STATISTICAL STABILITY AND CONTINUITY OF SRB ENTROPY
FOR SYSTEMS WITH GIBBS-MARKOV STRUCTURES
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ABSTRACT. We present conditions on families of diffeomorphisms that guarantee statisti-
cal stability and SRB entropy continuity. They rely on the existence of horseshoe-like sets
with infinitely many branches and variable return times. As an application we consider
the family of Hénon maps within the set of Benedicks-Carleson parameters.
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1. INTRODUCTION

A physical measure for a smooth map f : M — M on a manifold M is a Borel probability
measure p on M for which there is a positive Lebesgue measure set of points x € M, called
the basin of p, such that

R Y
gggog;m =% (1.1)
in the weak* topology, where 0, stands for the Dirac measure on z € M. Sinai, Ruelle and
Bowen showed the existence of physical measures for Axiom A smooth dynamical systems.
These were obtained as equilibrium states for the logarithm of the Jacobian along the
unstable direction. Besides, such probability measures exhibit positive Lyapunov exponents
and conditionals which are absolutely continuous with respect to Lebesgue measure on
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local unstable leaves; probability measures with the latter properties are nowadays known
as Sinai-Ruelle- Bowen measures (SRB measures, for short).

Statistical properties and their stability have met with wide interest, particularly in
the context of dynamical systems which do not satisfy classical structural stability. This
may be checked through the continuous variation of the SRB measures, referred in [AV]
as statistical stability. Another characterization of stability addresses the continuity of
the metric entropy of SRB measures. Although an old issue, going back to [N] and [Y1]
for example, this continuity (topological or metric) is in general a hard problem. Notice
that for families of smooth diffeomorphisms verifying the entropy formula, see [LY2], and
whose Jacobian along the unstable direction depends continuously on the map, the entropy
continuity is an immediate consequence of the statistical stability. This holds for instance
in the setting of Axiom A attractors whose statistical stability was established in [R] and
[M]. The regularity of the SRB entropy for Axiom A flows was proved in [C]. Analiticity
of metric entropy for Anosov diffeomorphisms was proved in [P].

More recently, statistical stability for families of partially hyperbolic diffeomorphisms
with non-uniformly expanding centre-unstable direction was established in [V]. Due to the
continuous variation of the centre-unstable direction in the partial hyperbolicity context,
the entropy continuity follows as in the Axiom A case. Statistical stability for Hénon maps
within Benedicks-Carleson parameters have been proved in [ACF]; the entropy continuity
for this family is a more delicate issue, since the lack of partial hyperbolicity, mostly due
to the presence of “critical” points, originates a highly irregular behavior of the unstable
direction. In the endomorphism setting, many advances have been obtained for important
families of maps, for instance in [RS, T2, T1, AV, A, F, F'T] concerning statistical stability,
and in [AOT] for the entropy continuity. Actually, our main theorem may be regarded as
a version for diffeomorphisms of the entropy continuity result in [AOT].

In this work we give sufficient conditions on families of smooth diffeomorphisms for the
statistical stability and the continuous variation of the SRB entropies. The families we
study here, though having directions of non-uniform expansion, do not allow the approach
of the hyperbolic case, since no continuity assumptions on these directions with the map
will be assumed. Instead, we consider diffeomorphisms admitting Gibbs-Markov structures
as in [Y2] that may be thought as “horseshoes” with infinitely many branches and variable
return times. This is mainly motivated by the important class of Hénon maps presented
in the next paragraph. Our assumptions, which have a geometrical and dynamical nature,
ensure in particular the existence of SRB measures. Gibbs-Markov structures were used
in [Y2] to derive decay of correlations and the validity of the Central Limit Theorem for
the SRB measure. Here we prove that under some additional uniformity requirements on
the family we obtain statistical stability and SRB entropy continuity.

The major application of our main result concerns the Benedicks-Carleson family of
Hénon maps,

fap: R — R? (1.2)
(z,y) +— (L—aaz®+y,bx).

For small b > 0 values, f, is strongly dissipative, and may be seen as an “unfolded” version
of a quadratic interval map. It is known that for small b there is a trapping region whose
topological attractor coincides with the closure of the unstable manifold W of a fixed point
zyy of fap. In [BCJ it was shown that for each sufficiently small b > 0 there is a positive
Lebesgue measure set of parameters a € [1,2] for which f,; has a dense orbit in W with
a positive Lyapunov exponent, which makes this a non-trivial and strange attractor. We
denote by BC' the set of those parameters (a,b) and call it the Benedicks-Carleson family
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of Hénon maps. As shown in [BY1], each of these non-hyperbolic attractors supports a
unique SRB measure p, 5, whose main features were further studied in [BY2, BV1, BV2].
In [BY2] a Gibbs-Markov structure was built for each f,;, with (a,b) € BC, which has
been used to obtain statistical behavior of Hélder observables. These structures have also
been used in [ACF] to deduce the statistical stability of this family. In this work we add
the metric entropy continuity with respect to these measures.

1.1. Gibbs-Markov structure. Let f: M — M be C* diffeomorphism (k > 2) defined
on a finite dimensional Riemannian manifold M, endowed with a normalized volume form
on the Borel sets that we denote by Leb and call Lebesgue measure. Given a submani-
fold v € M we use Leb, to denote the measure on « induced by the restriction of the
Riemannian structure to 7.

An embedded disk v C M is called an unstable manifold if dist(f~"(z), f~"(y)) — 0 as
n — oo for every x,y € v. Similarly, ~ is called a stable manifold if dist(f™(z), f"(y)) — 0
as n — oo for every z,y € 7.

Definition 1. Let D* be the unit disk in some Euclidean space and Emb' (D", M) be the
space of C! embeddings from D" into M. We say that I'* = {y*} is a continuous family
of C* unstable manifolds if there is a compact set K* and ®*: K* x D% — M such that

i) v = ®*({xz} x D*) is an unstable manifold;
i) ®* maps K*® x D" homeomorphically onto its image;
iii) = +— ®*|({} x D*) defines a continuous map from K* into Emb' (D", M).

Continuous families of C! stable manifolds are defined similarly.

Definition 2. We say that A C M has a hyperbolic product structure if there exist a
continuous family of unstable manifolds T = {7“} and a continuous family of stable
manifolds I'* = {7°} such that

i) A= (Uy") N (Uy*);

ii) dim~* + dim~* = dim M;
iii) each v* meets each v* in exactly one point;
iv) stable and unstable manifolds meet with angles larger than some 6 > 0.

Let A C M have a hyperbolic product structure, whose defining families are I'* and I'™.
A subset Ty C A is called an s-subset if T also has a hyperbolic product structure and
its defining families I'§ and I'j can be chosen with I'§ C I'* and I'j = I'%; u-subsets are
defined analogously. Given z € A, let v*(x) denote the element of I'* containing z, for
* = s,u. Foreachn > 1, let (f™)* denote the restriction of the map f" to ~“-disks, and let
det D(f™)" be the Jacobian of D(f™)". In the sequel C' > 0 and 0 < 3 < 1 are constants,
and we require the following properties from the hyperbolic product structure A:

(Py) Positive measure: for every v € I'* we have Leb., (A N+y) > 0.
(P1) Markovian: there are pairwise disjoint s-subsets Y1, Ty, -+ C A such that
(a) Leb, ((A\UY;)Nv) =0 on each vy € I';
(b) for each i € N there is 7; € N such that f7(Y;) is a u-subset, and for all z € T;
ST (@) € (T (x) and  fT(y"(x)) D4 (f7(2));
c¢) for each n € N there are finitely many i’s with 7, = n.
() y many

(Py) Contraction on stable leaves: for each v° € I'* and each y € v*(x)
dist(f"(y), f*(z)) < CB", ¥n>1.
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For the last two properties we introduce the return time R: A — N and the induced map
F = fB: A — A, which are defined for each i € N as

Ry, =7 and f%y, = 7|y,
and, for each z,y € A, the separation time s(x,y) is given by
s(z,y) = min {n > 0: (f7)"(z) and (f")"(y) lie in distinct Ys} .
(P3) Regularity of the stable foliation:
(a) for y € ¥*(z) and n > 0

det D f*(f"(x)) -
Hdeth“ iy S0

(b) given ~,~" € T'", we define ©: v NA — yN A by O(x) =~*(z) Ny. Then O is
absolutely continuous and

d(©, Leb,) = det Df(fi(x))
dLeb, 1_[deth“ (fi(©7(z)))’

(c) letting v(x) denote the density in item (b), we have

log U(x) S 065(1:72”)7 fOr x,y S ,7, N A

v(y)
(P4) Bounded distortion: for v € I and z,y € AN~y
log det D(fR)“(x) Cﬂs(fR fR(y))
det D(fF)"(y) —

Remark 1.1. We do not assume uniform backward contraction along unstable leaves as
(P4)(a) in [Y2]. Properties (P3)(c) and (P4) are new if comparing our setup to that in
[Y2]. However, these are consequence of (P4) and (P5) of [Y2] as done in [Y2, Lemma 1].

In spite of the uniform contraction on stable leaves demanded in (P3), this is not too
restrictive in systems having regions where the contraction fails to be uniform, since we are
allowed to remove stable leaves, provided a subset with positive measure of leaves remains
in the end. This has been carried out for Hénon maps in [BY2].

1.2. Uniform families. Let F be a a family of C* maps (k > 2) from the finite dimen-
sional Riemannian manifold M into itself, and endow F with the C* topology. Assume
that each map f € F admits a Gibbs-Markov structure Ay as described in Section 1.1. Let
I't = {7}} and I'; = {7}} be its defining families of unstable and stable curves. Denote
by Rs: Ay — N the corresponding return time function.

Given fy € F, take a sequence f, € F such that f,, — fo in the C! topology as n — oo.
For the sake of notational simplicity, for each n > 0 we will indicate the dependence of
the previous objects on f, just by means of the index or supra-index n. If v* € I' is
sufficiently close to 4% € T'¥ in the C* topology, we may define a projection by sliding
through the stable manifolds of Ag

Hy: Ny — %
z = %z N

and set

Q0 = 'V(Q)L N A07 QSL = Hn_l(QOL Qn = /VZ N Ana Qg - Hn<Qn N Q?L) (13)
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Definition 3. F is called a uniform family if the conditions (Ug)—(Uj) below hold:
(Ug) Absolute constants: the constants C' and 5 in (P3),(P3) and (P4) can be chosen
the same for all f € F.
(Uy) Prozimity of unstable leaves: there are unstable leaves 4y € I'y and 4, € I';, such
that 4,, — 4o in the C! topology as n — oo.
(Ug) Matching of structures: defining the objects of (1.3) with 4, replacing v/, we have

Lebs, (2,000) — 0, asn — cc.

(Us) Proximity of stable directions: for every z € Qf N Qg we have 73 (z) — 7§(z) in the
C! topology as n — oo.

-----

Lebs, (Hn (Y70 N ) A (LY »NA)) — 0, asn — oc.

(Us) Uniform tail: given € > 0, there are N = N(g) and J = J(e, N) such that
S jLebs (R, =j} <e, VYn>J.

j=N

This last property ensures in particular that f% R, dLebs, < oo for large n, which by
[Y2, Theorem 1] implies the existence of an SRB measure for each f,,.

Remark 1.2. Using that stable and unstable manifolds of f; meet with angles uniformly
bounded away from zero at points in Ay, and the proximities given by (U;) and (Usj),
it follows that there is some 6 > 0 such that, for n large enough, the stable manifolds
through points in QY meet 4, with an angle bigger than §. Together with (P3) and (Uy),
this implies that:

i) (Hy)«Lebs, < Lebs, with uniformly bounded density;

..y d(Hnp)« Lebs 1
i) Tyt 1 on L'(Lebs,), as n — oo.

1.3. Statement of results. Consider a family F such that each f € F admits a unique
SRB measure . Letting P(M) denote the space of probability measures on M endowed
with the weak™ topology, we say that F is statistically stable if the map

F — PM)

[o— oy
is continuous. In the sequel h,  denotes the metric entropy of f with respect to the
measure fiy.

Theorem A. Let F be a uniform family such that each f € F admits a unique SRB
measure. Then

(1) F is statistically stable;
(2) F > f v+ hy, is continuous.

Corollary B. The family BC is statistically stable and the map BC > (a,b) — h,,, is
continuous.
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This corollary follows immediately after building Gibbs-Markov structures satisfying
(Po)—(Py), as was done in [BY2], and verifying the uniformity conditions (Ug)—(Us), as in
[ACF]. For the sake of clearness, the following list specifies exactly where each property is
obtained.

[BY2, Proposition A(3)]

[BY2, Proposition A(1),(2)]
[BY2, Proposition A(2)]

[BY2, Sublemma §]
[
[
[
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N
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o ®
~— | ~—"

BY2, Sublemma 10]

BY2, Sublemma 11]

BY2, Sublemma 9]

[ACF, Sections 6,7,8]

Hyperbolicity of the fixed point z*

[ACF, Section 6 in particular Corollary 6.4]
[ACF, Section 7 in particular Proposition 7.3]
[ACF, Section 8 in particular Proposition 8.9]
[BY2, Proposition A(4)]
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Concerning (Uy) and (Us), observe that the constants depend exclusively on the max-
imum value for b > 0 and the minimum for ¢ < 2 in the choice of Benedicks-Carleson
parameters.

2. QUOTIENT DYNAMICS AND LIFTING BACK

In this section we shall analyze some dynamical features of a diffeomorphism f admitting
A with a Gibbs-Markov structure that verifies properties (Pg)-(P4). Consider a quotient
space A obtained by collapsing the stable curves of A; i.e. A = A/ ~, where z ~ 2’ if and
only if 2/ € v*(z). Since by (P;)(b) the induced map F = ff: A — A takes v° leaves to +*
leaves, then the quotient induced map F : A — A is well defined and if Y; is the quotient
of T;, then F takes the sets T; homeomorphically onto A. Given an unstable leaf v, the
set ¥ N A suits as a model for A through the canonical projection 7© : A — A. We will
see in Section 2.1 that we may define a natural reference measure m on A. Besides, F is
an expanding Markov map (see Lemma 2.1), thus having an absolutely continuous (w.r.t
m), F-invariant probability measure ji. Moreover, if fi denotes the F-invariant measure
supported on A then i = 7,(fi).

To build an SRB measure p out of ji is just a matter of saturating the measure fi. The
existence of the measures i, i and the fact that i = 7,(ji) follows from standard methods,
which can be found for instance in [Y2]. For the sake of completeness we will present
the construction of the SRB measure, also having in mind how some properties can be
carried up through the lifting. We will accomplish this by adapting some ideas used in the
construction of Gibbs states; see [B].

2.1. The natural measure. The purpose of this subsection is to introduce a natural
probability measure m on A and establish some properties of the Jacobian of F with
respect to m. Moreover, we show the existence of an F-invariant density p with respect to
the measure m.

Fix an arbitrary 4 € I'*. The restriction of 7 to 4 N A gives a homeomorphism that we
denote by # : N A — A. Given v € I'* and z € y N A let & be the point in v*(z) N 4.
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Defining for z € vy N A

; det Df“ (1))

we have that @ satisfies the bounded distortion property (Ps)(c). For each v € I let m,
be the measure in v such that
dm,,
= 01,4,
dLeb, A
where 1,4 is the characteristic function of the set vy M A. These measures have been

defined in such a way that if 7,7 € I'* and © is obtained by sliding along stable leaves
from v N A to v N A, then

O.Mmy = M. (2.2)

To verify this let us show that the densities of these two measures with respect to Leb,
coincide. Take z € vy N A and 2’ € v/ N A such that ©(z) = 2’. By (P3)(b) one has

dO, Leb, ) u(z’)
d Leb.,, Ca(x)’

which implies that

d®.m,, , ., . dO,Leb, oy dmy
dLeb,, () = @) @) = @) = Groa ().

Conditions (Pg) and (2.2) allow us to define the reference probability measure m whose
representative in each unstable leaf v € I'" is exactly mmy.
Y

Let T': (X1, m1) — (X2, m2) be a measurable bijection between two probability measure
spaces. T is called nonsingular if it maps sets of zero m; measure to sets of zero ms

measure. For a nonsingular transformation 7" we define the Jacobian of 7" with respect
-1

to my and mo, denoted by Jn, m, (1), as the Radon-Nikodym derivative dT*dT(;m). By

assertion (1) of the following lemma it makes sense to consider the Jacobian of the quotient

map F : (A,m) — (A,m) that we simply denote JF.

Lemma 2.1. Assuming that F(yNY;) C v for~,y € T, let JF(z) denote the Jacobian
of F' with respect to the measures m., and m~. Then

(1) JE(z) = JF(y) for every y € v*(x);
(2) there is Cy > 0 such that for every x,y € yN'Y;
' JF(x)

| < OB F@)LE®W).
TF(y) ’— 0 |

(3) for every k € N and any k positive integers iy, . . .1, there is Cy > 0 such that for
every x,y € T; i N7y

< (.

‘JFk(x)
JE*(y)

Proof. (1) For Leb, almost every € v N A we have
u(F(z))

JF(z) = |det DF"(x)] - )
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Denoting ¢(x) = log | det D f“(z)| we may write

R—-1 00

log JF(z) = Z@(f"(x)) + Z( (fi(F ()))—w(fi(F/(?)D
= Y (elf @) — (@)
= Yot + 3 (e F@) - o FED).

Thus we have shown that JF(z) can be expressed just in terms of & and F/'(x\), which is
enough for proving the first part of the lemma.
(2) Tt follows from (2.3) that
F det DF™ u(F
IF@) o detDPa) | a(F()
JF( ) det DF"(y) W(F(y))
Observing that s(z,y) > s(F(x), F(y)) the conclusion follows from
(3) Again, from (2.3), we obtain
F* det D (F*)" i(F*
o JEH@) et D (R (@) (e
JF%(y) det D (F*)" (y) a(F(
By (P4) we have

ay)

log + log @()
(P

3)(c) and (Py).

3,
g3
s

<
N—
SN—
o
g3
—~~
8
SN—

det D (F¥)" (z) &
e < 200

1 ‘W) < ¢ ' < .
OgdetD F&)* (y) - lz(;ﬂ >

The remaining terms are easily controlled once again due to (P3)(c). O

Lemma 2.2. The map F : A — A has an invariant probability measure i with dfi = pdm,
where K~! < p < K, for some K = K(Cy,[3) > 0.

Proof. We construct p as the density with respect to m of an accumulation point of ar
1/n Z" ' F.(m). Let p™ denote the density of i™ and ' the density of I, (m). Also,
let p' =3, p; I3 Where 7’ is the density of F (mlo}) and the o}’s range over all components
of A such that F'(o?) = A.

Consider the normalized density p % = pi/m(a}). We have for 7’ € o} such that 7 = F(i" )
and for some ¥ € o

K.
!
’@
=
vl
:1
<

F(F (@)
— :

pi(z) = e )m

By Lemma 2.1(2) we have for every k =1,... i
— k1,

JFE(F (¥))

JE(F" (2))

from where we conclude that

p;(7) < exp {Clﬁs(x’y) Zﬁj} <exp{Ci/(1-p)} =K.

>0

<

< exp {0 gl Fe >)} < exp {0 @D}
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Observe that we also get

1 JF' (2 .
T ) <
p(Z)  JF(y)
which yields p%(z) > K~'. Now, since p' = 3 m(0})p}, we have K~' < p' < K which
implies that K ~' < ™ < K, from where we obtain that K~! < p < K. O

2.2. Lifting to the Gibbs-Markov structure. We now adapt standard techniques for
lifting the F- invariant measure on the quotient space to an F- invariant measure on the
initial Gibbs-Markov structure.

Given an F-invariant probability measure fi, we define a probability measure ji on A as
follows. For each bounded ¢ : A — R consider its discretizations ¢* : 4 N A — R and
¢* : A — R defined by

¢°(x) = inf{p(2) : z € 7*(x)}, and ¢* =¢*or . (2.4)
If ¢ is continuous, as its domain is compact, we may define
var (k) = sup {[¢(2) — ¢(Q)| : [+ = ¢| < OB},

in which case var ¢(k) — 0 as k — oo.

Lemma 2.3. Given any continuous ¢ : A — R, for all k,1 € N we have

Jwortyan— [6e Fk*l)*dn' < var (k).

Proof. Since [i is F-invariant
‘/(¢0Fk)*dﬂ—/(¢oFk+l ‘ ‘/ (po F*) o Fdji — /(¢0Fk+l)*dﬂ
< [|@ertyoF — (o Fy

By definition of the discretization we have

(60 F¥)* o F'(x) = inf {¢(z) L2 e F* (ﬂfl(x)))}

dji.

and
(¢ o F**)"(z) = inf {4(C) : ¢ € F*' (v (2))} .
Observe that F* (4% (x)) C F* <fy (Fl(x))) and by (Py)

(2))) <CB"

(k). O

diam F* ('ys (Fl

Thus, |(¢ 0 F¥)* o F' — (¢ 0 FF)*

By the Cauchy criterion the sequence ([(¢ o F*)*dp)
resentation Theorem yields a probability measure i on

[ odi = jim [ (00 Py (2.5)

for every continuous function ¢ : A — R.

ren converges. Hence, Riesz Rep-

Proposition 2.4. The probability measure ji is F-invariant and has absolutely continuous
conditional measures on y* leaves. Moreover, given any continuous ¢ : A — R we have

1) | ¢dii — [ (60 F*)'d| < var o(k);
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(2) if ¢ is constant in each v°, then [ ¢dfi = [ édfi, where ¢ : A — R is defined by
o(x) = ¢(z), where z € 71 (x);
(3) if ¢ is constant in each v° and ¢ : A — R is continuous, then

[vodii— [wo Py (oo Py an
Proof. Regarding the F-invariance property, note that for any continuous ¢ : A — R,
/gboqu—hm/ gboF'€+1 d,u /gbdu,
by Lemma 2.3. Assertion (1) is an immediate consequence of Lemma 2.3. Property (2)
follows from
[ o= i [ (o ry di= i [ 6o Pra~ [ oip

which holds by definition of ji, * and the F-invariance of fi. For statement (3) let ¢ : A —
R be defined by ¢(z) = ¢(z), where z € 77! (x). For any k, [ positive integers observe that

Jwoo Pydi= [worty o Py

< [l var ¢ (k).

and

Jwsoriydp— [woortya ‘ ] Jworstyso i [wory oo

< [1wo Py — o Py o Fljgo Fda

< var ¢ (k)91

Inequality (3) follows letting [ go to oo.

We are then left to verify the absolute continuity. While the properties proved above are
intrinsic to the lifting technique, the disintegration into absolutely continuous conditional
measures on unstable leaves depends on the definition of the reference measure m and
the fact that i = pm. Fix an unstable leaf v* € I'*. Denote by A, the conditional
Lebesgue measure on 7*. Consider a set £ C 4" such that A\« (E) = 0. We will show
that fi,«(E£) = 0, where fi,. denotes the conditional measure of i on v*, except for a
few choices of v*. To be more precise, the family of curves I'* induces a partition of A
into unstable leaves which we denote by L. Let m; : A — L be the natural projection
on the quotient space L, i.e. mz(z) = v%(2). We say that @ C L is measurable if and
only if 7;'(Q) is measurable. Let 4 = (mz).(f), which means that 4(Q) = i (7:'(Q)).
We assume that by definition of I'* there is a non-decreasing sequence of finite partitions
Ly < Ly < ... <L, < ...such that £ = \/;°, £,. Thus, by Rokhlin disintegration
theorem (see [BDV, Appendix C.6]) there is a system (fiyu) ., of conditional probability
measures of i with respect to £ such that

o [i,u(y") =1 for ji- almost every v* € L;
e given any bounded measurable map ¢ : A — R, the map v — [ ¢dfi,u is measur-

able and [ ¢dii = [ ([ ¢djion) dji

Let £ = #(E). Since the reference measure m has a representative m.. on v* which
is equivalent to \,u, we have m..(E) = 0 and m(E) = 0. As ji = pm, then i(E) = 0.
Let ¢, : A — R be a sequence of continuous functions such that ¢, — 1z as n — oo.
Consider also the sequence of continuous functions ¢, : A — R given by ¢, = ¢, o 7.
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Clearly ¢, is constant in each 7 stable leaf and ¢, — 1507 = 1z-1(z as n — oo. By
Lebesgue dominated convergence theorem we have [ ¢ndii — [1-1zdip = o (771(E))
and [ ¢,di — [1pda = a(E) = 0. By (2) we have [ ¢t = [ ¢,dfi. Hence, we must have
fi (771(E)) = 0. Consequently,

0= [1esippdi= [ ([ 1o-sdios ) dite

which implies that i, (77'(E) N~y*) = 0 for j-almost every . O

Remark 2.5. Since the continuous functions are dense in L', properties (2) and (3) also
hold when ¢ € L', by dominated convergence.

2.3. Entropy formula. Let i be the SRB measure for F' obtained from g = pm as
in (2.5). We define the saturation of ji by

pr=Y LR > 1}). (2.6)
=0

It is well known that p* is f-invariant and that the finiteness of p* is equivalent to [ Rdji =
[ Rdjp < oo. By construction of and m and fi, the finiteness of p* is also equivalent to
fvﬂ L RdLeb, < oo. Clearly, each f!(ia|{R > }) has absolutely continuous conditional

measures on { fiv*}, which are Pesin unstable manifolds. Consequently

is an SRB measure for f.

Lemma 2.6. If A\ is a Lyapunov exponent of fi, then \/o is a Lyapunov exponent of i,
where o = [, Rdji.

Proof. As p is obtained by saturating i in (2.6), one easily gets p*(A) > a(A) = 1, and
so u(A) > 0. By ergodicity, it is enough to compare the Lyapunov exponents for points
z € A. Let n be a positive integer. We have for each z € A

F™(z2) = f5"3)(2), where S,(z) = iR(FZ(z’))

As S, (2) = S,(C) for Lebesgue almost every z € A and ( close to z, we have for v € T,M

Snl<z) log ||DfSn(z)(Z)UH _ #(Z) log ||DFn(Z>U” (27)

Since i is ergodic, Birkhoff ergodic theorem yields

lim n(2) _ / Rdji=o (2.8)

n—oo n

for {1 almost every z € A. O

Proposition 2.7. Let JE be the Jacobian of F with respect to the measure m on A. Then

h,, = a_l/logJde.
A
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Proof. By [LY2, Corollary 7.4.2] we have
hy=Y_ \dimE;, (2.9)
Ai>0

where \; are Lyapunov exponents of p and E; the corresponding linear spaces given by
Oseledets’” decomposition. By Lemma 2.6 we have

h/»L = 0'71 Z :\z dim Ei,
5\i>0

where ); are Lyapunov exponents of fi. As a consequence of Oseledets theorem we may
also write

N dim E; = / log det DF“dji.
A
According to (2.3),
/ log JEdji = / logdet DF“dj + / logu o Fdpn — / log udfi
A A A A

:/logdet DF“dj,
A

where the last equality follows from the F-invariance of ji. Finally, since by Lemma 2.1
JF' is constant in each ~*-leaf it follows from Proposition 2.4 (2) that

/logJFdﬁ:/logJde.
A A

3. STATISTICAL STABILITY

Let F be a uniform family of maps. Fix f, € F and take any sequence (f,),>1 in F such
that f, — fo, as n — oo, in the C* topology. For each n > 0, let u, denote the (unique)
SRB measure for f,. Given n > 0, the map f, € F admits a Gibbs-Markov structure A,
with ' = {v/} and I'}, = {7 } its defining families of unstable and stable leaves. Consider
R, : A, — N the return time, F,, : A, — A, the induced map, 4, the special unstable
leaf given by condition (U;) and H,, : 4, NT'§ — 4o obtained by sliding through the stable
leaves of Ag. Recall that Qf = H, (3, N A,) and Q = 50 N Ay.

Remark 3.1. Since f,, — fy, as n — oo, in the C* topology and (U;) holds, then for every
e >0 and ¢ € N, there exists Ny € N such that for every n > Ny we have

H&n - '?0”1 <§g,

max {|(foo Hy,' = fo)(@)l,... . [(fao HY' = fo)(@)|} <e,

IGQQHQQ

and

log

- { det D f¥(fn 0 Hgl(x))‘ ‘1 det Dfy(fyo H,'(x)) ‘} _.

X e .
2€QuNQE det D f{( fo(x)) det D f(f§(x))

Our goal is to show that u, — o in the weak® topology, i.e. for each continuous

function ¢g : M — R the sequence [ gdu, converges to [ gdug. We will show that given
any continuous g : M — R, each subsequence of | gdu, admits a subsequence converging

to [ gdpuo.
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3.1. Convergence of the densities on the reference leaf. In Section 2.1 we built a
family of holonomy invariant measures on unstable leaves that gives rise to a measure m,,
on A,,. Moreover,

(7Tn)sms, =my, and ms, = 15 ~p, Lebs, , (3.1)
where 1) stands for the indicator function. By Lemma 2.2, for each n > 0 there is an
F,-invariant measure fi,, = p,m, with ||p,|lcc < K for all n > 0. We define the sequence
(0n)n>0 of functions in 4y as

On = Pn 0T o H, ' 1on, (3.2)
which in particular gives
00 = Po © To-
The main purpose of this section is to prove that the sequence (0y), oy converges to oo in

the weak™ topology. By Banach-Alaoglu theorem there is a subsequence (0, ),y converging
to some po, € L>(Lebs,) in the weak™ topology, i.e.

/ ¢0n,d Lebs, — / G0sdLebs,, Vo € L'(Lebs,). (3.3)

The following lemma establishes that integration with respect to m,, is close to integration
with respect to g, Lebs,, up to a small error.

Lemma 3.2. Let ¢ € L®(my,). If n is sufficiently large, then

< K[| Qu,

Qgﬁn dmy, — / (Q; O Ty O Hn_l)Qn dLeb%
A Q

An o

where Q, = Lebs, (20 A Q) + ‘ Joy A(H, ). Lebs, = [ d Lebs,

Proof. By (3.1), we have [; ¢pn dimy = [, (¢ 0 Tn)(pn © Tn) dLebs, . Tt follows that

<

(Eﬁn dmn _/ (Q_ﬁ o 7ATn o Hgl)Qn dLeb’yo
A Q

An o

/ ((2_5 © 7ATn)(ﬁn o ﬁ'n) dLeb%
Q0 AQ,

+ / (0 7n)(Pn © ) dLeb%—/ (¢ ofn o Hy "o, dLebs,
00nQ, op

< K||¢]|c Lebs, () A Q)

|l

< K||¢lloo Lebs, (2 A Q) + K||6]l

(g5 o T, O H;l)gn d(H,).Lebs, — / (gE o T, O H;l)gn d Lebs,
Qg
/

Consider the maps Gy : 99 — 9o and G, : Y9 — 7, defined by

n
0

d(H,) Leb%—/ d Lebs, | .
Q

n
0

n
0

Gozfro_loFoofro and Gn:fr;lanofrnngl.

Lemma 3.3. For every ¢ > 0, n € N sufficiently large and Lebs -almost every x €
QoNQENA{R, =} N{Ry = {} we have |Gy (x) — Go(z)| < €.
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Proof. Consider a point x € QoNQYN{R, =} N{Ry = (}. We may assume that G,(x) is
a Lebesgue density point of ,,. Then, using (Us,) and the continuity of the stable foliation
(see Definition 1 (iii)), for sufficiently large n € N we may guarantee the existence of a point
g € QY N Q, such that ¢ (7) is at most esin(#)/4 apart from 72 (G, (x)) in the C'-norm;
recall Remark 1.2. Using (Uj) we may assume that n € N is also sufficiently large so that
the distance in the C' norm between ~: () and ~3(g) is at most € sin(6)/4.

Taking into account Remark 3.1 and the continuity of the stable foliation, we may
assume that n € N is large enough so that |f\(H,1(z)) — fi(x)| is sufficiently small in
order to 73(fi(x)) belong to a esin(#)/4-neighborhood of v§(7), in the Cl-norm. It follows
that 73 (fL(H, *(z))) and v (fi(z)) are at most 3esin(f)/4 apart, in the Cl-norm. Finally,
observing that G, () = 13 (fL(H, (x))) Ny, Go(z) = 5 (fi(x)) Ny and v* can be made
arbitrarily close to 7§, in the C'-norm (by (Uy)), then, as long as n is sufficiently large,

we have |G, (z) — Go(z)] < e. O
o e
QO X Gy(X)

FIGURE 1

Proposition 3.4. The measure (0 © 7y ") is Fy-invariant.

Proof. We just have to verify that for every continuous ¢ : Ay — R

/ (0 Fo)(0n0 0 73" )diitg = / (000 0 77" )dimg

Given such ¢, consider a continuous function ¢ : M — R such that [[¢[|. < [|¢]le and
bla, = ¢ o T. Since fip, = pn,dm,, is F, -invariant we have

J©Gort o Fupdimn, = [0 pndm, (3.4
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Recalling definitions (3.1),(3.2), the fact that g,, is supported on Qf* C Qo and applying
Lemmas 3.2 and 2.2 we get

’/ pm dm,,, — /gp(goo oy )dmo

< /(¢ o H; MY on,dLebs, — /(gp 0 0)0eed Lebs,

IN

— /(gbo[—[7;1)gmdLeb%—/gbgoodLe‘b@0 + @,

IN

/ (¢ 0 Hy')ondLebs, — / 0n,d Lebs, | +

+ Qn,

+ ‘/(bgnidLeb% —/<Z5QoodLeb%

< K/ ‘gbo H;il _ ¢| d Lebs, + ‘/qﬁgmdLeb% —/ngQM)clLemO

Therefore, using (U;) for the first term on the right, (3.3) for the second and (Us) plus
Remark 1.2 for the @) term, we conclude that

/(qb o ﬁ;})ﬁnidmm — /cp(goo o 7y 1) dmy. (3.5)

Once we prove the next claim, then equality (3.4), the limit (3.5) and the uniqueness of
the limit give the desired result.

Claim 3.1. /(gbow F) o, dimy, — /(poFo 000 © T V) dmg.
Let

E, = ‘/ (bOﬂ' m pmdmnl _/QDOFO(QOOOﬁol)dmO :

Again, using definitions (3.1),(3.2) and applying Lemma 3.2 we get

E; < ’/((ﬁo G, ) 0n,d Lebs, —/(¢o Go)0sod Lebs,

+ Qn,

Now, observe that by (Us) and Remark 1.2 the term @,, can be made arbitrarily small
for large ¢. This leaves us with the first term on the right that we denotee by E5. Using
Lemma 2.2 we have

E, < / |p 0 Gy, — ¢ 0 Go| 0n,d Lebs, + ’/(¢ o Go)on,d Lebs, — /(¢ o () 0ood Lebs,

< K/ |p o Gy, — ¢ o G| dLebs, + ‘/(qﬁoGo)gmdLeb% —/((boG())QoodLeb;,0

According to equation (3.3) it is clear that the last term on the right can be made arbitrarily
small provided i is large enough. So, denote by Fj the first term on the right. Recalling



16 J. F. ALVES, M. CARVALHO, AND J. M. FREITAS

the fact that g, is supported on Qf" C €y, we have for any N

o0

Ey < K¢l Y (Lebsy({Rn, = €}) + Lebs, ({Ro = €}))

{=N+1

+ K|l Y Lebsy({Rn, = £} A{Ry = (})

/=1

N
+KZ/ |0 G, — ¢ 0 G| dLebs, .
=1 71

R, =0}N{Ro=£}NQ0Ny°

Denote by E,, F5 and FEjg respectively the terms in the last sum. Having in mind (Us)
and Remark 1.2, we may choose N € N sufficiently large so that Ej is small for large 7.
For this choice of N, by (Uy), we also have that Es is small for large i. We now turn our
attention to Eg. For / =1,... N, let

(R, =0}N{Ro=t}
Since ¢ is continuous and M is compact then each Ef can be made arbitrarily small by

Lemma 3.3. O
Corollary 3.5. Given ¢ € L*(Lebs,), we have

/¢QndLebfy0 —_— /¢QodLeb%.

Proof. By uniqueness of the absolutely continuous invariant measure for F, it follows from
Proposition 3.4 that py = 0 0 T ! which immediately yields goo = 0o. Hence

/ ¢ 0n,d Lebs, —— / ¢ood Lebs,, for all ¢ continuous. (3.6)

The same argument proves that any subsequence of (g,), has a weak* convergent subse-
quence with limit also equal to go. This shows that (o, ), itself converges to gg in the weak™*
topology. Since continuous functions are dense in L'(Lebs,), using that the densities g,
are uniformly bounded, by Lemma 2.2, the result follows easily from (3.6). Il

3.2. Continuity of the SRB measures. For each n > 0 let f,, be the F),- invariant
measure lifted from [, as in (2.5), u! the saturation of fi, as in (2.6), and p, = p' /(M)
the SRB measure. The main goal of this section is to prove the following result.

Proposition 3.6. For every continuous g : M — R,

/ gy, —— / gdpg.

Proof. As M is compact, then ¢ is uniformly continuous and ||g||oc < 0o. Recalling (2.6)
we may write for all n € Ny and every integer NV

No—1

N;kz = Z Mf; + M,
/=0

where pf, = fL(iin[{Rn > €}) and 1, = 7,0, fi(fin|{Rn > 1}). By (Us), we may choose
Ny so that 7, (M) is as small as we want, for all n € Ny. We are left to show that for every
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¢ < Ny, if n is large enough then

/(9 o f)1(r,>eydfin — /(9 o f§)1ry=eydjio

is arbitrarily small. We fix ¢ < Ny and take k € N large so that var(g(k)) is sufficiently
small. Then, we use Proposition 2.4 (3) and its Remark 2.5 to reduce our problem to
controlling the following error term:

E = ’/(g o f o F¥) (Lir,>e o F) diiy — /(9 o f5 0 F3)* (L{ry>e © Fy)*djio

Let 00 : 79 — R be such that gy = pg o 7y - 1, and define
B = | [ (00 120 B (non 0 FEY?) o H,2) gudLeb,

_ / ((g (e} fg O Fég).(]_{RO>g} O Féq).) ) dLeb% .

By Lemma 3.2, we have £ < Ey + K||g||cc@~n. Observe that by (Us) and Remark 1.2
we may consider n large enough so that K||g||-@, is negligible. Applying the triangular
inequality we get

B K [llgo floFE o iyt — (g0 £ o B  TaongdLeb,

+ K| |gllo / |(Lir,50 0 F)* o Hy'' = (1{gysey © Fy)®| 1apnapd Lebs,

+ '/(g o fo 0 Fy)*(Lgrysy © )" Layngg (0n — 00) dLebs,

By Corollary 3.5 the term

[ 0 ) Um0 B Loy (00— o) dLobs

is as small as we want as long as n is large enough. The analysis of the remaining terms

[lge fio oy o i = (g0 fio Y| 1aynapdLebs,
and
/ (L, 0 F)* 0 Hy' = (Lmgsgy © F5)*| Lagnagd Lebs,
is left to Lemmas 3.8 and 3.9, respectively. U

In the proofs of Lemmas 3.8 and 3.9 we have to produce a suitable positive integer N so
that returns that take longer than N iterations are negligible. The next lemma provides
the tools for an adequate choice. We consider the sequence of consecutive return times for
z €A

R'(z) = R(z) and R"(z)=R ( fR1+R2+~~+R"‘1(z)) . (3.7)
Lemma 3.7. Given k, N € N
m({zeA: 3te{l,....k} such that R"(z) > N}) < kCym({R > N}).
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Proof. We may write
k—1
{zeA:3te{l,... k} such that R'(z) > N} = UB“
t=0

where

Bi={z€A: R(z) <N,...,R'(2) <N,R"*'(z) > N}.
If R(z) < N,...,R(z) < N then there exist ji,...j; < N with R(Y;) < N for every

777777777777777
-----

-----

,,,,,

(Y5 VPR >N} _ JF'y)m{R>NY) _ .,
S— < — — <C R>N
T BT T TV
Finally, we conclude that
|By| = > (Yj...5e VF'({R > N})
Jlyeen jt:R(T]‘l)SN,l:L..t
<Cim({R > N}) > m(Tj,...5.)

Tlgeens jt:R(Y]’l)SN,lZI...t

Lemma 3.8. Given {,k € N and € > 0 there is J € N such that for every n > J
[lge fioFiy o m = (g0 ffo R

Proof. We split the argument into three steps:
(1) We appeal to Lemma 3.7 to choose N € N sufficiently large so that the set

L:={zeQnQy: 3te{l,....k} Rj(z) > Nor R, (z) > N}

has sufficiently small mass.

(2) We pick J € N large enough to guarantee that, according to condition (Uy), for
every k positive integers ji,...,jr such that RO(T%) < N, for all i = 1,... k,
each set T9 and its corresponding Y7, satisfy the condition: Y9 . A
H, (T?l k) has sufficiently small conditional Lebesgue measure.

) we control

((go froFy)* o Hyl = (go fy o Fy)®

Step (1): From Lemma 3.7 we have |L| < kC}.(Lebs,({Ry > N}) + Lebs, ({R, > N})).
So, by assumption (Us), we may choose N and J large enough so that

20l gll-ckCr. (Lebs, ({Ro > N}) + Lebs, ({R, > N}) < o

190098d Leb% < €.

which implies that
[ ] — [ ] 6
/ [(go fioFX) o H ' — (go fy o Fy)*| Lognand Lebs, < 3
L

Step (2): By (P4)(c) it is possible to define V' = V (N, k) as the total number of sets Y;,
such that R(Y;) < N forall i =1,..., k. Now, using (U,), we may choose J so that for
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every n > J and T, such that Ro(Y9) < N foralli =1,...,k then the corresponding

.....

n € - -
Lebs, (9, & H, (T ) < SV @max{L gl h)™
Under these circumstances we have
> / !(QOfﬁOFf)'OHEI—(QOfgoFéf)'}lQommdLeb%<i
. . Tgl ,,,,, ]kAHn (T;ll ..... Jk ’ 3
J1ly-eny Jk-
Ro(T§)< N
I=1,...k

Step (3): For each i = 1,...,k, let 7j, = Ro(YY). In each set T3 , NYT? . we have
that Ff = f7'"*™ and FF = fn+-+7_ Since M is compact, each f, is C* and f, — fo,
as n — 00, in the C* topology then

o there exists ¢ > 0 such that [z — (| <V = |g(2) — g(Q)| < 5V
e there exists J; such that for all n > J; and z € M we have

max {|fo(2) = fu()|, - 15" (2) = LY} < §
e there exists n > 0 such that for all 2, € M and f € F
2= ¢l <n = max{|f(z) = fOL..... [f"(z) = O} < 5

Furthermore, according to (Uj),

e there is J; such that for every n > J, and x € Q) N 2f we have

76 (2) = 7 (@)]er <.
Let n > max{Ji, Jo}, z € v§(z) and take ¢ € vZ(x) such that |z — (| < n. This together

with the choices of n and J; implies

[fo 0 Fy(2) = fro F(Q)] <

0

f51+...+rk+l(z) - n+...+rk+l(§)‘

+ f(;rl—i-.u-l—Tk-i-l(C) o f;l—k...—&-'rk—ﬁ—l(C)‘
<VY/24+9/2=1

Finally, the above considerations and the choice of 9 allow us to conclude that for every
n > max{.J, Jo}, x € Qo N and z € 7§(x), there exists ¢ € v5(x) such that

90/ 0 FXQ) = 9(fs 0 F(2))| < SV (3.8)

Attending to (2.4), (3.8) and the fact that we can interchange the roles of z and ¢ in the
latter, we obtain that for every n > max{J, J2}

. — ° €
(go fLo Py o H — (go fio Y] < 5
from where we deduce that
° — ° 15
> / (g0 froFy) o Hyt = (go fo o Fy)*| Lagnogd Lebs, < 5
L e
Ro(T9) <N
1<I<k
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Lemma 3.9. Given I,k € N and € > 0 there exists J € N such that for everyn > J
/ ‘(1{Rn>g} @) Frlf). e} H;l — (1{R0>g} @) FéC).’ 1QOngdLebry0 < E.
Proof. As in the proof of Lemma 3.8, we divide the argument into three steps.
(1) The condition on N: Consider the set
Ly={ze€QnQy: 3te{l,...,k+1} suchthat Rj(z) > N or R.(z) > N}.

From Lemma 3.7 we have |Li| < (k + 1)Cy. (Lebs,({Ro > N}) + Lebs, ({R, > N})). So
we choose N large enough so that

2||g||oo(k + 1)01 (Leb%({Ro > N}) + Leb%({Rn > N})) <

)

Wl ™

which implies that

° — ° £
/ ((Lr,>0 0 Fy)* o Hy' = (Lngsey © Fy)®| Taynayd Lebs, < 3
Ly
(2) Let as before V= V(N,k 4 1) be the total number of sets T ., such that

R(Y;) < Nforalli=1,...,k+ 1. Now, using (U,), we may choose J so that for every
n > J and 19 such that Ro(T)) < N foralli =1,...,k+1 then the corresponding
17, e, 18 such that

----------

J1yeees Jk+1
Ro(T)) <N
I=1,... k+1
(3) At last, notice that in each set Y5 . N H, (T?l _____ jk+1> we have

|(L(r, >y 0 F)® o Hyt = (Ligysy © F3)°| =0,
which gives the result. U

4. ENTROPY CONTINUITY

In Proposition 2.7 we have seen that the SRB entropy can be written just in terms of the
quotient dynamics. Our aim now is to show that the integrals appearing in that formula
are close for nearby dynamics, and this is the content of Proposition 4.4. Notice that since
the integrands are not necessarily continuous functions, the continuity of the integrals is
not an immediate consequence of the statistical stability.

4.1. Auxiliary results.

Lemma 4.1. Let (p,)nen be a bounded sequence of m-measurable functions defined on M
belonging to L>°(m). If p, — @ in the L*(m)-norm and ¢ € L'(m), then

/@Z)(@n —p)dm — 0, when n — oo.
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Proof. Take any € > 0. Let C' > 0 be an upper bound for ||, ||. Since 1 € L*(m), there
is 0 > 0 such that for any Borel set B C M

m(B) <5 = /|¢|dm<4o (A1)

Define for each n > 1

B, - { € M+ pule) — pola)] > 2||w\|1}'

Since ||¢n — @olli — 0 when n — oo, then there is ny € N such that m(B,,) < ¢ for every
n > ng. Taking into account the definition of B,,, we may write

/ lln — woldm = / lln — oldm + / llgn — goldm
Bn M\B,
<20 Yldm + —— / Wldm.
Wl s [

Then, using (4.1), this last sum is upper bounded by ¢, as long as n > ny. U
Lemma 4.2. There is Cy > 0 such that log JF, < Cy R, for every n > 0.

Proof. Define L,, = max,ep{|det Df%(x)|}, for each n > 0. By the compactness of M and
the continuity on the first order derivative, there is L > 1 such that L, < L for all n > 0.
We have

Rn(z)—1

[det D(F)"(@)] =[] Idet Df(fi(a))] < L.

=0
By (2.3) it follows that
log J(F,)(z) = log|det DEY(x)| + log u(F,(z)) — log u(x).
Observing that by (P3)(a) it follows that | loga(F,(z)) —loga(x)| < 2C3° = 2C, we have
log J(F,)(z) < Rp(x)log L + 2C.
To conclude, we take Cy = log L + 2C. O

Lemma 4.3. Giwen € > 0, there is J € N such that for all n > J

/ ]Rn—R0|dLeb% S&
QNN

Proof. Let ¢ > 0 be given. Using condition (Us) and Remark 1.2, take N > 1 and
J = J(N,e) > 0 in such a way that > % \ j Lebs {R, = j} < ¢e/3 and } 77\ j Lebs { Ry =
Jj} < e/3. Since

= Lrosips
j=0



22 J. F. ALVES, M. CARVALHO, AND J. M. FREITAS

we may write

N-1 N-1 N—1
1Ry = Rollv = [|Ba =Y Lirasiy + D (Lirasit — Limosit) + O Lirossy — Boll,
7=0 7=0 j=

IN

o) N—-1 o)
H Z ]—{Rn>j}H1 + Z ||1{Rn>j} - 1{Ro>j}||1 + H Z 1{Ro>j}H1
j=N j=0 j=N

') N-1 ')
= I Lresily + D0 Mme<iy = Lrosplh + 1D Lirosip |l
=N =0 =N

By the choices of N and J, the first and third terms in this last sum are smaller than /3.
By (U,), increasing J if necessary, we can make Lebs, ({R, = j}A{Ry = j}) sufficiently
small in order to have the second term smaller than €/3. 0J

4.2. Convergence of metric entropies. Our aim is to show that h,, — h,, as n — oo,
which by Proposition 2.7 can be rewritten as

anl/ log JF, dji,, — 001/ log J Fy djig, asn — oo. (4.2)
_n /_\O

Observing that o,, = fAn R, dji, = (M), then by Proposition 3.6 we have o,, — 0y, as
n — oo. Hence, (4.2) is a consequence of the next result.

Proposition 4.4. / log JF,, dfi,, — ~ log JFydfig as n — oo.

An Ao

Proof. The convergence above will follow if we show that the following term is arbitrarily
small for large n € N.

E =

/Q (log JF,, 0 7)) (pn © ) d Lebs, —/Q (log JFy o #) 0o d Lebs, | .
n 0

Recall that gy = pg o 7tp and 9, = p, o 7, 0 H !, for every n € N. Define

EO =

/ (log JF, o 7,0 H, V) o, d(H,). Lebs, — / (log JFy o 7g) 00 d Lebs, | -
Qg‘ﬂﬂo

QgﬂQo

By Lemmas 2.2 and 4.2 we have
E < Ey+ Kcz/
Q,\Q0

Since Ry € L'(Lebs,), then, by (Uy) and Remark 1.2, for large n, we may have Lebs, (QAQf)
small so that fQo\Q” Ryd Lebs, becomes negligible. Now, for each N € N
0

Rnd Leb% +KOQ / Rod Leb% .

Qo\Qp

/ R,dLebs, < N dLebs, + / RydLebs, .
Q,\Q0 Q,\Q0 {Rn>N}

Using condition (Us) we may choose N so that for all n € N large enough the quantity
f{Rn>N} R,dLebs, = >, n,, jLebs{R, = j} is arbitrarily small. Again, using (U,), if

n € N is sufficiently large then fQ dLebs, is as small as we want. Therefore, we are

5\ Q0
reduced to estimating Ej.
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Note that by definition f C €y. Having this in mind, we split £ into the next three
terms that we call Ey, Fsy, F3 respectively.

Js
I
I

Concerning FEy, using Lemma 2.2 and Lemma 4.2 we have

Ey < (log JE, o 7, 0 H Yo, d(H,). Lebs;, — / (log JFy o 7) 0n d(Hy)s Lebs,

2

(log J Fy o 7o) on d(H,) Lebs, — / (log J Fy o 7ty) on d Lebs,

Qg

n
0

(log JFy o 7)o, d Lebs, — / (log JFp o 7)o d Lebs, | .
0

n n
0 0

_ d(H,). Lebs
Ey, < 1 Follon T 77 1| d Lebs
2_/%1 ou Tl | " ' ehs,
d(H,,). Lebs
< I St L .
< KC, /Q Ro| S 1‘dLeb70
(0]

Now, Remark 1.2 and Lemma 4.1 guarantee that E5 can be made arbitrarily small for large
n € N. Using Corollary 3.5, E3 can also be made small for large n. We are left with Ej.
By Lemma 2.2 and Remark 1.2 we only need to control

/ |(log JF,, 07ty 0 H') — (logJFOOfro)| d Lebs,
QgﬂQo

whose estimation we leave to Lemma 4.6. O

Remark 4.5. Assume that ~, is a compact unstable manifold of the map f, for n > 0 and
Yn — 70, in the C! topology. The convergence of f, to fy in the C! topology ensures that
given ¢ € N and € > 0 there exist § = 0(¢,¢) > 0 and J = J(0) € N such that for every
n>J, x €y and y € 7, with |z —y| < ¢

s, {1A10) - B0, [logden(DR)* (1) ~ logdet (DR (@) } < .

-----

Lemma 4.6. Given any € > 0 there exists J € N such that for every n > J

/ |(log JF,, 07ty 0 H,') — (log J Fy o tg)| dLebs, < e.
Qgﬁﬂo

Proof. Let € > 0 be given. For n,N € N define A,y = {R, < N} nN{Ry < N} and
Af v ={R. > N}U{Ry > N}. By Lemma 4.2 we have

/ }(logJFnoﬁnngl) — (log JFy o tg)| dLebs, < Cg/ R,, d Lebs,
QpnAS Q

0NAL N
+ 02 / RO dLeb% .
QpNAS

Since Ry € L'(Lebs,), there is 6 > 0 such that if a measurable set A has Lebs (A) < 4,
then [, RodLebs, < &/(4C5). According to (Us), we may pick N € N and choose J € N
such that for every n > J we get Lebs, (A5, ) < d. This implies that the second term on
the right hand side of the inequality above is smaller than £/4. The same argument and
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Lemma 4.3 allow us to conclude that for a convenient choice of N € N and for J € N
sufficiently large

C / R, dLebs, < C, / RodLebs, +C / IR, — Ro|dLebs, < =
Q"LmAC Q"LmAC (T)L 4
So, assuming that /N has been chosen and J is sufficiently large so that
/ ’(logJFnofrnoH;l)—(logJFOOfro)} dLebs, < ¢/2,
QrnAc
we are left do deal with
/ }(logJFnofrnoH;l)—(logJF’oofro)‘ dLebs, <
QrNA, N
Z / |(log JF,, 0 7, 0 H,, ) — (log JFy 0 70)| 1agna, d Lebs,
ronT?

o(TH<N

+ Z / {(log JE, o7, o HT:I) — (log JF, o 7%0)‘ Larnoona, v @ Lebs, .
Ro(T0)< TOATYT

Denote by S7 and S5 respectively the first and second sums above, and v the number of
terms in S7 and S;. By Lemma 4.2 we have

SQ S 02/ (Rn + Ro)ngmQOQAmN dLeb% S 202N Leb%(T?AT?)
TIATT

Hence, using (U,) we consider J € N large enough to have Leb; (TIAY?) < /(8CyNv),
and so Sy < e/4.

Let 7; = Ro(Y9) = R,(T?) < N. We want to see that for all n large enough and all
reTPNTY? with ; < N

|(log JF,, 0 7ty 0 H ') () — (log JFy o 7o) (2)| < /4w, (4.3)

which yields S; < /4. Using (2.3) and observing that the curves 4,4y are the leaves we
chose to define the reference measures m,,, mg, then we easily get for y = H, '(x)

‘log JF, om,(y) —log JFy o fro(:c)‘ < |logdet(Df7)*(y) — log det(D f5i)"*(x)|
+ [log @, (f (y)) — log to(f5' ())]-

Using Remark 4.5 with ¢ = N and £/8v instead of ¢, and recalling that 7; < N, we may
find § > 0 and J € N so that for all n > J

llog det(D fri)"(y) — logdet(D fi7)*(z)| < €/8v. (4.4)

Observe that | — y| < 0 as long as J is sufficiently large, since z = H,(y).
For every n,k € Ny and t € A, let

o T det DFE(FI())
©= 1;[0 det Dfu(fa(t))
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By definition of 4, (see (2.1)) and by (P3)(a), there is k& € N such that for every n € Ny
and t € A,, we have |log,(t) — logaf(t)| < /(48v). Thus,

[log @ (£ (y)) —log ao(f5*(2)| < log (7 (y)) — log sy (7 (y))]
+log iy, (7 (y)) — log i (fg* ()]
+log g (fg' () — log o (/7 (x)))

k
D [logdet DF(£1(¢)) — logdet D (£3(2))]
§=0

IN

k
+ 3 [logdet DA2(F1(0) — log det D ((2))]
j=0

€
-l-%,
where z = fi'(z), ¢ = fl(y), 2 is the only point on the set 7§(z) N4y and ¢ is the unique
point on the set v5({) N Ay.
Observe that since 4, — 4o and f,, — fo in the C" topology, and 7; < N, then v*(¢) —
Y%(z), in the C" topology. Besides, using Lemma 3.3 we also have |2 — (| as small as we

want for J large enough. Consequently, by Remark 4.5, we may find J € N sufficiently
large so that for all n > J, we have

fj [log det D2 (£1(C)) — log det D (f(2))] < £/ (240). (4.5)
and B

i logdet DF(f3(0)) — logdet Df(F(2))] < e/ (240). (4.6)
Estimates (4.4),(51.;) and (4.6) yield (4.3). O
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