected component of
Ωn−1. Suppose fn

a,b(H(I)) intersects (−δ, δ)× R. There is a neighborhood U of (a, b) such
that for every (a′, b′) ∈ U ∩ BC and x ∈ I ∩ Ωn, if fn

a,b(H(x)) ∈ (−δ, δ) × R and ẑ is a
suitable binding critical point, then there exists a binding critical point ẑ′ of fa′,b′ close to
ẑ suitable for fn

a′,b′(H
′(x)) and |fn

a′,b′(H
′(x))− ẑ′| & δe−αn.

Proof. Let Ĩ = I ∩ Ωn and U be a neighborhood of (a, b) such that Corollary 5.3
applies up to n with b2n in the place of ε and equation (6.2) also holds with b4n in
the place of ε. Then there is a critical point ẑ′ of fa′,b′ such that |ẑ − ẑ′| < b2n and∥∥fn

a,b ◦H|Ĩ − fn
a′,b′ ◦H ′|Ĩ

∥∥
r

< b4n. We only need to prove that this ẑ′ is a suitable binding

point for fn
a′,b′(z

′) and that |fn
a′,b′(z

′) − ẑ′| & δe−αn. In order to verify the suitability of ẑ′

we have to check that

(1) fn
a′,b′(z

′) is in tangential position with respect to ẑ′;
(2) Dfn

a′,b′(z
′)τ(z′) splits correctly with respect to the contracting field around ẑ′.

The strategy is to show that |fn
a,b(z)− ẑ| = |fn

a′,b′(z
′)− ẑ′| +O(b2n). Then, because fn(z)

is in tangential position with respect to ẑ and b2n ¿ δe−αn ≤ |fn(z)− ẑ|, we conclude the
tangential position for fn

a′,b′(z
′) with respect to ẑ′. As to the correct splitting, we know
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that |Dfn(z)τ(z)− (Dfa′,b′)
n(z′)τ(z′)| < b4n and Dfn(z)τ(z) makes an angle with the

relevant contracting field of approximately (2a± 1)|fn(z)− ẑ|. Finally, since |fn(z)− ẑ| =
|fn

a′,b′(z
′)− ẑ′|+O(b2n) and b2n ¿ (2a± 1)|fn(z)− ẑ| we obtain the desired result.

Let us start by proving (1). Observe that

|fn
a,b(z)− ẑ| ≤ |fn

a,b(z)− fn
a′,b′(z

′)|+ |fn
a′,b′(z

′)− ẑ′|+ |ẑ − ẑ′|
≤

∥∥fn
a,b ◦H|Ĩ − fn

a′,b′ ◦H ′|Ĩ
∥∥

r
+ |fn

a′,b′(z
′)− ẑ′|+ b2n

≤ |fn
a′,b′(z

′)− ẑ′|+ 2b2n.

Interchanging z with z′ we easily get |fn
a′,b′(z

′)− ẑ′| ≤ |fn
a,b(z)− ẑ|+2b2n which allows us to

write |fn
a′,b′(z

′)− ẑ′| = |fn
a,b(z)− ẑ|+O(b2n). Consider now s and s′ the lines through ẑ and

ẑ′ with slopes τ(ẑ) and τ(ẑ′) respectively. By Corollary 5.3 we have |ẑ− ẑ′| < b2n and also
|τ(ẑ)−τ(ẑ′)| < b2n. Thus, when restricted to the set [−1, 1]×R we have ‖s−s′‖r < O(b2n).
Let dist(z, s) denote the distance from the point z to the segment s ∩ [−1, 1]× R. Then

dist(fn
a,b(z), s) ≤ |fn

a,b(z)− fn
a′,b′(z

′)|+ dist(fn
a′,b′(z

′), s)

≤ |fn
a,b(z)− fn

a′,b′(z
′)|+ ‖s− s′‖r + dist(fn

a′,b′(z
′), s′)

≤ dist(fn
a′,b′(z

′), s′) +O(b2n)

Similarly we get dist(fn
a′,b′(z

′), s′) ≤ dist(fn
a,b(z), s) +O(b2n), and so

dist(fn
a′,b′(z

′), s′) = dist(fn
a,b(z), s) +O(b2n).

Now, since fn(z) is in tangential position with respect to ẑ, then

dist(fn
a,b(z), s) < c|fn

a,b(z)− ẑ|2,
where c ¿ 2a. Besides, |fn

a′,b′(z
′)− ẑ′|2 =

(|fn
a,b(z)− ẑ|+O(b2n)

)2
= |fn

a,b(z)− ẑ|2 +O(b2n)

because b2n ¿ δe−αn ≤ |fn
a,b(z)− ẑ|. Consequently

dist(fn
a′,b′(z

′), s′) < c|fn
a′,b′(z

′)− ẑ′|2 +O(b2n),

which again by the insignificance of b2n relative to |fn
a′,b′(z

′)− ẑ′| implies that fn
a′,b′(z

′) is in
tangential position with respect to ẑ′.

Concerning (2), notice that if (a′, b′) is sufficiently close to (a, b), then
∣∣Dfn

a,b(z)τ(z)−Dfn
a′,b′(z

′)τ(z′)
∣∣ ≤

∥∥fn
a,b ◦H|Ĩ − fn

a′,b′ ◦H ′|Ĩ
∥∥

r
< b4n.

Let l and l′ denote the lengths of the fold periods for z and z′. Take m and m′ such
that (5b)m ≤ |z − ẑ| ≤ (5b)m−1 and (5b)m′ ≤ |z′ − ẑ′| ≤ (5b)m′−1 respectively. Since
|z′ − ẑ′| = |z − ẑ|+O(b2n) and b2n is negligible when compared to |z − ẑ|, we may assume
that m = m′. We know that |τ(fn

a,b(z))− el(z)| ≈ (2a± 1)|z − ẑ|. Since l ≥ 2m, property

(4) of Section 3.3 leads to |el(z)− e2m(z)| = O(b2m). As a consequence we have

|τ(fn
a,b(z))− e2m(z)| = |τ(fn

a,b(z))− el(z)|+O(b2m) ≈ (2a± 1)|z − ẑ|,
because |z − ẑ| ≥ (5b)m À bm À b2m.

Observe that |τ(fn
a,b(z)) − τ(fn

a′,b′(z
′))| < b2n because

∣∣Dfn
a,b(z)τ(z)

∣∣ > δec2n, by (EE),

and
∣∣Dfn

a,b(z)τ(z)−Dfn
a′,b′(z

′)τ(z′)
∣∣ < b4n. If necessary, we tighten U in order to guarantee
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|e2m(z)− e′2m(z′)| < b2n. Since b2n ¿ |z′ − ẑ′| we conclude that

|τ(fn
a′,b′(z

′))− e′2m(z′)| = |τ(fn
a,b(z))− e2m(z)|+O(b2n) ≈ (2a± 1)|z′ − ẑ′|.

Finally, a similar argument allows us to obtain

|τ(fn
a′,b′(z

′))− e′l′(z)| = |τ(fn
a′,b′(z

′))− e′2m(z′)|+O(b2m) ≈ (2a± 1)|z′ − ẑ′|,
which gives the correct splitting of the vector (Dfa′,b′)

n(z′)τ(z′) with respect to the critical
point ẑ′. ¤

Now we will show that if we change the rules of construction of Ω′
∞ in the first N

iterates by choosing a convenient binding critical point at each return happening before N
we manage to have ΩN = Ω′

N as long as (a′, b′) is sufficiently close to (a, b).
Before proceeding let us clarify the equality Ω′

n = Ωn for n ≤ N . As mentioned in
Remark 4.3, the procedure leading to Ω∞ is not unique. Thus, we have some freedom in
the construction of Ω′

∞ as long as we guarantee the slow approximation to the critical set
and the expansion along the tangent direction to W .

Take (a′, b′) ∈ U ∩ BC, where U is a small neighborhood of (a, b). Applying the
procedure of [BY00] described in Section 4.1 we may build a sequence of sets Ω′

0 ⊃ Ω′
1 ⊃ . . .

to obtain Ω′
∞ =

⋂
j∈N0

Ω′
j. From Lemmas 5.1 and 6.2 we know that, given N and j ≤ N ,

the set Ωj is a good approximation of Ω′
j. We propose a modification on the first N steps

in the construction of Ω′
∞: consider Ω′

n = Ωn for all n ≤ N ; afterwards make the exclusions
of points from ΩN according to the original procedure. This way, we produce a sequence of
sets Ω0 ⊃ . . . ⊃ ΩN ⊃ Ω′

N+1 ⊃ . . . which we intersect to obtain Ω′
∞. We will show that the

points in Ω′
∞ have slow approximation to the critical set and expansion along the tangent

direction of W ′ for the dynamics fa′,b′ .
When we perturb a parameter (a, b) ∈ BC and change the rules of construction of Ω′

n

for a close parameter (a′, b′) ∈ U ∩ BC, in the sense mentioned above, we may need to
weaken the condition (SA) and introduce condition (SA)’ which is defined as (SA) except
for the replacement of δ by δ/2. This way we guarantee the validity of (SA)’ for every
(a′, b′) in a sufficiently small neighborhood U of (a, b) as stated in next lemma.

Lemma 6.3. Let (a, b) ∈ BC and n ∈ N be given. There is a neighborhood U of (a, b)
such that for all (a′, b′) ∈ U ∩BC we may take Ω′

j = Ωj for all j ≤ n and ensure that (SA)’
holds for all j ≤ n, for the dynamics fa′,b′.

Proof. If U is sufficiently small, then by Corollary 5.3 we have that (SA)’ holds for
n = 0, in H ′(Ω0), for the dynamics fa′,b′ . Let us suppose that (SA)’ holds in H ′(Ωn−1), for
fa′,b′ and j ≤ n− 1 < N . This is to say that for all x ∈ Ωn−1 the fa′,b′ orbit of z′ = H ′(x)
is controlled up to n − 1 and at each return k ≤ n − 1, if ẑ′ denotes a suitable binding
critical point, then |fk

a′,b′(z
′)− ẑ′| ≥ δe−αk/2.

Our aim is to show that by tightening U , if necessary, this last statement remains true
for n. Let I ⊂ Ωn−1 be a connected component and Ĩ = I ∩ Ωn. Then, by Lemma 6.2, we
can tighten U , so that for all x ∈ Ωn−1, the orbit of z′ = H ′(x) under fa′,b′ is controlled up
to n. Moreover, if n is a return time for z′, and ẑ′ is a suitable binding point for fn

a′,b′(z
′),

then |fn
a′,b′(z

′)− ẑ′| ≥ δe−αn/2. Since each Ωn has a finite number of connected components
and we only wish to carry on this procedure up to N , then at the end we still obtain a
neighborhood U of (a, b). ¤
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Thus, for every (a′, b′) ∈ U ∩ BC, where U is given by Lemma 6.3, we have a sequence
of sets Ω0 ⊃ . . . ⊃ ΩN such that (SA)’ holds for every z′ = H ′(x) with x ∈ ΩN and n ≤ N .
At this point we proceed with the method described in Section 4 and make exclusions out
of ΩN to obtain a sequence Ω0 ⊃ . . . ⊃ ΩN ⊃ Ω′

N+1 ⊃ . . . whose intersection we denote by
Ω′
∞. Hence, every point in H ′(Ω′

∞) satisfies (SA) for every n > N .

Corollary 6.4. Let (a, b) ∈ BC and ε > 0 be given. There exists a neighborhood U
of (a, b) so that |Ω∞4 Ω′

∞| < ε for each (a′, b′) ∈ U ∩ BC.

Proof. We appeal to Lemma 6.1 and find N1 = N1(ε) such that |ΩN1 \ Ω∞| < ε/2.
Observe that, using Lemma 6.3, the same N1 allows us to write that |ΩN1 \Ω′

∞| < ε/2 for
all (a′, b′) ∈ U ∩ BC. So, we have |Ω∞4 Ω′

∞| ≤ |ΩN1 4 Ω∞|+ |ΩN1 4 Ω′
∞| < ε. ¤

7. Proximity of stable curves

So far we have managed to prove proximity of the horseshoes in the horizontal direction.
The goal of this section is to show the closeness of the stable curves. The main result of
this section is Proposition 7.3.

Recall that each long stable curve is obtained as a limit of “temporary stable curves”,
γn, as described in Section 4.2. In order to obtain proximity of long stable curves for
close Benedicks-Carleson dynamics we must produce first an integer N2 such that the
approximate stable curves γN2 are sufficiently close to the corresponding stable curves
γs, regardless of the parameter (a, b) ∈ BC. This is accomplished through Lemma 7.1.
Therefore, in Proposition 7.3 we obtain the proximity of the “temporary stable curves”
γN2 for close Benedicks-Carleson parameters and deduce in this way the desired proximity
of the long stable curves.

We use the notation γn(ζ)(t) or its shorter version, γt
n(ζ), for the solution of the equation

ż = en(z) with initial condition γn(ζ)(0) = γ0
n(ζ) = ζ. Recall that ‖en‖ = 1 and γn(ζ)

is an en-integral curve of length 20b centered at ζ. So the natural range of values for t is
[−10b, 10b].

Lemma 7.1. Let (a, b) ∈ BC and n ∈ N be given. Consider a connected component
ω ⊂ H(Ωn−1) and the rectangle Qn−1(ω) foliated by the curves γn. Then the width of the
rectangle Qn−1(ω) is at most 4δ−1e−c2n.

Proof. By the derivative estimate in Subsection 3.6.1, for all z ∈ ω we have

|Dfn(z)τ(z)| > δec2n.

Since ω is a connected component of H(Ωn−1) we have that |fn(ω)| < 2. As a consequence,
|ω| < 2δ−1e−c2n. Observe that this argument also gives that if z ∈ H(Ω∞) and ωj denotes
the connected component of H(Ωj) containing z then ∩jωj = {z}. Let z+ and z− denote
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respectively the right and left endpoints of ω. Given t ∈ [−10b, 10b]

∣∣γt
n(z+)− γt

n(z−)
∣∣ ≤

∣∣∣∣z+ +

∫ t

0

en

(
γr

n(z+)
)
dr − z− −

∫ t

0

en

(
γr

n(z−)
)
dr

∣∣∣∣

≤ |z+ − z−|+
∫ t

0

∣∣en

(
γr

n(z+)
)− en

(
γr

n(z−)
)∣∣ dr

≤ |z+ − z−|+ 5

∫ t

0

∣∣γr
n(z+)− γr

n(z−)
∣∣ dr, by (3) of Section 3.3

≤ |z+ − z−|e5|t|, by a Gronwall type inequality

≤ |z+ − z−|e50b < 2|z+ − z−| = 2|ω|
Thus, the width of the rectangle Qn−1(ω) is at most 4δ−1e−c2n. ¤

We will use the following notation for parameters (a′, b′) close to (a, b). For any n ∈ N
and z′ ∈ ω′n ⊂ H ′(Ω′

n), we denote by γ′n+1(z
′) the e′n+1- integral curve of length 20b

centered at z′. Given n ∈ N, for any connected component ω′ ⊂ H ′(Ω′
n) we denote by

Qn(ω′) = ∪z′∈ω′γ
′
n+1(z

′) the rectangle foliated by the curves γ′n+1(z
′). We define Q1

n(ω′) as
a (Cb)n+1- neighborhood of Qn(ω′) in R2. Finally, given n ∈ N and any interval ω ⊂ H(Ωn),
we denote by Q2

n(ω) a 2(Cb)n+1- neighborhood of Qn(ω).

Lemma 7.2. Let (a, b) ∈ BC, n ∈ N, ε > 0 be given, and fix a connected component I of
Ωn−1. Then there is a neighborhood U of (a, b) such that en, e′n are defined in Q2

n−1(H(I))
and for every x ∈ I

‖γn(H(x))− γ′n(H ′(x))‖0 < ε.

Moreover, for every interval J ⊂ I we have that Q2
n−1(H(J)) contains Q1

n−1(H
′(J)).

Proof. As we are only interested in arbitrarily small ε, we may assume that ε < b2n.
Take the neighborhood U of (a, b) given by Lemma 6.3 applied to n. Within U ∩ BC, the
set Ω′

∞ is built out of Ωn, in the usual way.
Consider the sequence I0 ⊃ . . . Ij ⊃ . . . ⊃ In = I of the connected components (inter-

vals) Ij of Ωj containing I. For every j ≤ n, let ωj = H(Ij) and ω′j = H ′(Ij). We will use
a finite inductive scheme such that at step j, under the hypothesis that ej and e′j are both
defined in Qj−2(ωj−1), we tighten U (if necessary) so that for all x ∈ Ij−1 we have γj(z)
ε-close to γ′j(z

′) in the C0 topology, where z = H(x) and z′ = H ′(x), which implies that

Q2
j−1(ωj) contains Q1

j−1(ω
′
j). This way we conclude that both ej+1 and e′j+1 are defined in

the set Q2
j−1(ωj), which makes our hypothesis true for step j + 1. After n steps we still

have a vicinity U of (a, b) and γn(z) is ε C0-close to γ′n(z′).
We know that e1 and e′1 are defined everywhere in R2, which makes our hypothesis true

at the first step.
Suppose now, by induction, that at step j we know that ej and e′j are both defined in

Q2
j−2(ωj−1), which contains both Q1

j−2(ωj−1) and Q1
j−2(ω

′
j−1). Let U be sufficiently small

so that for all (a′, b′) ∈ U ∩ BC, we have ‖H −H ′‖r < ε3 and |ej(z)− e′j(z)| < ε, for every

z ∈ Q2
j−2(ωj−1). Since Q1

j−1(ωj−1) ⊂ Q1
j−2(ωj−1) and Q1

j−1(ω
′
j−1) ⊂ Q1

j−2(ω
′
j−1) (see (4.1)),

the curves γj(z) and γj(z
′) never leave the set Q2

j−2(ωj−1), for every z ∈ ωj−1 and z′ ∈ ω′j−1.
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Figure 5

Let {z̃′} = γj(z) ∩ W ′
1; since ‖H − H ′‖r < ε3 then |z̃′ − z| < ε2, |z̃′ − z′| < ε2 (see

Figure 5). Using the Lipschitzness of the fields ej and e′j (property (3) in Section 3.3), the
continuity of flows with initial conditions and the continuity of flows as functions of the
vector field (see for example [HS74]) we have for all t

∣∣γj(z̃
′)(t)− γ′j(z

′)(t)
∣∣ ≤

∣∣γj(z̃
′)(t)− γ′j(z̃

′)(t)
∣∣ +

∣∣γ′j(z̃′)(t)− γ′j(z
′)(t)

∣∣
≤ ε

2a +O(b)
(e5|t| − 1) + |z̃′ − z′|e5|t|

≤ ε

3
e50b50b + 2ε2 < ε

Thus ‖γj(z)− γ′j(z
′)‖0 < ε. Moreover, since ε ¿ (Cb)j, we easily get that for any interval

J ⊂ Ij−1, the rectangle Q2
j−1(H(J)) contains both Q1

j−1(H(J)) and Q1
j−1(H

′(J)).

From [BY00, Section 3.3] we know ej+1 is defined in a 3(Cb)j-neighborhood in R2 of
γj(z), for every z ∈ ωj. Since the same applies to γ′j(z

′) where z′ ∈ ω′j and clearly γj(z) lies

inside a (Cb)j-neighborhood in R2 of γ′j(z
′) (ε ¿ (Cb)j) then e′j+1 is defined in all points

of γj(z). This also implies that e′j+1 is defined in Q2
j−1(ωj).

Thus applying the argument above n times we get that en and e′n are defined in
Q2

n−2(ωn−1) and for every z ∈ ωn−1, z′ = H ′ (H−1(z)) ∈ ω′n−1,

‖γn(z)− γ′n(z′)‖0 < ε,

which gives that for any interval J ⊂ Ωn−1 we have that Q2
n−1(H(J)) contains both

Q1
n−1(H(J)) and Q1

n−1(H
′(J)), since ε ¿ bn.

¤
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Proposition 7.3. Let (a, b) ∈ BC and ε > 0 be given. There is a neighborhood U of
(a, b) such that for all (a′, b′) ∈ U ∩ BC and x ∈ Ω∞ ∩ Ω′

∞, we have that γs(H(x)) and
γ′s(H ′(x)) are ε-close in the C1 topology.

Proof. Choose N2 ∈ N large enough so that

4δ−1e−c2N2 + 4(Cb)N2 <
ε

3
(7.1)

By Lemma 7.1 the width of the rectangle Q2
N2−1(ωN2−1) is less than ε

3
. This means that for

every ζ ∈ ωN2 , the curve γN2(ζ) is at least ε
3
-close to γs(z) in the C0 topology. Note that

the choice of N2 does not depend on the point z ∈ H(Ω∞) taken, neither on the parameter
(a, b) ∈ BC in question.

Take the neighborhood U of (a, b) to be such that Lemma 6.3 applies up to N2 and
Lemma 7.2 applies with N2 replacing n. In particular, for parameters U ∩BC, the set Ω′

∞
is built out of ΩN2 , in the usual way and Q2

N2−1(H(I)) contains Q1
N2−1(H

′(I)) for every
connected component I ⊂ ΩN2−1. Moreover, for any x ∈ I, ‖γN2(H(x))− γ′N2

(H ′(x))‖0 <
b2N2 .

Let x ∈ Ω∞ ∩ Ω′
∞ and consider the sequence I0 ⊃ I1 ⊃ . . . Ij ⊃ . . . of the connected

components (intervals) Ij of Ωj containing x. Let z = H(x), z′ = H ′(x) and, for every
j < N2, set ωj = H(Ij) and ω′j = H ′(Ij). Collecting all the information we get for any

ζ ∈ ωN2−1, ζ ′ = H ′ (H−1(ζ)) ∈ ω′N2−1

‖γs(z)− γ′s(z′)‖0 ≤ ‖γs(z)− γN2(ζ)‖0 +
∥∥γN2(ζ)− γ′N2

(ζ ′)
∥∥

0
+

∥∥γ′N2
(ζ ′)− γ′s(z′)

∥∥
0

< ε.

So far we have proved C0-closeness of the stable leaves. The fact that the fields en and
e′n are Lipschitz with uniform Lipschitz constant 3 < 2a +O(b) < 5 allows us to improve
the previous C0-estimates to obtain C1-estimates with little additional effort. ¤

8. Proximity of s-sublattices and return times

The purpose of this section is to obtain the proximity, for close Benedicks-Carleson
dynamics, of the sets of points with the same history, in terms of free and bound periods
up to a fixed time. In Subsection 8.1 we accomplish this, up to the first regular return.
In Subsection 8.2 we realize that the same result may be achieved even if we consider the
itineraries up to a some other return.

8.1. Proximity after the first return. Recall that the return time function R is
constant on each s-sublattice and, in particular, on each γs. Thus, the return time function
R needs only to be defined in Λ ∩ W1 or in its vertical projection in the x-axis Ω∞.
Let (Υn,j)j denote the family of subsets of Ω0 for which π̄−1(H(Υn,j)) ∩ Λ correspond to
the s-sublattices of Λ given by [BY00, Proposition A] and such that R(H(Υn,j)) = n.
Observe that Υn,j determines univocally the corresponding s-sublattice and we allow some
imprecision by referring ourselves to Υn,j as an s-sublattice. The advantage of looking at
the s-sublattices as projected subsets on the x-axis is that we can compare these projections
of the s-sublattices of different dynamics since all of them live in the same interval, Ω0,
of the x-axis. In Proposition 8.7 we obtain proximity of all the s-sublattices Υn,j, with
n ≤ N , for a fixed integer N and sufficiently close Benedicks-Carleson parameters.
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Let us give some insight into the argument. We consider (a, b) ∈ BC and Ω∞ built
according to Section 4. Let N ∈ N be given. We make some modifications in the procedure
described in Subsection 4.4.1 where the s-sublattices are defined so that for each Υn,j,
where n ≤ N , we obtain an approximation Υ∗

n,j ⊃ Υn,j whose accuracy depends on the
choice of a large integer N3. Moreover, using Lemmas 6.3 and 7.2 we realize that, by
construction, Υ∗

n,j also suits as an approximation of Υ′
n,j ⊂ Υ∗

n,j, which is an s-sublattice
corresponding to Υn,j for a sufficiently close (a′, b′) ∈ BC. The result follows once we verify
that |Υ∗

n,j − Υn,j| ≈ |Υ∗
n,j − Υ′

n,j|. Recall that, by construction, for each Υn,j there are

I ∈ P̃n−1, ω = H(I) and n a regular return time for ω such that

Υn,j = H−1
(
f−n(H(Ω∞)) ∩ ω ∩ Λ

)
= H−1

(
f−n(H(Ω∞)) ∩ ω

)
.

Observe that since fn(ω) ≥ 3|Ω0| then ω has a minimum length |ω| ≥ 5−n3|Ω0|. This
means that for n fixed there can only be a finite number of Υn,j’s. In fact, if v(n) denotes
the number of Υn,j with R(H(Υn,j)) = n, then

v(n) ≤ |Ω0|
5−n3|Ω0| ≤ 5n. (8.1)

Let N ∈ N be given and let N3 > 2N be a large integer whose choice will be specified
later. Let ε < b2N3 be small. Consider U small enough so that condition (6.2) holds for
such an ε and Ωj = Ω′

j for all j ∈ {0, . . . , N3} (recall Lemma 6.3), while Ω′
∞ is built in

usual way out of Ω′
N3

.

For n ≤ N we carry out an inductive construction of sets Ω̃∗
n ⊂ Ωn and partitions P̃∗n

of Ω̃∗
n that will coincide for all (a′, b′) ∈ U , for every n ≤ N . This process must ensure that

for every n ≤ N we have Ω̃∗
n ⊂ Ω̃n, and if ω∗ ∈ H(P̃∗n), then there is ω ∈ H(P̃n) such that

ω ⊃ ω∗. Moreover, by choice of N3 we will have that ω \ ω∗, when not empty, occupies
the tips of ω and it corresponds to such a small part that if ω has a regular return at time
n < j ≤ N then f j(ω∗) ⊃ 2Ω0 still traverses Q0 by wide margins (see Lemma 8.1).

8.1.1. Rules for defining Ω̃∗
n, P̃n

∗
and R∗.

(0*) Ω̃∗
0 = Ω̃′∗

0 = Ω0, P̃∗0 = P̃ ′∗0 = {Ω∗
0}.

Assume that Ω̃∗
n−1 = Ω̃′∗

n−1 and that for each I∗ ∈ P̃∗n−1 there is I ∈ P̃n−1 such that

I ⊃ I∗. Take I∗ ∈ P̃∗n−1 = P̃ ′∗n−1. We denote ω = H(I), ω∗ = H(I∗) and ω∗′ = H ′(I∗).

(1*) If ω ∈ P̃n−1 does not make a regular return to H(Ω0) at time n, put Ĩ∗ = I∗ ∩Ωn

into Ω̃∗
n and let P̃∗n |Ĩ∗ = H−1

(
f−n

a,b P
∣∣∣H(Ĩ∗)

)
with the usual adjoining of intervals.

We remark that if we were to apply this rule directly to (a′, b′) ∈ U ∩ BC, where U is
sufficiently small so that Corollary 5.3, Lemma 6.3 and equation (6.2) hold for such ε and
N3, then Ω̃′∗

n and P̃ ′∗n would have discrepancies of O(ε) relative to Ω̃∗
n and P̃∗n built for (a, b),

respectively. But ε < e−2N3 is negligible when compared to e−αN or e−αN/N2. Observe
that the points of H(Ĩ∗) never get any closer than e−αN from the critical set, up to time n,
and e−αN/N2 is the minimum size of the elements of the partition P whose distance to the
critical set is larger than e−αN . Hence, there is no harm in setting Ω̃′∗

n = Ω̃∗
n and P̃ ′∗n = P̃∗n.

Let SN3 be the partition of ΩN3 into connected components. We clearly have #SN3 ≤
2N3 . We write fn(z) ∈ H(ΩN3) if there exists σ ∈ SN3 such that fn(z) ∈ Q2

N3−1(H(σ))
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where, as before, Q2
N3−1(H(σ)) is a 2(Cb)N3-neighborhood of QN3−1(H(σ)) in R2. This way

let f−n(H(ΩN3)) have its obvious meaning. Observe that by definition of Q2
N3−1(H(σ)) and

the construction of the long stable curves (namely (4.1)), then

f−n(H(ΩN3)) ⊃ f−n(H(Ω∞)), (8.2)

where we write fn(z) ∈ H(Ω∞) when fn(z) ∈ γs(ζ) for some ζ ∈ H(Ω∞).

Figure 6

(2*) If ω ∈ P̃n−1 makes a regular return at time n, we put

Ĩ∗ = H−1
(
ω∗ \ f−n(H(ΩN3))

) ∩ Ωn

into Ω̃∗
n. Let S∗ be the partition of Ĩ∗ into connected components. We define

P̃∗n |Ĩ∗ = H−1
(
f−nP

∣∣∣H(Ĩ∗)

) ∨S∗. For z ∈ ω∗ such that fn(z) ∈ H(ΩN3) we

define R∗(z) = n.

Suppose that U is sufficiently small so that as in Lemma 7.2 we have Q2
N3−1(H(σ)) ⊃

Q1
N3−1(H

′(σ)) and, as before, Corollary 5.3 and condition (6.2) hold for the considered
ε and N3. Then, the smallness of ε < b2N3 when compared to the sizes of the elements
fn

(
H(P̃∗n)

)
for n ≤ N allows us to consider Ω̃∗

n = Ω̃′∗
n and P̃∗n = P̃ ′∗n .

Essentially in this construction we substitute Ω∞ by its finite approximation ΩN3 in
order to relate the partitions built for (a, b) with the ones built for (a′, b′) ∈ U ∩ BC. The
sets {R = n} = Ω̃n−1 \ Ω̃n were defined as the sets of points that at time n had their first
regular return to H(Ω∞) (after sliding along γs stable curves). Now {R∗ = n} = Ω̃∗

n−1 \ Ω̃∗
n

is defined as the set of points that at time n have their first regular return to H(ΩN3),
where the sliding is made along the stable curve approximates, γN3 .

Let us make clear some aspects related to the previous rules. When we apply rule (2*)
at step n, we ensure that for every z ∈ Ω̃∗

n we have z /∈ f−n(H(Ω∞)). Let us verify that the
same applies to fa′,b′ , ie, since we are considering U sufficiently small so that Lemma 7.2,

Corollary 5.3 and condition (6.2) hold for ε and N3 in question, then for every z′ ∈ Ω̃′∗
n

we have z′ /∈ f−n
a′,b′(H

′(Ω′
∞)) Since ε is irrelevant when compared to 2(Cb)N3 we have for

all z′ ∈ H ′(Ω̃∗
n) and for every σ ∈ SN3 , dist(fn

a′,b′(z
′), QN3−1(H(σ))) > 2(Cb)N3 − ε which
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implies that dist(fn
a′,b′(z

′), QN3−1(H
′(σ))) > (Cb)N3 , since by Lemma 7.2 we may assume

that Q1
N3−1(H

′(σ)) ⊂ Q2
N3−1(H(σ)) and dist (QN3−1(H

′(σ)), QN3−1(H(σ))) ≤ ε. We have
used “dist” to denote the usual distance between two sets.

In next lemma take into account that since ΩN3 ⊃ Ω∞, then the gaps of Ω∞ contain
those of ΩN3 , and so for all n ≤ N and ω∗ ∈ H(P̃∗n−1) there exists ω ∈ H(P̃n−1) such that
ω∗ ⊂ ω.

Lemma 8.1. Let n ≤ N , ω∗ ∈ H(P̃∗n−1) and consider ω ∈ H(P̃n−1) such that ω∗ ⊂ ω.
If N3 is large enough then fn(ω) \ fn(ω∗), when not empty, occupies one or both tips of
fn(ω) and |fn(ω) \ fn(ω∗)| < |Ω0|2.

Proof. Let N3 ∈ N be sufficiently large so that

5N

(
C1δ

1−3β e−α(1−3β)(N3+1)

1− e−α(1−3β)
+ 2(Cb)N3

)
< |Ω0|2. (8.3)

For every i ≤ n − 1, let ω∗i ∈ H(P̃∗i ) be such that ω∗ ⊂ ω∗i and let ωi ∈ H(P̃i) be such
that ω ⊂ ωi. If ω \ ω∗ 6= ∅ then at some time before n − 1, rule (2*) was applied. Let
j ≤ n− 1 be the last moment in the history of ω∗ that rule 2* was applied. Then, f j(ω∗j )
hits a gap of ΩN3 while f j(ωj) hits a gap of Ω∞. According to Lemma 6.1 the difference
f j(ωj) \ f j(ω∗j ) has length of at most

C1δ
1−3β e−α(1−3β)(N3+1)

1− e−α(1−3β)
+ 2(Cb)N3 ,

where the last term results from the fact that we are using 2(Cb)N3- neighborhoods of the
rectangles spanned by the approximate stable curves. Moreover, f j(ωj) \ f j(ω∗j ) clearly

occupies the tips of f j(ωj).
Now, for simplicity suppose that ω = ωj and ω∗ = ω∗j . We have that fn(ω) \ fn(ω∗)

occupies the tips of fn(ω). This geometric property is inherited since by construction we are
away from the folds and f is a diffeomorphism. Also, up to time n, |f j(ωj)\f j(ω∗j )| can grow

no more than 5n−j. Consequently, by choice of N3 we must have |fn(ω) \ fn(ω∗)| < |Ω0|2.
In the case that ω 6= ωj it means that ωj will suffer exclusions or subdivisions. Never-

theless, the points of (ωj − ω∗j ) ∩ ω still occupy the tip of fn(ω). ¤

Remark 8.2. Observe that by choice of N3 we have that if ω∗ ∈ H(P̃∗n−1) and fn(ω)
makes a regular return then fn(ω∗) ⊃ (3 − |Ω0|2)Ω0. This means that for U sufficiently
small fn

a′,b′(ω
′∗) ⊃ (3− |Ω0|2 − ε)Ω0.

When at step n we have to apply rule (2*) we make more exclusions from Ω̃∗
n−1 than we

would if we were to apply rule (2) as in [BY00]. Essentially we are excluding the points
that hit H(ΩN3) instead of only removing the points that hit H(Ω∞) (Ω∞ ⊂ ΩN3). We
argue that by adequate choice of N3 this over exclusion will not affect the sets {R∗ = j}
with j ∈ {n + 1, . . . , N}.

Lemma 8.3. Suppose that x is a point that at step n should be excluded by rule (2*)
but is not excluded according to rule (2). If N3 is large enough, then H(x) does not have
a regular return to Ω0 before N .
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Proof. Let N3 ∈ N be sufficiently large so that (8.3) holds and take σ ∈ SN3 . When
we apply rule (2*) at step n we remove from Ω̃∗

n−1 all the points hitting H(σ), while if we
had applied rule (2) instead we would have only removed the points hitting H(σ ∩ Ω∞).
Consider a gap $ of H(σ ∩ Ω∞). We know that the length of $ is less than

C1δ
1−3β e−α(1−3β)N3

1− e−α(1−3β)
.

If ∂$ ∩ ∂H(σ) = ∅ then $ ∈ P̃n and in N iterations it would grow to reach at most the
length

5NC1δ
1−3β e−α(1−3β)N3

1− e−α(1−3β)
< |Ω0|2 ¿ 3|Ω0|.

Thus, $ would not have any regular return to Ω0 before N .
If ∂$ ∩ ∂H(σ) 6= ∅, then there is a gap $̂ of H(Ω∞) so that $̂ ∈ P̃n and $ occupies a

tip of $̂. Clearly, $̂ could have a regular return at j ∈ {n + 1, . . . , N}, say. However, by
construction f j($) will occupy one tip of f j($̂). Since

∣∣f j($)
∣∣ < 5NC1δ

1−3β e−α(1−3β)N3

1− e−α(1−3β)
< |Ω0|2

and |f j($̂)| & 3|Ω0| we still have that f j($) does not hit Ω0. We remark that $̂ could have
suffered subdivisions and exclusions according to rule (1*) before time j. Nevertheless, the
points from $ that survive the exclusions still occupy the tip of the piece that will contain
them at the time of its regular return and the argument applies again. ¤

By the rules in Subsection 4.4.1, for every s-sublattice Υn,j there is a segment ωn,j ∈
H(P̃n−1) such that n is a regular return time for ωn,j and

Υn,j = H−1
(
ωn,j ∩ f−n(Ω∞)

)
. (8.4)

Lemmas 8.1 and 8.3 allow us to conclude that if ωn,j ∈ P̃n−1 and n ≤ N is a regular

return time for ωn,j then there is ω∗n,j ∈ P̃∗n−1 such that ω∗n,j ⊂ ωn,j and |fn(ωn,j)| =

|fn(ω∗n,j)| + O(|Ω0|2). Moreover, because the difference between ωn,j and ω∗n,j is only in
their tips we may write

Υn,j = H−1
(
ω∗n,j ∩ f−n(Ω∞)

)
. (8.5)

Attending to the procedure above and equation (8.5), given an s-sublattice Υn,j, with
n ≤ N we define its approximation

Υ∗
n,j = H−1

(
ω∗n,j ∩ f−n(ΩN3)

)
. (8.6)

Taking into consideration (8.2) we have that Υn,j ⊂ Υ∗
n,j, from where we conclude that

∀n ∈ {1, . . . , N},
{R = n} =

⋃

j≤v(n)

Υn,j ⊂
⋃

j≤v(n)

Υ∗
n,j = {R∗ = n}.

We wish to verify that this substitution of Ω∞ by ΩN3 does not produce significant changes.
In fact, we will show in the next lemma that Υn,j and Υ∗

n,j are very close for all n ≤ N
and j ≤ v(n).
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Lemma 8.4. Let ε > 0, N ∈ N and an s-sublattice Υn,j with n ≤ N be given. If N3 is
large enough, then ∣∣Υ∗

n,j \Υn,j

∣∣ < ε and |{R∗ = n} \ {R = n}| < ε.

Proof. Choose N3 large enough so that

C1|ΩN3 \ Ω∞| < ε. (8.7)

Let ω∗n,j be such that H(Υn,j) = ω∗n,j ∩ f−n(H(Ω∞)) and H(Υ∗
n,j) = ω∗n,j ∩ f−n(H(ΩN3)).

By bounded distortion we have

|H(Υ∗
n,j) \H(Υn,j)|
|ω∗n,j|

≤ C1

|fn
(
H(Υ∗

n,j) \H(Υn,j)
) |

|fn(ω∗n,j)|
≤ C1

|ΩN3 \ Ω∞|
2|Ω0| .

Attending to (8.7) this gives that
∣∣Υ∗

n,j \Υn,j

∣∣ < ε. Besides,

|{R∗ = n} \ {R = n}| =
∑

j≤v(n)

|Υ∗
n,j \Υn,j| ≤

∑

j≤v(n)

C1
|ΩN3 \ Ω∞|

|Ω0| |ω∗n,j|

≤ C1|ΩN3 \ Ω∞|
< ε,

by the choice of N3. ¤
Remark 8.5. By definition of f−n(H(ΩN3)), in the estimates above we should have

considered
∣∣Ω2

N3
\ Ω∞

∣∣, where Ω2
N3

is a 2(Cb)N3-neighborhood of ΩN3 . However, since ΩN3

has at most 2N3 connected components, then the difference to the estimates above would
be at most 2N3+1(Cb)N3 , which is as small as we want if we choose N3 large enough.

Remark 8.6. The estimates in the proof were used taking H(ΩN3) and H(Ω∞) as
subsets of W1. According to [BY00, Remark 5], upon re-scaling the estimates still work
if we consider them as subsets of γu ∈ Γu, due to Lemma 2 of [BY00].

Proposition 8.7. Let (a, b) ∈ BC, N ∈ N and ε > 0 be given. There is a neighborhood
U of (a, b) such that for all (a′, b′) ∈ U ∩BC given any s-sublattice Υn,j ⊂ Ω∞, with n ≤ N
and j ≤ v(n), then the corresponding s-sublattice Υ′

n,j ⊂ Ω′
∞ is such that

|Υn,j 4Υ′
n,j| < ε and |{R = n} 4 {R′ = n}| < ε.

Proof. By Lemma 6.3 we are assuming that Ω′
∞ is built out of ΩN3 in the usual

way for fa′,b′ with (a′, b′) ∈ U ∩ BC. Lemma 7.2 assures that if U is small enough then
Q2

N3−1(H(σ)), which is a 2(Cb)N3- neighborhood of QN3−1(H(σ)), contains Q1
N3−1(H

′(σ))
for every σ ∈ SN3 . Moreover, for any x ∈ σ

‖γN3(H(x))− γ′N3
(H ′(x))‖0 < bN2+1.

Let N3 be chosen according to equations (8.3) and (8.7) so that Lemmas 8.1 and 8.4 hold.
Let Υn,j, with n ≤ N , be a given s-sublattice of H(Ω∞). Let I∗n,j ∈ P̃∗n−1 be such that

Υn,j = H−1
(
ω∗n,j ∩ f−n(H(Ω∞))

)
,

where ω∗n,j = H(I∗n,j). Suppose that U is sufficiently small so that the construction of
the partition is carried out simultaneously for the dynamics fa′,b′ correspondent to any
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(a′, b′) ∈ U ∩ BC and so that P̃∗m = P̃ ′∗m, for all m ≤ N , as it has been described in the
procedure above. Then, fn

a′,b′(ω
′∗
n,j) = fn

a′,b′(H
′(I∗n,j)) crosses Q0 by wide margins and we

may define
Υ′

n,j = H ′−1
(
ω′∗n,j ∩ f−n

a′,b′(H
′(Ω′

∞))
)
.

Consider the approximation Υ∗
n,j built in (8.6) for Υn,j. We have seen that Υn,j ⊂ Υ∗

n,j and

using Lemma 8.4 we may suppose that
∣∣Υ∗

n,j \Υn,j

∣∣ < ε/2. Now, we shall see that Υ∗
n,j is

also a good approximation for Υ′
n,j if U is sufficiently small.

First, we verify that Υ′
n,j ⊂ Υ∗

n,j. Let x ∈ Υ′
n,j, z = H(x) and z′ = H ′(x). We

need to check that if fn
a′,b′(z

′) ∈ Λ′, then fn(z) ∈ Q2
N3−1(H(σ)) for some σ ∈ SN3 . We

are supposing that U is sufficiently small so that (6.2) holds for ε < b2N3 up to N3, which
implies that |fn(z)−fn

a′,b′(z
′)| < b2N3 . Since Λ′ ⊂ ⋃

σ∈SN3
Q1

N3−1(H
′(σ)), we have fn

a′,b′(z
′) ∈

Q1
N3−1(H

′(σ)) for some σ ∈ SN3 . Under the assumptions described in the procedure above
(namely that Q1

N3−1(H
′(σ)) ⊂ Q2

N3−1(H(σ))) and attending to equation (7.2) we get that

dist
(
fn

a′,b′(z
′), QN3−1(H(σ))

)
< 3/2(Cb)N3 , and thus dist (fn(z), QN3−1(H(σ))) < 2(Cb)N3 .

Additionally, since the upper bound used for |ΩN3 \Ω∞| also works for |ΩN3 \Ω′
∞| and

the width of Q1
N3−1(H

′(σ)) differs from the width of Q2
N3−1(H(σ)) by O((Cb)N3) we observe

that the argument used in Lemma 8.4 gives us that
∣∣Υ∗

n,j \Υ′
n,j

∣∣ < ε/2. Therefore

|Υn,j 4Υ′
n,j| ≤

∣∣Υ∗
n,j \Υn,j

∣∣ +
∣∣Υ∗

n,j \Υ′
n,j

∣∣ < ε,

which gives the first part of the conclusion.
Suppose now that Lemma 8.4 holds and |{R∗ = n} \ {R = n}| < ε/2. Observing that

{R′ = n} = ∪j≤v(n)Υ
′
n,j, then arguing as in Lemma 8.4, we have |{R∗ = n} \ {R′ = n}| <

ε/2, as long as U is sufficiently small. Finally,

|{R = n} 4 {R′ = n}| ≤ |{R = n} 4 {R∗ = n}|+ |{R∗ = n} 4 {R′ = n}| < ε.

¤

8.2. Proximity after k returns. Given z ∈ H(Ω∞) we define

R1(z) = R(z) and Ri+1(z) = R
(
fR1+...+Ri

(z)
)

, for i ≥ 1.

Observe that R1 ≡ n in Υn,j. Since fR(H(Υn,j)) hits each stable leaf of Λ, it makes sense
to partition fR(H(Υn,j)) using again the levels H(Υn,j), and set

Υ(n1,j1)(n2,j2) = Υn1,j1 ∩H−1
(
f−n1(H(Υn2,j2))

)
.

In general, given k ∈ N, we consider

Υ(n1,j1)...(nk,jk) = Υn1,j1 ∩H−1
(
f−n1(H(Υn2,j2))

) ∩ . . . ∩H−1
(
f−(n1+···+nk−1)(H(Υnk,jk

))
)
.

Notice that for every z ∈ H(Υ(n1,j1)...(nk,jk)) we have Ri(z) = ni for 1 ≤ i ≤ k.
The main result in this subsection (Proposition 8.9) states that if we fix a parameter

(a, b) ∈ BC and N ∈ N, then there is a neighborhood U of (a, b) in R2 such that for any
set Υ(n1,j1)...(nk,jk) considered, with n1, . . . , nk ≤ N , it is possible to build a shadow set
Υ′

(n1,j1)...(nk,jk) close to the original one, for any (a′, b′) ∈ U ∩ BC.

Recall that each H(Υn,j) = ωn,j ∩ f−n(Ω∞) may also be written as H(Υn,j) = ω∗n,j ∩
f−n(H(Ω∞)), where ωn,j ⊃ ω∗n,j and n is a regular return time for ωn,j. The next result
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claims that something similar holds for Υ(n1,j1)...(nk,jk). We say that z ∈ f−`(ω∗n,j) whenever

f `(z) ∈ Q2
n(ω∗n,j), while, as usual, z ∈ f−`(H(Ω∞)) means that f ` ∈ γs(ζ) for some

ζ ∈ H(Ω∞).

Lemma 8.8. Taking n0 = 0 and n1, . . . , nk with ni ≤ N , we have

H(Υ(n1,j1)...(nk,jk)) =
k−1⋂
i=0

f−(n0+...+ni)(ω∗ni+1,ji+1
) ∩ f−(n1+...+nk)(H(Ω∞)). (8.8)

Proof. We begin with the easier inclusion

H(Υ(n1,j1)...(nk,jk)) ⊂
k−1⋂
i=0

f−(n0+...+ni)(ω∗ni+1,ji+1
) ∩ f−(n1+...+nk)(H(Ω∞)).

Observe that Q(H(Υni,ji
)) ⊂ Q2

ni
(ω∗ni,ji

), where Q(H(Υni,ji
)) is the rectangle spanned by

π̄−1(H(Υni,ji
)). If z ∈ f−(n1+...+nk−1)(H(Υnk,jk

)), then fn1+...+nk−1(z) ∈ γs(ζ) for some

ζ ∈ H(Υnk,jk
). By definition of Υnk,jk

we have fnk(ζ) ∈ γs(ζ̂) for some ζ̂ ∈ H(Ω∞).

Then, [BY00, Lemma 2(3)] gives that fn1+...+nk(z) ∈ γs(ζ̂), which implies that z ∈
f−(n1+...+nk)(H(Ω∞)).

Let us consider now the other inclusion. Since H(Υni,ji
) = ω∗ni,ji

∩ f−ni(H(Ω∞)) we
only need to verify that for every i ∈ {0, . . . , k − 1}

z ∈
k−1⋂
i=0

f−(n0+...+ni)(ω∗ni+1,ji+1
) ∩ f−(n1+...+nk)(H(Ω∞)) ⇒ fn1+...+ni(z) ∈ H(Ω∞).

By [BY00, Lemma 3] we have( ⋃

ζ∈Ω∞

γs(ζ)

)⋂
fni+1

(
Q2

ni+1
(ω∗ni+1,ji+1

)
)
⊂

⋃

ζ∈Ω∞

fni+1 (γs(ζ)) .

As fn1+...+ni+1(z) ∈
(⋃

ζ∈Ω∞ γs(ζ)
) ⋂

fni+1

(
Q2

ni+1
(ω∗ni+1,ji1

)
)
, then there exists ζ ∈ H(Ω∞)

such that fn1+...+ni+1(z) ∈ fni+1 (γs(ζ)), which is equivalent to say that fn1+...+ni(z) ∈
γs(ζ). This means that fn1+...+ni(z) ∈ H(Ω∞). ¤

Proposition 8.9. Let (a, b) ∈ BC, N ∈ N, k ∈ N and ε > 0 be given. There is an
open neighborhood U of (a, b) such that for each (a′, b′) ∈ U ∩ BC and Υ(n1,j1)...(nk,jk) there
is Υ′

(n1,j1)...(nk,jk) such that in H ′(Υ′
(n1,j1)...(nk,jk)) we have R′1 = n1, . . . , R

′k = nk and
∣∣Υ(n1,j1)...(nk,jk) 4Υ′

(n1,j1)...(nk,jk)

∣∣ < ε.

Proof. The idea is to build for each Υ(n1,j1)...(nk,jk), with n1, . . . , nk ≤ N , an approxi-
mation Υ∗

(n1,j1)...(nk,jk) ⊃ Υ(n1,j1)...(nk,jk) such that

∣∣Υ∗
(n1,j1)...(nk,jk) \Υ(n1,j1)...(nk,jk)

∣∣ <
ε

2

and realize that Υ∗
(n1,j1)...(nk,jk) also suits as an approximation for Υ′

(n1,j1)...(nk,jk), as long as
U is sufficiently small. We obtain an approximation of Υ(n1,j1)...(nk,jk) simply by substituting
Ω∞ by ΩN4 in (8.8) for some large N4. As before we say that fn(z) ∈ H(ΩN4) whenever
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there is σ ∈ SN4 such that fn(z) ∈ Q2
N4−1(H(σ)), which is a 2(Cb)N4- neighborhood of

QN4−1(H(σ)) in R2.
Define

Υ∗
(n1,j1)...(nk,jk) = H−1

(
k−1⋂
i=0

f−(n0+...+ni)(ω∗ni+1,ji+1
) ∩ f−(n1+...+nk)(H(ΩN4))

)
.

Since Ω∞ ⊂ ΩN4 we clearly have that Υ(n1,j1)...(nk,jk) ⊂ Υ∗
(n1,j1)...(nk,jk). Let us now obtain

an estimate of
∣∣Υ∗

(n1,j1)...(nk,jk) \Υ(n1,j1)...(nk,jk)

∣∣. Considering

ω =
k−1⋂
i=0

f−(n0+...+ni)(ω∗ni+1,ji+1
), ω∗ = H(Υ∗

(n1,j1)...(nk,jk)), ω̃ = H(Υ(n1,j1)...(nk,jk))

we get

|ω∗ \ ω̃|
|ω| ≤ C1

∣∣fn1+...+nk(ω∗) \ fN1+...+nk(ω̃)
∣∣

fn1+...+nk(ω)
≤ C1

2|Ω0|
(|ΩN4 \ Ω∞|+ 4(Cb)N4

)

Thus, if N4 is sufficiently large we have
∣∣Υ∗

(n1,j1)...(nk,jk) \Υ(n1,j1)...(nk,jk)

∣∣ <
ε

2
. (8.9)

Suppose now that we take a sufficiently small neighborhood U of (a, b) so that if (a′, b′) ∈
U ∩ BC, then the following conditions hold:

(1) Ω′
∞ is built out of Ω′

N4
= ΩN4 in the usual way, as in Lemma 6.3;

(2) Q2
N4−1(H(σ)) ⊃ Q1

N4−1(H
′(σ)) for each σ ∈ SN4 and, as in Lemma 7.2,

dist (QN4−1(H(σ)), QN4−1(H
′(σ))) < bN4+1;

(3) the procedure in Subsection 8.1 leads to Ω̃∗
n = Ω̃′∗

n and P̃∗n = P̃ ′∗n , for all n ≤ N ;
(4) equation (6.2) holds for b2N4 up to kN .

Within U it makes sense to define

Υ′
(n1,j1)...(nk,jk) = H ′−1

(
k−1⋂
i=0

f
−(n0+...+ni)
a′,b′ (ω∗ni+1,ji+1

) ∩ f
−(n1+...+nk)
a′,b′ (H ′(Ω′

∞))

)
.

Moreover, one realizes that Υ∗
(n1,j1)...(nk,jk) is a good approximation of Υ′

(n1,j1)...(nk,jk). In

fact, we have that Υ′
(n1,j1)...(nk,jk) ⊂ Υ∗

(n1,j1)...(nk,jk). To see this, observe first that the dis-

crepancies of order b2N4 in the tips of the intervals H−1
(
f−(n1+...+ni)(ωni+1,ji+1) ∩H(Ω0)

)

and H ′−1
(
f
−(n1+...+ni)
a′,b′ (ωni+1,ji+1

) ∩H ′(Ω0)
)

are negligible since we are only interested in

the points of the center of this intervals that hit Ω0 at their last regular return. Fi-
nally, note that by conditions (1), (2) and (4) above, we must have x ∈ Υ∗

(n1,j1)...(nk,jk)

whenever x ∈ Υ′
(n1,j1)...(nk,jk). Otherwise, we would have an x ∈ Υ′

(n1,j1)...(nk,jk) such that

z′ = fn1+...+nk

a′,b′ (H ′(x)) ∈ Q1
N4−1(H

′(σ)) for some σ ∈ SN4 and z = fn1+...+nk(H(x)) /∈
Q2

N4−1(H(σ)), for all σ ∈ SN4 . But z /∈ Q2
N4−1(H(σ)) implies that dist (z, QN4−1(H(σ))) >

2(Cb)N4 , from where one derives by (2) that

dist (z, QN4−1(H
′(σ))) > 2(Cb)N4 − bN4+1 >

3

2
(Cb)N4
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and

dist
(
z, Q1

N4−1(H
′(σ))

)
>

1

2
(Cb)N4 .

However, by (4), dist(z, z′) < b2N4 yields dist
(
z, Q1

N4−1(H
′(σ))

)
< b2N4 .

The argument used above to obtain the estimate (8.9) also gives that, for N4 large
enough and U sufficiently small,

∣∣Υ∗
(n1,j1)...(nk,jk) \ Υ′

(n1,j1)...(nk,jk)

∣∣ < ε/2, from where one
easily deduces that ∣∣Υ(n1,j1)...(nk,jk) 4Υ′

(n1,j1)...(nk,jk)

∣∣ < ε.

¤

9. Statistical stability

Fix a parameter (a0, b0) ∈ BC and a horseshoe Λ0 given by Proposition 4.1. Consider
a sequence (an, bn) ∈ BC converging to (a0, b0). For each n ≥ 0 set fn = fan,bn and assign
an adequate horseshoe Λn in the sense of Proposition 4.1. Let W n

1 denote the leaf of
first generation of the unstable manifold through z∗n, the unique fixed point of fn in the
first quadrant, and a parametrization Hn : Ω0 → W n

1 of the segment of W n
1 that projects

vertically onto Ω0 as in Section 6. Setting Ωn
∞ = H−1

n (Λn ∩ Hn(Ω0)) let Rn : Λn → N
denote the return time function and Fn = fRn

n : Λn → Λn. For every z ∈ Λn we denote by
γs

n(z) the long stable curve through z.
According to Corollary 6.4 and Propositions 7.3 and 8.7, we assume that all these

objects have been constructed in such a way that:

(1) |Ωn
∞4Ω0

∞| → 0 as n →∞;
(2) γs

n(Hn(x)) → γs
0(H0(x)) as n →∞ in the C1-topology;

(3) for N ∈ N and 1 ≤ j ≤ N we have |{Rn = j}4{R0 = j}| → 0 as n →∞.

As mentioned is Section 3.8, we know that for all n ∈ N0 there is a unique SRB
measure νn. Our goal is to show that νn → ν0 in the weak* topology, i.e. for all continuous
functions g : R2 → R the integrals

∫
gdνn converge to

∫
gdν0. We will show that given any

continuous g : R2 → R, each subsequence of
∫

gdνn admits a subsequence converging to∫
gdν0.

9.1. A subsequence in the quotient horseshoe. We begin by considering for each
n ∈ N0, the quotient horseshoes Λ̄n obtained from Λn by collapsing stable curves, as in
Section 4.5, and the quotient map F̄n = fRn

n : Λ̄n → Λ̄n. Every unstable leaf γu
n in the

definition of Λn suits as a model for Λ̄n, through the identification of each point z ∈ γu
n∩Λn

with its equivalence class, γs
n(z) ∈ Λ̄n. We have seen in Section 4.5 that there exists a well

defined reference measure in Λ̄n, denoted by m̄n. From here and henceforth, for each n ∈ N0

we fix the unstable leaf Hn(Ω0) and take Hn(Ω0) ∩ Λn = Hn (Ωn
∞) as our model for Λ̄n.

The measure whose density with respect to Lebesgue measure on Hn(Ω0) is 1Hn(Ωn∞) will
be our representative for the reference measure m̄n, where 1(·) is the indicator function.
In fact we will allow some imprecision by identifying Λ̄n with Hn (Ωn

∞) and m̄n with its
representative on Hn(Ω0).

As referred in Section 4.5, for each n ∈ N0 there is an F̄n-invariant density ρ̄n, with
respect to the reference measure m̄n. We may assume that each ρ̄n is defined in the interval
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Ω0 and ρ̄n(x) = 1Ωn∞(x)ρ̄n(Hn(x)) for every x ∈ Ω0. This way we have the sequence (ρ̄n)n∈N0

defined on the same interval Ω0.

Lemma 9.1. There is M > 0 such that ‖ρ̄n‖∞ ≤ M for all n ≥ 0.

Proof. We follow the proof of [Yo98, Lemma 2] and construct ρ̄ as the density with
respect to m̄ of an accumulation point of ν̄n = 1/n

∑n−1
i=0 F̄ i

∗(m̄). Let ρ̄n denote the density
of ν̄n and ρ̄i the density of F̄ i

∗(m̄). Also, let ρ̄i =
∑

j ρ̄i
j, where ρ̄i

j is the density of F̄ i
∗(m̄|σi

j)

and the σi
j’s range over all components of Λ̄ such that F̄ i(σi

j) = Λ̄.

Consider the normalized density ρ̃i
j = ρ̄i

j/m̄(σi
j). Let JF̄ denote the Radon-Nikodym

derivative d(F̄−1∗ m̄)
dm̄

. Observing that m̄(σi
j) = F̄ i

∗m̄(F̄ i(σi
j)) we have for x̄′ ∈ σi

j such that

x̄ = F̄ i(x̄′) and for some ȳ′ ∈ σi
j

ρ̃i
j(x̄) . JF̄ i(ȳ′)

JF̄ i(x̄′)
(m̄(Λ̄))−1 =

i∏

k=1

JF̄ (F̄ k−1(ȳ′))
JF̄ (F̄ k−1(x̄′))

(m̄(Λ̄))−1 ≤ M(m̄(Λ̄))−1.

To obtain the inequality above we appeal to [Yo98, Lemma 1(3)] or [BY00, Lemma 6].
A careful look at [BY00, Lemma 6] allows us to conclude that M does not depend on the
parameter in question. Now, ρ̄i

j ≤ M(m̄(Λ̄))−1
∑

j m̄(σi
j) ≤ M which implies that ρ̄n ≤ M ,

from where we obtain that ρ̄ ≤ M . ¤

The starting point in construction of the desired convergent subsequence is to apply the
Banach-Alaoglu Theorem to the sequence ρ̄n to obtain a subsequence (ρ̄ni

)i∈N convergent
to ρ̄∞ ∈ L∞ in the weak* topology, i.e.

∫
φρ̄ni

dx −−−→
i→∞

∫
φρ̄∞dx, ∀φ ∈ L1. (9.1)

9.2. Lifting to the original horseshoe. At this point we adapt a technique used in
[Bo75] for the construction of Gibbs states to lift an F̄ - invariant measure on the quotient
space Λ̄ to an F - invariant measure on the initial horseshoe Λ.

Given an F̄ -invariant probability measure ν̄, we define a probability measure ν̃ on Λ as
follows. For each bounded φ : Λ → R consider its discretization φ∗ : Λ̄ → R defined by

φ∗(x) = inf{φ(z) : z ∈ γs(H(x))}. (9.2)

If φ is continuous, as its domain is compact, we may define

varφ(k) = sup
{|φ(z)− φ(ζ)| : |z − ζ| ≤ Cbk

0

}
,

in which case varφ(k) → 0 as k →∞.

Lemma 9.2. Given any continuous φ : Λ → R, for all k, l ∈ N we have
∣∣∣∣
∫

(φ ◦ F k)∗dν̄ −
∫

(φ ◦ F k+l)∗dν̄

∣∣∣∣ ≤ varφ(k),

.
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Proof. Since ν̄ is F̄ -invariant∣∣∣∣
∫

(φ ◦ F k)∗dν̄ −
∫

(φ ◦ F k+l)∗dν̄

∣∣∣∣ =

∣∣∣∣
∫

(φ ◦ F k)∗ ◦ F̄ ldν̄ −
∫

(φ ◦ F k+l)∗dν̄

∣∣∣∣

≤
∫ ∣∣(φ ◦ F k)∗ ◦ F̄ l − (φ ◦ F k+l)∗

∣∣ dν̄.

By definition of the discretization we have

(φ ◦ F k)∗ ◦ F̄ l(x) = min
{
φ(z) : z ∈ F k

(
γs(H(F̄ l(x)))

)}

and
(φ ◦ F k+l)∗(x) = min

{
φ(ζ) : ζ ∈ F k+l (γs (H(x)))

}
.

Observe that F k+l (γs (H(x))) ⊂ F k
(
γs(H(F̄ l(x)))

)
and by Proposition 4.1

diam F k
(
γs(H(F̄ l(x)))

) ≤ Cbk
0.

Thus,
∣∣(φ ◦ F k)∗ ◦ F̄ l − (φ ◦ F k+l)∗

∣∣ ≤ varφ(k). ¤

By the Cauchy criterion the sequence
(∫

(φ ◦ F k)∗dν̄
)

k∈N converges. Hence, Riesz Rep-
resentation Theorem yields a probability measure ν̃ on Λ∫

φdν̃ := lim
k→∞

∫
(φ ◦ F k)∗dν̄ (9.3)

for every continuous function φ : Λ → R.

Proposition 9.3. The probability measure ν̃ is F -invariant and has absolutely contin-
uous conditional measures on γu leaves. Moreover, given any continuous φ : Λ → R we
have

(1)
∣∣∫ φdν̃ − ∫

(φ ◦ F k)∗dν̄
∣∣ ≤ varφ(k);

(2) If φ is constant in each γs, then
∫

φdν̃ =
∫

φ̄dν̄, where φ̄ : Λ̄ → R is defined by
φ̄(x) = φ(H(x)).

(3) If φ is constant in each γs and ψ : Λ → R is continuous then∣∣∣∣
∫

ψ.φdν̃ −
∫

(ψ ◦ F k)∗(φ ◦ F k)∗dν̄

∣∣∣∣ ≤ ‖φ‖∞varψ(k).

Proof. Regarding the F -invariance property, note that for any continuous φ : Λ → R,∫
φ ◦ Fdν̃ = lim

k→∞

∫ (
φ ◦ F k+1

)∗
dν̄ =

∫
φdν̃,

by Lemma 9.2. Assertion (1) is an immediate consequence of Lemma 9.2. Property (2)
follows from ∫

φdν̃ = lim
k→∞

∫ (
φ ◦ F k

)∗
dν̄ = lim

k→∞

∫
φ̄ ◦ F̄ kdν̄ =

∫
φ̄dν̄,

which holds by definition of ν̃, φ∗ and the F̄ -invariance of ν̄. For statement (3) let φ̄ : Λ̄ → R
be defined by φ̄(x) = φ(H(x)), k, l any positive integers and observe that∫

(ψ.φ ◦ F k)∗dν̄ =

∫
(ψ ◦ F k)∗(φ ◦ F k)∗dν̄
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and
∣∣∣∣
∫

(ψφ ◦ F k+l)∗dν̄ −
∫

(ψφ ◦ F k)∗dν̄

∣∣∣∣ =

∣∣∣∣
∫

(ψ ◦ F k+l)∗φ̄ ◦ F̄ k+ldν̄ −
∫

(ψ ◦ F k)∗φ̄ ◦ F̄ kdν̄

∣∣∣∣

≤
∫ ∣∣(ψ ◦ F k+l)∗ − (ψ ◦ F k)∗ ◦ F̄ l

∣∣ |φ ◦ F̄ k+l|dν̄

≤ ‖φ‖∞varψ(k);

inequality (3) follows letting l go to ∞.

Remark 9.4. Since the continuous functions are a dense subset of L1- functions, then
properties (2) and (3) also hold, through Lebesgue Dominated Convergence Theorem, when
φ ∈ L1.

We are then left to verify the absolute continuity property. While the properties proved
above are intrinsic to Bowen’s raising technique, the disintegration into absolutely contin-
uous conditional measures on unstable leaves depends heavily on the definition of the
reference measure m̄ and the fact that ν̄ = ρ̄dm̄. Fix an unstable leaf γu ∈ Γu. Denote
the 1-dimensional Lebesgue measure on γu by λγu . Consider a set E ⊂ γu such that
λγu(E) = 0. We will show that ν̃γu(E) = 0, where ν̃γu denotes the conditional measure
of ν̃ on γu, except for a few choices of γu. To be more precise, the family of curves Γu

induces a partition of Λ into unstable leaves which we denote by L. Let πL : Λ → L be
the natural projection on the quotient space L, i.e. πL(z) = γu(z). We say that Q ⊂ L
is measurable if and only if π−1

L (Q) is measurable. Let ν̂ = (πL)∗(ν̃), which means that
ν̂(Q) = ν̃

(
π−1
L (Q)

)
. By definition of Γu there is a non-decreasing sequence of finite parti-

tions L1 ≺ L2 ≺ . . . ≺ Ln ≺ . . . such that L =
∨∞

i=1 Ln; see [BY93, Sublemma 7]. Thus,
by Rokhlin Disintegration Theorem (see [BDV05, Appendix C.6] for an exposition on the
subject) there is a system (ν̃γu)γu∈L of conditional probability measures of ν̃ with respect
to L such that

• ν̃γu(γu) = 1 for ν̂- almost every γu ∈ L;
• given any bounded measurable map φ : Λ → R, the map γu 7→ ∫

φdν̃γu is measur-
able and

∫
φdν̃ =

∫ (∫
φdν̃γu

)
dν̂.

Let Ē = π̄(E). Since the reference measure m̄ has a representative mγu on γu which
is equivalent to λγu , we have mγu(E) = 0 and m̄(Ē) = 0. As ν̄ = ρ̄dm̄, then ν̄(Ē) = 0.
Let φ̄n : Λ̄ → R be a sequence of continuous functions such that φ̄n → 1Ē as n → ∞.
Consider also the sequence of continuous functions φn : Λ → R given by φn = φ̄n ◦ π̄.
Clearly φn is constant in each γs stable leaf and φn → 1Ē ◦ π̄ = 1π̄−1(Ē) as n → ∞. By

Lebesgue Dominated Convergence Theorem we have
∫

φndν̃ → ∫
1π̄−1(Ē)dν̃ = ν̃

(
π̄−1(Ē)

)
and

∫
φ̄ndν̄ → ∫

1Ēdν̄ = ν̄(Ē) = 0. By (2) we have
∫

φnν̃ =
∫

φ̄ndν̄. Hence, we must have
ν̃

(
π̄−1(Ē)

)
= 0. Consequently,

0 =

∫
1π̄−1(Ē)dν̃ =

∫ (∫
1π̄−1(Ē)dν̃γu

)
dν̂(γu),

which implies that ν̃γu

(
π̄−1(Ē) ∩ γu

)
= 0 for ν̂-almost every γu. ¤
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Observe that while ν̄ni
is F̄ni

-invariant we are not certain that ν̄∞ = ρ̄∞dm̄0 is F̄0-
invariant; thus we are not yet in condition to apply Lemma 9.2 to the measure ν̄∞. This
invariance can be derived from the fact that ν̄ni

is F̄ni
-invariant and equation (9.1).

Lemma 9.5. The measure ν̄∞ = ρ̄∞dm̄0 is F̄0-invariant.

Proof. We just have to verify that for every continuous ϕ : Λ̄0 → R∫
ϕ ◦ F̄0.ρ̄∞dm̄0 =

∫
ϕ.ρ̄∞dm̄0

Up to composing with H0 we can think of ϕ as a function defined in Ω0
∞. Clearly, there is

a continuous function φ : Ω0 → R such that φ|Ω0∞(x) = ϕ(x). Similarly, we can think of φ
as being defined in any set Hni

(Ω0). So, let us consider a continuous function φ : Ω0 → R.
Having this considerations in mind and the fact that ν̄ni

is F̄ni
-invariant we have∫

φ ◦ F̄ni
.ρ̄ni

dm̄ni
=

∫
φ.ρ̄ni

dm̄ni
. (9.4)

Observing that ∫
φ.ρ̄ni

dm̄ni
=

∫
φ(x).ρ̄ni

(x).‖dHni

dx
‖dx

we conclude that ∫
φ(x).ρ̄ni

(x).‖dHni

dx
‖dx −−−→

i→∞

∫
φ(x).ρ̄∞(x).‖dH0

dx
‖dx (9.5)

due to
∣∣∣∣
∫

φ.ρ̄ni
.‖dHni

dx
‖dx−

∫
φ.ρ̄∞.‖dH0

dx
‖dx

∣∣∣∣ ≤
∣∣∣∣
∫

φ.ρ̄ni
.‖dHni

dx
‖dx−

∫
φ.ρ̄ni

.‖dH0

dx
‖dx

∣∣∣∣ +

∣∣∣∣
∫

φ.ρ̄ni
.‖dH0

dx
‖dx−

∫
φ.ρ̄∞.‖dH0

dx
‖dx

∣∣∣∣
and the fact that the first term in the right side goes to 0 by the unstable manifold theorem,
while the second goes to 0 by (9.1).

The convergence (9.5) may be rewritten as∫
φ.ρ̄ni

dm̄ni
−−−→
i→∞

∫
φ.ρ̄∞dm̄0.

Once we prove that ∫
φ ◦ F̄ni

.ρ̄ni
dm̄ni

−−−→
i→∞

∫
φ ◦ F̄0.ρ̄∞dm̄0,

equality (9.4) and the uniqueness of the limit give the desired result.

Claim.

∫
φ ◦ F̄ni

.ρ̄ni
dm̄ni

converges to

∫
φ ◦ F̄0ρ̄∞dm̄0 when i →∞.

Given ε > 0, we want to find J ∈ N such that for every i > J

E1 :=

∣∣∣∣
∫

φ ◦ F̄ni
(x).ρ̄ni

(x).‖dHni

dx
‖dx−

∫
φ ◦ F̄0(x).ρ̄∞(x).‖dH0

dx
‖dx

∣∣∣∣ < ε.
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Since ‖ρni
‖∞, ‖ρ∞‖∞ ≤ M and ‖dHni

dx
‖, ‖dH0

dx
‖ ≤

√
1 + (10b)2 we have

E1 ≤
∣∣∣∣
∫

φ ◦ F̄ni
.ρ̄ni

.‖dHni

dx
‖1Ω0∞∩Ω

ni∞dx−
∫

φ ◦ F̄0.ρ̄∞.‖dH0

dx
‖1Ω0∞∩Ω

ni∞dx

∣∣∣∣
+ 2M

√
1 + (10b)2‖φ‖∞

∣∣Ω0
∞4 Ωni∞

∣∣
Taking

E2 =

∣∣∣∣
∫

φ ◦ F̄ni
.ρ̄ni

.‖dHni

dx
‖1Ω0∞∩Ω

ni∞dx−
∫

φ ◦ F̄0.ρ̄∞.‖dH0

dx
‖1Ω0∞∩Ω

ni∞dx

∣∣∣∣
we have

E1 ≤ E2 + 2M
√

1 + (10b)2‖φ‖∞
∣∣Ω0

∞4 Ωni∞
∣∣ .

By Corollary 6.4, we may take J ∈ N sufficiently large so that for i > J

2M
√

1 + (10b)2‖φ‖∞
∣∣Ω0

∞4 Ωni∞
∣∣ <

ε

2
.

Besides

E2 ≤
∣∣∣∣
∫

φ ◦ F̄ni
.ρ̄ni

.
[
‖dHni

dx
‖ − ‖dH0

dx
‖
]
1Ω0∞∩Ω

ni∞dx

∣∣∣∣

+

∣∣∣∣
∫

φ ◦ F̄0. [ρ̄ni
− ρ̄∞] .‖dH0

dx
‖1Ω0∞∩Ω

ni∞dx

∣∣∣∣

+

∣∣∣∣
∫ [

φ ◦ F̄ni
− φ ◦ F̄0

]
.ρ̄∞.‖dH0

dx
‖1Ω0∞∩Ω

ni∞dx

∣∣∣∣ .

Denote by E3, E4 and E5 respectively the terms in the last sum. Attending to the unstable
manifold theorem and equation (9.1) it is clear that E3 and E4 can be made arbitrarily

small. Noting that
√

1 + (10b)2 < 2, we have for any N

E5 ≤ 2M‖φ‖∞
∞∑

l=N+1

(|{Rni
= l}|+ |{R0 = l}|)

+ 2M‖φ‖∞
N∑

l=1

|{Rni
= l} 4 {R0 = l}|

+ 2M
N∑

l=1

∣∣∣∣∣
∫

{Rni=l}∩{R0=l}

[
φ ◦ F̄ni

− φ ◦ F̄0

]
1Ω0∞∩Ω

ni∞dx

∣∣∣∣∣ .

Denote by E6, E7 and E8 respectively the terms in the last sum. According to Proposi-
tion 4.1 we may choose N sufficiently large so that E6 is small enough. For this choice of
N we appeal to Proposition 8.7 to find J ∈ N sufficiently large so that E7 is also small
enough. At this point we are left to deal with E8. Let

El
8 =

∣∣∣∣∣
∫

{Rni=l}∩{R0=l}

[
φ ◦ F̄ni

− φ ◦ F̄0

]
1Ω0∞∩Ω

ni∞dx

∣∣∣∣∣ .

The result will follow once we prove that El
8 is arbitrarily small, which is achieved by

showing that given ς > 0, there exists J ∈ N such that if i > J , then
∣∣φ ◦ f̄ l

ni
− φ ◦ f̄ l

0

∣∣ < ς.
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Suppose that ς is small enough for our purposes. Since φ is continuous and Ω0 is
compact then there exists η > 0 such that |φ(x1)−φ(x2)| < ς , for every x1, x2 belonging to
any subset of Ω0 with diameter less than η. We use Lemma 7.1 to choose N2 ∈ N sufficiently
large so that if ω is any connected component of H0(ΩN2) then the maximum horizontal
width of Q2

N2
(ω) is η/2. We take J ∈ N sufficiently large so that Ωni

N2
= Ω0

N2
and by

Lemma 7.2, for every connected component I of Ω0
N2

we have Q1
N2

(Hni
(I)) ⊂ Q2

N2
(H0(I)).

We also want J ∈ N large enough to guarantee (6.2) with b2N2 instead of ε up to N .
Now, since f l

0(H0(x)) ∈ Λ0, there exists a connected component I of Ω0
N2

such that

f l
0(H0(x)) ∈ Q1

N2
(H0(I)). As

∣∣f l
ni

(Hni
(x))− f l

0(H0(x))
∣∣ < b2N2 , then clearly f l

ni
(Hni

(x)) ∈
Q2

N2
(H0(I)). Moreover, since f l

ni
(Hni

(x)) ∈ Λni
and we know that Q2

N2
(H0(I)) intersects

only one rectangle Q1
N2

(Hni
(L)) with L representing any connected component of Ωni

N2
,

then f l
ni

(Hni
(x)) ∈ Q1

N2
(Hni

(I)). Thus we have f̄ l
0(H0(x)) ∈ H0(Ω0) ∩ Q2

N2
(H0(I)) and

f̄ l
ni

(Hni
(x)) ∈ Hni

(Ω0) ∩ Q2
N2

(H0(I)). Finally, observe that H−1
0

(
H0(Ω0) ∩Q2

N2
(H0(I))

)
and H−1

ni

(
Hni

(Ω0) ∩Q2
N2

(H0(I))
)

are both intervals containing I with length of at most

η/2 which means that
∣∣φ (

f̄ l
0(H0(x))

)− φ
(
f̄ l

ni
(Hni

(x))
)∣∣ < ς. See Figure 7.

Figure 7

¤

Then we lift the measure ν̄ni
to an Fni

- invariant measure ν̃ni
defined according to

equation (9.3). Lemma 9.5 allows us to apply (9.3) to the measure ν̄∞ and generate ν̃∞.
We observe that by Proposition 9.3 the measures ν̃∞ and ν̃ni

are SRB measures.

9.3. Saturation and convergence of the measures. Now we saturate the measures
ν̃∞ and ν̃ni

. Let ν̃ be an SRB measure for fR obtained from ν̄ = ρ̄dm̄ as in (9.3). We
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define the saturation of ν̃ by

ν∗ =
∞∑

l=0

f l
∗ (ν̃|{R > l}) (9.6)

It is well known that ν∗ is f -invariant and that the finiteness of ν∗ is equivalent to∫
Rdν̃ < ∞. Since ‖ρ̄‖∞ < M and m̄ is equivalent to the 1-dimensional Lebesgue mea-

sure with uniformly bounded density, see [BY00, Section 5.2], then by Proposition 9.3(2)
and Proposition 4.1 we easily get that ν̃({R > l}) . C0θ

l
0 for some θ0 < 1. Since∫

Rdν̃ =
∑∞

l=0 ν̃({R > l}), the finiteness of ν∗ is assured. Clearly, each f l
∗ (ν̃|{R > l}) has

absolutely continuous conditional measures on {f lγu}, which are Pesin’s unstable mani-
folds, and so ν∗ is an SRB measure.

Using (9.6) we define the saturations of the measures ν̃∞ and ν̃ni
to obtain ν∗∞ and ν∗ni

respectively. By construction, we know that ν∗∞ and ν∗ni
are SRB measures, which implies

that ν∗∞ = ν0 and ν∗ni
= νni

, by the uniqueness of the SRB measure.
To complete the argument we just need to the following result.

Proposition 9.6. For every continuous g : R2 → R,
∫

gdν∗ni
−−−→
i→∞

∫
gdν∗∞.

Proof. First observe that there is a compact D ⊂ R2 containing the attractors cor-
responding to the parameters (an, bn) for all n ≥ 0. As the supports of the measures ν∗∞
and ν∗ni

are contained in D we may assume henceforth that g is uniformly continuous and
‖g‖∞ < ∞.

Let ε be given. We look forward to find J ∈ N sufficiently large so that for every i > J
∣∣∣∣
∫

gdν∗ni
−

∫
gdν∗∞

∣∣∣∣ < ε.

Recalling (9.6) we may write for any integer N0

ν∗ =

N0−1∑

l=0

νl + η

where ν l = f l
∗(ν̃|{R > l}) and η =

∑
l≥N0

f l
∗(ν̃|{R > l}). Since ν̃({R > l}) . C0θ

l
0 for

some θ0 < 1, we may choose N0 so that η(R2) < ε/3. We are reduced to find for every
l < N0 a sufficiently large J so that for every i > J

∣∣∣∣
∫

(g ◦ f l
ni

)1{Rni>l}dν̃ni
−

∫
(g ◦ f l

0)1{R0>l}dν̃∞

∣∣∣∣ <
ε

3N0

.

Fix l < N0 and take k ∈ N large so that var(g(k)) < ε
9N0

. Attending to Proposition 9.3

(3) and its Remark 9.4, our problem will be solved if we exhibit J ∈ N such that for every
i > J

E :=

∣∣∣∣
∫

(g ◦ f l
ni
◦ F k

ni
)∗(1{Rni>l} ◦ F k

ni
)∗dν̄ni

−
∫

(g ◦ f l
0 ◦ F k

0 )∗(1{R0>l} ◦ F k
0 )∗dν̃∞

∣∣∣∣ <
ε

9N0

.
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Defining

E0 =

∣∣∣∣
∫

(g ◦ f l
ni
◦ F k

ni
)∗(1{Rni>l} ◦ F k

ni
)∗ 1Ω0∞∩Ω

ni∞ ρ̄ni
‖dHni

dx
‖dx

−
∫

(g ◦ f l
0 ◦ F k

0 )∗(1{R0>l} ◦ F k
0 )∗ 1Ω0∞∩Ω

ni∞ ρ̄∞‖dH0

dx
‖dx

∣∣∣∣
we have E ≤ E0 + 4M‖g‖∞ |Ω0

∞4 Ωni∞|. Using Corollary 6.4 we may find J ∈ N so that
for i > J

4M‖g‖∞
∣∣Ω0

∞4 Ωni∞
∣∣ <

ε

18N0

.

Applying the triangular inequality we get

E0 ≤ M‖g‖∞
∫ ∣∣∣‖dHni

dx
‖ − ‖dH0

dx
‖
∣∣∣ dx

+

∣∣∣∣
∫

(g ◦ f l
0 ◦ F k

0 )∗(1{R0>l} ◦ F k
0 )∗ 1Ω0∞∩Ω

ni∞ [ρ̄ni
− ρ̄∞] ‖dH0

dx
‖dx

∣∣∣∣

+ 2M

∫ ∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx

+ 2M‖g‖∞
∫ ∣∣(1{Rni>l} ◦ F k

ni
)∗ − (1{R0>l} ◦ F k

0 )∗
∣∣1Ω0∞∩Ω

ni∞dx.

By the unstable manifold theorem
∫ ∣∣∣‖dHni

dx
‖ − ‖dH0

dx
‖
∣∣∣ dx

can be made arbitrarily small by choosing a sufficiently large J ∈ N. The term
∣∣∣∣
∫

(g ◦ f l
0 ◦ F k

0 )∗(1{R0>l} ◦ F k
0 )∗ 1Ω0∞∩Ω

ni∞ [ρ̄ni
− ρ̄∞] ‖dH0

dx
‖dx

∣∣∣∣
can also be easily controlled attending to (9.1). The analysis of the remaining terms

∫ ∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx

and ∫ ∣∣(1{Rni>l} ◦ F k
ni

)∗ − (1{R0>l} ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx

is left to Lemmas 9.8 and 9.9 below. ¤

In the proofs of Lemmas 9.8 and 9.9 we have to produce a suitable positive integer N
so that returns that take longer than N iterations are negligible. The next lemma provides
the tools for an adequate choice.

Lemma 9.7. Given k, N ∈ N we have

∣∣{z ∈ H(Ω∞) : ∃t ∈ {1, . . . , k} such that Rt(z) > N
}∣∣ ≤ k

C2
1

|Ω0| |{R > N}|.
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Proof. We may write

{
z ∈ H(Ω∞) : ∃t ∈ {1, . . . , k} such that Rt(z) > N

}
=

k−1⋃
t=0

Bt,

where

Bt =
{
z ∈ H(Ω∞) : R(z) ≤ N, . . . , Rt(z) ≤ N, Rt+1(z) > N

}
.

Let us show that |Bt| ≤ C2
1

|Ω0| |{R > N}| for every t ∈ {0, . . . , k − 1}. Indeed, if R(z) ≤
N, . . . , Rt(z) ≤ N then there exist m1, . . . mt ≤ N and j1 ≤ v(m1), . . . , jt ≤ v(mt) such
that z ∈ H

(
Υ(m1,j1)...(mt,jt)

)
. Besides, for every l ∈ {1, . . . , t} there is ωml,jl

∈ P̃ml−1 such
that ml is a regular return time for ωml,jl

and, according to Lemma 8.8,

H(Υ(m1,j1)...(mt,jt)) = ωm1,j1 ∩ . . . ∩ f−(m1+...+mt−1)(ωmt,jt) ∩ f−(m1+...+mt)(H(Ω∞)).

Let ω = ωm1,j1 ∩ . . . ∩ f−(m1+...+mt−1)(ωmt,jt). Consider the set

ω̃ = {z ∈ H(Υ(m1,j1)...(mt,jt)) : Rt+1(z) > N} = ω ∩ f−(m1+...+mt)({R > N}).
Using bounded distortion we obtain

|ω̃|
|ω| ≤ C1

|fm1+...+mt(ω̃)|
|fm1+...+mt(ω)| ≤ C1

|{R > N}|
2|Ω0| ,

and
|H(Υ(m1,j1)...(mt,jt))|

|ω| ≥ C−1
1

∣∣fm1+...+mt(H(Υ(m1,j1)...(mt,jt)))
∣∣

|fm1+...+mt(ω)| ≥ C−1
1

|Ω∞|
2

,

from which we get
|ω̃|

|H(Υ(m1,j1)...(mt,jt))|
≤ C2

1

|Ω0|
|{R > N}|
|Ω∞| .

Finally, we conclude that

|Bt| =
∑

ml ≤ N

jl ≤ v(ml)

l ∈ {1, . . . , t}

|ω̃| ≤ C2
1

|Ω0|
|{R > N}|
|Ω∞|

∑

ml ≤ N

jl ≤ v(ml)

l ∈ {1, . . . , t}

|H(Υ(m1,j1)...(mt,jt))| ≤
C2

1

|Ω0| |{R > N}|.

¤

Lemma 9.8. Given l, k ∈ N and ε > 0 there is J ∈ N such that for every i > J∫ ∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx < ε.

Proof. We split the argument into three steps:

(1) We appeal to Lemma 9.7 to choose N5 ∈ N sufficiently large so that the set

L :=
{
x ∈ Ω0

∞ ∩ Ωni∞ : ∃t ∈ {1, . . . , k}Rt
0(x) > N5 or Rt

ni
(x) > N5

}

has sufficiently small mass.
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(2) We pick J ∈ N large enough to guarantee that we are inside the neighborhood of
(a0, b0) given by Proposition 8.9 when applied to N5 and a convenient fraction of ε.
Namely, we have that for all m1, . . . , mk ≤ N5 and all j1 ≤ v(m1), . . . , jk ≤ v(mk),
each set Υ0

(m1,j1)...(mk,jk) 4Υni

(m1,j1)...(mk,jk) has small Lebesgue measure.

(3) Finally, in each set Υ0
(m1,j1)...(mk,jk) ∩Υni

(m1,j1)...(mk,jk) we control
∣∣(g ◦ f l

ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣
for a better choice of J ∈ N.

Step (1): From Lemma 9.7 we have |L| ≤ 2C2
1

|Ω0|kC0θ
N5
0 . So, we choose N5 large enough such

that

2‖g‖∞2C2
1

|Ω0|kC0θ
N5
0 <

ε

3
,

which implies that ∫

L

∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx <

ε

3
.

Step (2): By Proposition 8.9, we may choose J so that for every i > J , m1, . . . , mk ≤ N5

and j1 ≤ v(m1), . . . , jk ≤ v(mk) we have that
∣∣∣Υ0

(m1,j1)...(mk,jk) 4Υni

(m1,j1)...(mk,jk)

∣∣∣ <
ε

3
5−k(N5+2) (2 max{1, ‖g‖∞})−1.

Observe that by (8.1) we have that
∑N5

m1=1 v(m1) ≤ 5N5+2 which means that the number

of sets Υ0
(m1,j1)...(mk,jk) is less than 5k(N5+2). Consequently we have

∑

mT ≤ N5

jT ≤ v(mT )

T = 1, . . . , k

∫

Υ0
(m1,j1)...(mk,jk)

4Υ
ni
(m1,j1)...(mk,jk)

∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx <

ε

3
.

Step (3): In each set Υ0
(m1,j1)...(mk,jk) ∩ Υni

(m1,j1)...(mk,jk) we have that F k
0 = fm1+...+mk

0 and

F k
ni

= fm1+...+mk
ni

. Since we are restricted to a compact set D and |Df | ≤ 5 for every
f = fa,b with (a, b) ∈ R2, then

• there exists ϑ > 0 such that |z − ζ| < ϑ ⇒ |g(z)− g(ζ)| < ε
3
5−k(N5+2);

• there exists J1 such that for all i > J1 and z ∈ D we have

max
{|f0(z)− fni

(z)|, . . . , |fkN5+l
0 (z)− fkN5+l

ni
(z)|} < ϑ

2
;

• there exists η > 0 such that for all z, ζ ∈ D and f = fa,b with (a, b) ∈ R2

|z − ζ| < η ⇒ max
{|f(z)− f(ζ)|, . . . , |fkN5+l(z)− fkN5+l(ζ)|} < ϑ

2
.

Furthermore, according to Proposition 7.3,

• there is J2 such that for every i > J2 and x ∈ Ω0
∞ ∩ Ωni∞ we have

max
t∈[−10b,10b]

∣∣γs
0(H0(x))(t)− γs

ni
(Hni

(x))(t)
∣∣ < η.
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Let i > max{J1, J2}, z ∈ γs
0(H0(x)) and t ∈ [−10b, 10b] be such that z = γs

0(H0(x))(t).
Take ζ = γs

ni
(Hni

(x))(t). Then, by the choice of J2, it follows that |z − ζ| < η. This
together with the choices of η and J1 implies

∣∣f l
0 ◦ F k

0 (z)− f l
ni
◦ F k

ni
(ζ)

∣∣ ≤
∣∣∣fm1+...+mk+l

0 (z)− fm1+...+mk+l
0 (ζ)

∣∣∣

+
∣∣∣fm1+...+mk+l

0 (ζ)− fm1+...+mk+l
ni

(ζ)
∣∣∣

< ϑ/2 + ϑ/2 = ϑ.

Finally, the above considerations and the choice of ϑ allow us to conclude that for every
i > max{J1, J2}, x ∈ Ω0

∞ ∩ Ωni∞ and z ∈ γs
0(H0(x)), there exists ζ ∈ γs

ni
(Hni

(x)) such that
∣∣g(f l

ni
◦ F k

ni
(ζ))− g(f l

0 ◦ F k
0 (z))

∣∣ <
ε

3
5−k(N5+2). (9.7)

Attending to (9.2), (9.7) and the fact that we can interchange the roles of z and ζ in the
latter, we obtain that for every i > max{J1, J2}

∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣ <
ε

3
5−k(N5+2),

from where we deduce that
∑

mT ≤ N5

jT ≤ v(mT )

T ∈ {1, . . . , k}

∫

Υ0
(m1,j1)...(mk,jk)

∩Υ
ni
(m1,j1)...(mk,jk)

∣∣(g ◦ f l
ni
◦ F k

ni
)∗ − (g ◦ f l

0 ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx <

ε

3
.

¤
Lemma 9.9. Given l, k ∈ N and ε > 0 there exists J ∈ N such that for every i > J∫ ∣∣(1{Rni>l} ◦ F k

ni
)∗ − (1{R0>l} ◦ F k

0 )∗
∣∣1Ω0∞∩Ω

ni∞dx < ε.

Proof. As in the proof of Lemma 9.8, we divide the argument into three steps.
(1) The condition on N5: Consider the set

L1 =
{
x ∈ Ω0

∞ ∩ Ωni∞ : ∃t ∈ {1, . . . , k + 1} such that Rt
0(x) > N5 or Rt

ni
(x) > N5

}
.

From Lemma 9.7 we have |L1| ≤ 2C2
1

|Ω0|(k + 1)C0θ
N5
0 . So we choose N5 large enough so that

4C2
1

|Ω0|(k + 1)C0θ
N5
0 <

ε

3
,

which implies that∫

L1

∣∣(1{Rni>l} ◦ F k
ni

)∗ − (1{R0>l} ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx <

ε

3
.

(2) Let us choose J large enough so that, by Proposition 8.9, for all m1, . . . ,mk+1 ≤ N5

and j1 ≤ v(m1), . . . , jk+1 ≤ v(mk+1) we get∣∣∣Υ0
(m1,j1)...(mk+1,jk+1)

4Υni

(m1,j1)...(mk+1,jk+1)

∣∣∣ <
ε

3
5−(k+1)(N5+2) 2−1.
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Observe that by (8.1) we have
∑N5

m1=1 v(m1) ≤ 5N5+2 which means that the number of sets

Υ0
(m1,j1)...(mk+1,jk+1)

is less than 5(k+1)(N5+2). Let

L2 = Υ0
(m1,j1)...(mk+1,jk+1)

4Υni

(m1,j1)...(mk+1,jk+1)

and observe that
∑

mT ≤ N5

jT ≤ v(mT )

T ∈ {1, . . . , k + 1}

∫

L2

∣∣(1{Rni>l} ◦ F k
ni

)∗ − (1{R0>l} ◦ F k
0 )∗

∣∣1Ω0∞∩Ω
ni∞dx <

ε

3
.

(3) At last, notice that in each set Υ0
(m1,j1)...(mk+1,jk+1)

∩Υni

(m1,j1)...(mk+1,jk+1)
we have

∣∣(1{Rni>l} ◦ F k
ni

)∗ − (1{R0>l} ◦ F k
0 )∗

∣∣ = 0,

which gives the result. ¤
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[BV06] M. Benedicks and M. Viana, Random perturbations and statistical properties of Hénon-like maps,
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261 (2000), 173–200.
[MS93] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag (1993).
[MV93] L. Mora and M. Viana, Abundance of strange attractors, Acta Math. 171 (1993), 1–71.
[Mo92] F. J. Moreira, Chaotic dynamics of quadratic maps, Informes de Matemática, IMPA, Série A,
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Hénon maps, 46
quadratic maps, 42

bound return, 12
bounded distortion, 19
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Hénon maps, 47
quadratic maps, 41

free return situation, 15

generation, 44
generic point, 38
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