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1. Introduction

In [13], the author studied statistical properties of the quadratic family of maps
given by fa(x) = 1−ax2, where a belongs to the Benedicks-Carleson set of parame-
ters BC, introduced in [9]. Namely, it was obtained the continuous variation of the
SRB measure (Statistical Stability) and continuity of metric entropy within BC.
This was achieved by estimating the tail of Hyperbolic Times. Essentially, this tail
was split into two components, the first corresponding to the points that do not
reach exponential growth of the derivative sufficiently fast (Expansion Tail) and
the second corresponding to the points whose early iterates went too close to the
critical point (Recurrence Tail). The main results in [13] assert that the volume
(or Lebesgue measure) of the Expansion Tail decays exponentially fast (Theorem
A) and the volume of the Recurrence Tail falls off subexponentially fast (Theorem
B). This was enough to obtain the Statistical Stability and continuous variation of
metric entropy, since the results by Alves et al require only polynomial (summable)
tails.

∗Work partially supported by FCT through CMUP



2 J. M. Freitas

The purpose of this paper is to improve [13, Theorem B] and obtain that the
volume of the Recurrence Tail decays exponentially fast, which gives, together with
[13, Theorem A], that the volume of the tail of Hyperbolic Times decays exponen-
tially fast. We take the opportunity to correct a problem with the combinatorics
in the proof of [13, Proposition 6.1], which estimates the measure of the points
whose orbits go near the critical point. This affected in particular [13, Lemma 8.1]
and in general the final proofs of [13, Theorems A and B].

Hyperbolic Times were introduced in [1] and have revealed as a useful tool
to study non-uniformly hyperbolic systems. They can be seen as check points
at which the system presents good hyperbolic behaviour and have been used to
study statistical properties such as: the existence of SRB measures ([1, 2]), Decay
of Correlations, Central Limit Theorems ([5, 16]), Statistical Stability, continuous
variation of metric entropy ([3, 4, 7]), Stochastic Stability Stability, ie, robustness
of the SRB measures under small random noise ([6]).

The existence of Hyperbolic Times has been shown for systems that present
non-uniformly expanding behaviour in the unstable direction. In the 1-dimensional
setting and in this particular case where the source of non-uniform hyperbolic
behaviour is the presence of a critical point, their existence is a consequence of
the following two conditions almost everywhere (a.e.), with respect to Lebesgue
measure (which we denote by Leb):

(NUE) Non-uniform expansion: lim inf
n→∞

1

n

n−1∑
i=0

log
∣∣f ′a (f ia(x)

)∣∣ > d, for some d > 0;

(SRCS) Slow recurrence to the critical set : For every ε > 0, there exists γ > 0 such

that lim sup
n→∞

1

n

n−1∑
j=0

− log distγ
(
f ja(x), 0

)
< ε,

where distγ(x, y) = |x− y| if |x− y| ≤ γ and distγ(x, y) = 1 otherwise.
In [5, 16] the authors used Hyperbolic Times to build inducing schemes like the

ones in [23, 24] and showed how the tail of the inducing return times relates with
the tail of Hyperbolic Times, introduced in [5] and which we define next. Let

Ea(x) = min

{
N ≥ 1 :

1

n

n−1∑
i=0

log
∣∣f ′a (f ia(x)

)∣∣ > d, ∀n ≥ N

}

Ra(x) = min

N ≥ 1 :
1

n

n−1∑
j=0

− log distγ
(
f ja(x), 0

)
< ε, ∀n ≥ N


which are both defined and finite Leb-a.e. under the assumptions that (NUE) and
(SRCS) hold Leb-a.e. We define the Expansion Tail at time n, as the set of points
that, up to this time, resist to present exponential growth of the derivative along
their orbits ET (n) = {x ∈ I : Ea(x) > n}; and the Recurrence Tail at time n, as
the set of points that in its early iterates could not be satisfactorily kept way from
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the critical point RT (n) = {x ∈ I : Ra(x) > n}. The Tail of Hyperbolic Times at
time n, is just the union of ET (n) and RT (n), ie, the set of points:

Γ(n) = {x ∈ I : Ea(x) > n or Ra(x) > n} .

We are now in conditions of stating our main results.

Theorem 1.1 (Theorem A of [13]). Assume that a ∈ BC. Then fa satisfies
(NUE) Leb-a.e. Moreover, there are positive real numbers C1 and τ1 such that
Leb(ET (n)) ≤ C1e−τ1n, for all n ∈ N.

Theorem 1.2. Assume that a ∈ BC. Then fa satisfies (SRCS) Leb-a.e. More-
over, there are positive real numbers C2 and τ2 such that Leb (RT (n)) ≤ C2e−τ2n,
for all n ∈ N.

Remark 1.3. The constants d in (NUE), ε, γ in (SRCS), can be chosen uniformly
on BC. Moreover, the constants C1, τ1 given by theorem 1.1 and the constants
C2, τ2 given by theorem 1.2 do not depend on the parameter a ∈ BC. Thus, we
may say that {fa}a∈BC is a uniform family in the sense considered in [4].

Both theorems easily imply that Leb (Γ(n)) ≤ const e−τn, for some τ > 0,
const > 0 and all n ∈ N. This allows to deduce immediately the following conclu-
sions, which, despite not being new, illustrate what can be obtained from fitting the
Benedicks-Carleson quadratic maps in the theory developed by Alves et al about
Hyperbolic Times. This theory has also been applied to infinite modal maps to
obtain the same conclusions in [8].

Corollary 1.4. The Benedicks-Carleson family of quadratic maps has the follow-
ing properties:

(1) each fa admits a unique SRB invariant measure µa which is absolutely con-
tinuous with respect to Lebesgue ( [9, 10])

(2) each fa has exponential decay of correlations ( [22, 18])

(3) each fa satisfies a Central Limit Theorem ( [22, 18])

(4) each fa admits an exponential estimate for Large Deviations ( [18])

(5) is Statistically Stable in the strong sense, meaning that the map BC 3 a 7→
dµa/dLeb is continuous in the L1-norm ( [13])

(6) the metric entropy with respect to µa varies continuously within BC ( [13])

We say that fa has exponential decay of correlations if for every observable
functions ϕ,ψ in some appropriate functional spaces, there exists C > 0 and 0 <
τ < 1 such that

∣∣∫ ϕψ ◦ fna dµa − ∫ ϕdµa ∫ ψ dµa∣∣ ≤ C τn, for all n ∈ N. The
Central Limit Theorem holds for fa if for every ϕ in some appropriate functional

space and σ > 0, we have µa

(√
n
(

1
n

∑n−1
i=0 ϕ ◦ f i −

∫
ϕdµa

)
≤ x

)
→ Φ(x/σ), as

n→∞, where Φ is the standard Gaussian distribution function. Finally, fa admits
an exponential estimate for large deviations if for ervery ϕ in some appropriate
functional space and every ε > 0, there exists C > 0 and 0 < τ < 1 such that
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µa

(∣∣∣ 1
n

∑n−1
i=0 ϕ ◦ f i −

∫
ϕdµa

∣∣∣ > ε
)
≤ C τn, for all n ∈ N. The precise statements

corresponding to (2), (3) and (4) can be found in the cited references.
We remark that the existence of absolutely continuous invariant measures for

a positive Lebesgue measure set of parameters had already been shown in [17, 12].
The proofs of the above properties follow from the exponential volume decay

of the tail of Hyperbolic Times together with: [5, Theorem 2] for (1) and (3) , [16,
Theorem 1.1] for (2), [16, Theorem 1.1] and [19, Theorem 2.1] for (4) [4, Theorem
A] for (5) and [7, Corollary C] for (6).

2. Benedicks-Carleson quadratic maps

In this section we describe succinctly the Benedicks-Carleson quadratic maps and
its main features. These can be found in [9, 10, 21, 20, 13, 14], just to cite a few,
but we refer to [13] for most proofs since the setting and notation is practically the
same.

The Benedicks-Carleson Theorem (see [9] or Section 2 of [10]) states that there
exists a positive Lebesgue measure set of parameters, BC, verifying

there is c > 0 (c ≈ log 2) such that |Dfna (fa(0))| ≥ ecn for all n ≥ 0; (EG)

there is a small α > 0 such that |fna (0)| ≥ e−αn for all n ≥ 1. (BA)

The condition (EG) is usually known as the Collet-Eckmann condition and it was
introduced in [12].

We define the critical region as the interval (−δ, δ), where δ = e−∆ > 0 is chosen
small but much larger than 2 − a. This region is partitioned into the intervals
(−δ, δ) =

⋃
m≥∆ Im, where Im = (e−(m+1), e−m] for m > 0 and Im = −I−m

for m < 0; then each Im is further subdivided into m2 intervals {Im,j} of equal
length inducing the partition P0 of [−1, 1] into [−1,−δ)∪

⋃
m,j Im,j ∪ (δ, 1]. Given

J ∈ P, let nJ denote the interval n times the length of J centred at J and define
Um := (−e−m, e−m), for every m ∈ N.

2.1. Expansion outside the critical region. There is c0 > 0 and M0 ∈ N such
that

(1) If x, . . . , fk−1
a (x) /∈ (−δ, δ) and k ≥M0, then |Dfka (x)| ≥ ec0k;

(2) If x, . . . , fk−1
a (x) /∈ (−δ, δ) and fka (x) ∈ (−δ, δ), then |Dfka (x)| ≥ ec0k;

(3) If x, . . . , fk−1
a (x) /∈ (−δ, δ), then |Dfka (x)| ≥ δec0k.

While the orbit goes through a free period its iterates are always away from the
critical region which means that the above estimates apply and it experiences an
exponential growth of the derivative. However, it is inevitable that the orbit of
almost every x ∈ [−1, 1] makes a return to the critical region. We say that n ∈ N
is a return time of the orbit of x if fna (x) ∈ (−δ, δ). Every free period of x ends
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with a free return to the critical region. We say that the return has a depth m ∈ N
if fna (x) ∈ I±m. Once in the critical region, the orbit of x initiates a binding with
the critical point.

2.2. Bound period definition and properties. Let β = 14α. For x ∈ (−δ, δ)
define p(x) to be the largest integer p such that |fka (x) − fka (0)| < e−βk,∀k < p.
Then

(1) 1
2 |m| ≤ p(x) ≤ 3|m|, for each x ∈ Im;

(2) |Dfpa (x)| ≥ ec
′p, where c′ = 1−4β

3 > 0.

The orbit of x is said to be bound to the critical point during the period 0 ≤ k < p.
We may assume that p is constant on each Im,j . Note that during the bound period
the orbit of x may return to the critical region. These instants are called bound
return times.

2.3. Bookkeeping, essential and inessential returns. A sequence of parti-
tions P0 ≺ P1 ≺ . . . is built with the following properties (see [13, Section 4]).
For Lebesgue almost every x ∈ I, {x} = ∩n≥0ωn(x), where ωn(x) is the element
of Pn containing x. For such x there is a sequence t1, t2, . . . corresponding to the
instants when the orbit of x experiences a free essential return situation, which
means Im,k ⊂ f tia (ωti−1(x)) for some |m| ≥ ∆ and 1 ≤ k ≤ m2. We have that
ωn(x) = ωti−1

(x), for every ti−1 ≤ n < ti and f tia (ωti(x)) = ω0(f ti(x)), except for
the points at the two ends of f tia (ωti−1

(x)) for which it may occur an adjoining
to the neighbouring interval. If ti is an essential return situation for x, then it is
either an essential return time for x, which means that there exists m ≥ ∆ and
1 ≤ k ≤ m2 such that Im,k ⊂ f tia (ωti(x)) ⊂ 3Im,k; or an escaping time for x, which
is to say that I(∆−1),1 ⊂ f tia (ωti(x)) ⊂ (δ, 1] or I−(∆−1),1 ⊂ f tia (ωti(x)) ⊂ [−1,−δ),
where I±(∆−1),1 is the subinterval of I±(∆−1) closest to 0.

We remark that every point in ω ∈ Pn has the same history up to n, in the sense
that they have the same free periods, return to the critical region simultaneously,
with the same depth and their bound periods expire at the same time.

We say that v is a free return time for x of inessential type if fva (ωv(x)) ⊂ 3Im,k,
for some |m| ≥ ∆ and 1 ≤ k ≤ m2, but fva (ωv(x)) is not large enough to contain
an interval Im,k for some |m| ≥ ∆ and 1 ≤ k ≤ m2.

2.4. Distortion of the derivative. The sequence of partitions described above
is designed so that we have bounded distortion in each element of the partition
Pn−1 up to time n. To be more precise, consider ω ∈ Pn−1. There exists a constant
C independent of ω, n and the parameter a such that for every x, y ∈ ω,

|Dfna (x)|
|Dfna (y)|

≤ C. (1)

See [13, Lemma 4.2] for a proof.
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2.5. Growth of returning and escaping components. Let t be a return time
for ω ∈ Pt, with f ta(ω) ⊂ 3Im,k for some m ≥ ∆ and 1 ≤ k ≤ m2. If n is the next
free return situation for ω (either essential or inessential) then

|fna (ω)| ≥ ec0qe(1−5β)|m| |fza (ω)| and if t is essential then |fna (ω)| ≥ ec0qe−5β|m|,
(2)

where q = n− (t+ p). See [13, Lemma 4.1].
Suppose that ω ∈ Pt is an escape component. Then, in the next return situation

for ω, at time t1, we have that ∣∣f t1a (ω)
∣∣ ≥ e−β∆. (3)

See [20] or [14, Lemma 4.2].

3. Depths of bounded and inessential returns

As we have already mentioned, there are three types of returns: essential, bounded
and inessential, whose instants of occurrence we denote by t, u and v respectively.
The usual picture is the following: we start with an essential return at time t
with depth η and bound period p(η). After t+ p the orbit goes into a free period
and then, possibly, enters a cycle of inessential returns, say ι inessential returns
at times v1, . . . , vι, with depths η1, . . . ηι with bound periods p1(η1), . . . , pk(ηι),
before a new essential return occurs at time t′ > vι + pι. Of course that after each
essential or inessential return, bounded returns may occur during the respective
bound periods.

We mention that by [13, Lemma 5.3] the length of the cycle is bounded by
η, namely t′ − t ≤ 5|η|. The purpose of this section is to show that the depths
of the inessential and bounded returns are also controlled by the depth η of the
essential return that initiated the cycle at time t. We start with two more simple
observations:

(1) The depth of the inessential returns is less than the depth of the essen-
tial return that initiated the cycle, i.e., |ηi| ≤ |η|, for all i = 1, . . . , ι; [13,
Lemma 5.1].

(2) The depth of any bounded return is always less than the depth of the return
(essential or inessential) that originated the bound period; [13, Lemma 5.2].

The next two propositions are the cornerstone of the improvement on the esti-
mates that allows us to get the exponential decay of the tail of hyperbolic times.
In the proof of the following proposition we will use a condition known as the free
assumption for the critical orbit. This condition, which was proved by a large
deviations argument in [10, Section 2] (see also [21, condition FA(n)]), essentially
asserts that the set of Benedicks-Carleson parameters is built in such a way that
the amount of time spent by the critical orbit in bound periods totally makes up
a small fraction of the whole time.
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Proposition 3.1. Let t be a free return time (either essential or inessential) for
ω ∈ Pt with f ta(ω) ⊂ 3Iη,k. Let p = p(η) be the bound period associated with this
return. Let S1 denote the sum of the depths of all the bound returns plus the depth
of the return that originated the bound period. Then S1 ≤ C1η, with constant
C1 = C1(α).

Proof. Recall that by Section 2.2 (1) we know that 1
2η ≤ p ≤ 3η. Let x ∈ ω. We

say that a bound return is of level i if, at the moment of this bound return, x has
already initiated exactly i bindings to the critical point ξ0 and all of them are still
active. By active we mean that the respective bound periods have not finished
yet. To illustrate, suppose that u1 is the first time between t and t + p that the
orbit of x enters U∆. Obviously, at this moment, the only active binding to ξ0 is
the one initiated at time t. Thus, u1 is a bounded return of level 1. Now, at time
u1, the orbit of x establishes a new binding to the critical point which ends at the
end of the corresponding bound period that we denote by p1 which depends on the
depth η1 of the bound return in question. During the period from u1 to u1 + p1

new returns may occur and their level is at least 2 since there are at least 2 active
bindings: the one initiated at t and the one initiated at u1. If u1 + p1 < t+ p then
new bound returns of level 1 may occur after u1 + p1.

We may redefine the notion of bound period so that the bound periods are
nested (see [10], section 6.2). This means that we may suppose that no binding of
level i extends beyond the bound period of level i−1 during which it was initiated.

Taking into account the free assumption condition for the critical orbit we may
assume that in a period of length n ∈ N, the time spent by the critical orbit in
bound periods is at most αn (see [21, condition FA(n)]).

Since, when a point initiates a binding with ξ0, it shadows the early iterates
of the critical point, the same applies to any of these points x ∈ ω bounded to ξ0.
Thus in the period of time from t to t + p, the orbit of x can spend at most the
fraction of time αp in bound periods. So if ` denotes the number of bound returns
of level 1, u1, . . . , u` their instants of occurrence, η1, . . . η` their respective depths
and p1, . . . , p` their respective bound periods, then we have :

1
2

∑̀
i=1

ηi ≤
∑̀
i=1

pi ≤ αp ≤ 3αη

from where we easily obtain
∑`
i=1 ηi ≤ 6αη. The same argument applies to the

bound returns of level 2 within the i-th bound period of level 1. So if `i denotes
the number of bounded returns of level 2 within the i-th bound period of level
1, ui1, . . . , ui`i their instants of occurrence, ηi1, . . . ηi`i their respective depths and
pi1, . . . , pi`i their respective bound periods, then we have

1
2

`i∑
j=1

ηij ≤
`i∑
i=1

pij ≤ αpi ≤ 3αηi
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from where we easily obtain
∑`
i=1

∑`i
j=1 ηij ≤ (6α)2η. Observing that by choice of

α we have 6α < 1, a simple induction argument then yields S1 ≤
∑∞
i=0(6α)iη ≤

C1η, where C1 = 1
1−6α .

Proposition 3.2. Let t be an essential return time for ω ∈ Pt with Iη,k ⊂ f ta(ω) ⊂
3Iη,k. Let p denote the associated bound period. Let S2 denote the sum of the depths
of all the free inessential returns before the next essential return situation. Then
S2 ≤ C2η, with constant C2 = C2(β).

Proof. Suppose that ι is the number of inessential returns before the next essen-
tial return situation of ω, which occur at times v1, . . . , vι, with respective depths
η1, . . . , ηι and respective bound periods p1, . . . , pι. Also denote by vι+1 the next
essential return situation of ω. For j = 1, . . . ι, let σj = f

vj
a (ω). By (2) we have

|σ1| ≥ ec0qe−5β|η| and
|σj+1|
|σj |

≥ ec0qie(1−5β)|ηi|,

where q = v1− (t+ p), qj = vj+1− (vj + pj), for j = 1, . . . , ι. Since |σι+1| ≤ 2 and

|σv+1| = |σ1|
v∏
i=1

|σi+1|
|σi|

,

we get exp {c0q − 5βη +
∑ι
i=1(c0qi + (1− 5β)ηi)} ≤ e, which implies that

ι∑
i=1

(c0qi + (1− 5β)ηi) ≤ 5βη + 1.

Finally, one easily derives that S2 ≤ C2η, where C2 = 5β
1−5β .

4. Probability of an essential return reaching a certain depth

Since, as we have seen in the previous section, the depth of the essential returns
plays a prominent role, in this section, we study the probability of these returns
hitting very high depths. We call the attention for the fact that there is a problem
with the combinatorics in [13, Proposition 6.1] and the correct statement is as
follows.

For each x ∈ I, let un(x) denote the number of essential return situations of x
between 1 and n, sn(x) be the number of those which are actually essential return
times and Sn the number of the latter that correspond to deep essential returns
of the orbit of x, i.e, with return depths above a threshold Θ ≥ ∆. Observe that
un(x) − sn(x) is the exact number of escaping situations of the orbit of x, up to



Exponential tail 9

n. Given the integers 0 ≤ s ≤ 2n/Θ, s ≤ u ≤ n and the s integers γ1, . . . , γs, each
greater than or equal to Θ, we define the event:

Au,sγ1,...,γs(n) =

x ∈ I : un(x) = u, Sn(x) = s and the depth of the i-th deep
essential return is γi for all i = 1, . . . , s

 .

Remark 4.1. Observe that the upper bound 2n/Θ for the number of deep essential
returns up to time n derives from the fact that each deep essential return originates
a bound period of length at least Θ/2 (see Section 2.2) and no essential return can
occur during bound periods.

Proposition 4.2. Given the integers 0 ≤ s ≤ 2n/Θ and s ≤ u ≤ n, consider s
integers γ1, . . . , γs, each greater than or equal to Θ. If Θ is large enough, then

Leb
(
Au,sγ1,...,γs(n)

)
≤
(
u

s

)
Exp

{
−(1− 6β)

s∑
i=1

γi

}
.

See [15, Proposition 5.2] for a proof.
Fix n ∈ N, the integers 1 ≤ s ≤ 2n/Θ, s ≤ u ≤ n and j ≤ s. Given an integer

ρ ≥ Θ, consider the event

Au,sρ,j (n) =

x ∈ I : un(x) = u, Sn(x) = s, and the depth of the j-th deep
essential return is ρ

 .

Corollary 4.3. If Θ is large enough, then

Leb
(
Au,sρ,j (n)

)
≤
(
u

s

)
e−(1−6β)ρ

Proof. Since Au,sρ,j (n) =
⋃
ρi≥Θ
i6=j

Au,sρ1,...,ρj−1,ρ,ρj+1,...,ρs(n), then by Proposition 4.2 we

have

Leb
(
Au,sρ,j (n)

)
≤
(
u

s

)
e−(1−6β)ρ

 ∞∑
η=Θ

e−(1−6β)η

s−1

≤
(
u

s

)
e−(1−6β)ρ,

as long as Θ is sufficiently large so that
∑∞
η=Θ e−(1−6β)η ≤ 1.

Remark 4.4. Observe that the bound for the probability of the event Au,sρ,j (n)
does not depend on the j ≤ s chosen.

Remark 4.5. Observe that proposition 4.2 and corollary 4.3 also apply when
Θ = ∆ in which case we have Sn = sn.
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5. Non-uniform expansion

The proof of Theorem 1.1 follows the one in [13, Theorem A] except for the nec-
essary adjustments due to the changes in the estimates given by Proposition 4.2.
So, following the strategy in [13, Section 3], the proof of Theorem 1.1 reduces to
show that for some constants D1, τ1 > 0, eventually depending on α, β and ∆, we
have Leb(E1(n)) ≤ D1e−τ1n, where

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f ia(x)| < e−αn

}
. (4)

In fact, one realizes that {x ∈ I : Ea(x) > k} ⊂
⋃
n≥k E1(n). The idea is that we

have exponential growth of the derivative during free periods and even at the end
of the bound periods. Besides, just after the serious setbacks at the returns we can
count on (EG) to regain growth of the derivative. Hence, the crucial thing to do
is to make sure that the cut off at the returns is not that serious which is the case
for points in I − E1(n).

In this section we consider that the threshold Θ = ∆. Also remember that
un(x)−sn(x) is the exact number of escaping situations the orbit of x goes through
until time n. We define the following events:

Au,sρ (n) =

x ∈ I : un(x) = u, sn(x) = s and there is one essential return
reaching the depth ρ

 ,

for fixed n ∈ N, s ≤ n and ρ ≥ ∆;

Aρ(n) =
{
x ∈ I : ∃t ≤ n : t is essential return time and |f ta(x)| ∈ Iρ

}
,

for fixed n and ρ ≥ ∆. Now, because Au,sρ (n) =
⋃s
j=1A

u,s
ρ,j (n), by corollary 4.3, we

have

Leb
(
Au,sρ (n)

)
≤

s∑
j=1

Leb
(
Au,sρ,j (n)

)
≤ s
(
u

s

)
e−(1−6β)ρ. (5)

Observing that Aρ(n) =
⋃2n/∆
s=1

⋃n
u=sA

s
ρ(n), then by (5) we get

Leb (Aρ(n)) ≤
2n/∆∑
s=1

n∑
u=s

Leb
(
Au,sρ (n)

)
≤

2n/∆∑
s=1

n∑
u=s

s

(
u

s

)
e−(1−6β)ρ

≤ ne−(1−6β)ρ

2n/∆∑
s=1

s

(
n

s

)
≤ 4n3

∆

(
n

2n/∆

)
e−(1−6β)ρ.

Using the Stirling formula, if we choose ∆ large enough we have

(
n

2n/∆

)
≤ const

((
1 +

2
∆

1− 2
∆

)(
1 +

1− 2
∆

2
∆

) 2
∆

1− 2
∆

)(n−2n/∆)

≤ consteh(∆)n,
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where h(∆) → 0, as ∆ → ∞. The last inequality derives from the fact that each
factor in the middle expression can be made arbitrarily close to 1 by taking ∆
sufficiently large.

Since, from Section 3, we know that the depths of inessential and bounded
returns are not greater than the depth of the essential return preceding them, we
have for all large n,

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f ia(x)| < e−αn

}
⊂

∞⋃
ρ=αn

Aρ(n).

Consequently, taking τ1 = (1−6β)α
4 and ∆ large so that h(∆) ≤ (1−6β)α

2

Leb(E1(n)) ≤ const 4n3

∆ eh(∆)n
∞∑

ρ=αn

e−(1−6β)ρ ≤ const 4n3

∆ eh(∆)ne−(1−6β)αn ≤ const e−τ1n.

6. Slow recurrence to the critical set

We define for a point x ∈ I and n ∈ N,

Tn(x) =
1

n

n−1∑
j=0

− log distγ
(
f ja(x), 0

)
, (6)

where γ = e−Θ is the same of condition (SRCS). We note that the only points of
the orbit of x that contribute to the sum in (6) are those considered to be deep
returns with depth above the threshold Θ ≥ ∆, which is to be determined below.
Let Fn(x) =

∑Sn
i=1 ηi, where Sn is the number of essential returns with depths

above Θ that occur up to n and ηi their respective depths. Using Propositions 3.1
and 3.2 we get

Tn(x) ≤ C3

n
Fn(x), (7)

where C3 = C3(α, β) = (C1 + C1C2).
For every n ∈ N, let E2(n) = {x ∈ I : Tn(x) > ε}. We will show that for all

n ∈ N and every given ε, we may choose a small γ = e−Θ such that

Leb{E2(n)} ≤ Leb

{
x : Fn(x) >

εn

C3

}
≤ const e−τ2n,

for some τ2 = τ2(ε,Θ) > 0. We will do this through a large deviation argument
for which we start by estimating the moment generating function of Fn. In what
follows E(·) denotes expectation with respect to Leb.

Lemma 6.1. Take 0 < t ≤ 1−6β
3 . If Θ is sufficiently large, then there exists

N ∈ N such that for all n ≥ N we have E
(
etFn

)
≤ eh(Θ)n. Moreover h(Θ) → 0,

as Θ→∞.
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Proof.

E
(
etFn

)
= E

(
et

∑s
i=1 ηi

)
=

∑
u,s,(ρ1,...,ρs)

et
∑s
i=1 ρiLeb

(
Au,sρ1,...,ρs(n)

)
≤

∑
u,s,(ρ1,...,ρs)

et
∑s
i=1 ρi

(
u

s

)
e−3t

∑s
i=1 ρi , by proposition 4.2

≤
∑
u,s,R

(
u

s

)
ζ(s,R)e−2tR,

where ζ(s,R) is the number of integer solutions of the equation x1 + . . .+ xs = R
satisfying xi ≥ Θ for all i. We have

ζ(s,R) ≤ #{solutions of x1 + . . .+ xs = R, xi ∈ N0} =

(
R+ s− 1

s− 1

)
.

Using the Stirling formula, we have(
R+ s− 1

s− 1

)
≤ const

(R+ s− 1)R+s−1

RR(s− 1)s−1
.

So, if we choose Θ large enough we have

ζ(s,R) ≤
(

const
1
R

(
1 + s−1

R

) (
1 + R

s−1

) s−1
R

)R
≤ etR.

The last inequality derives from the fact that sΘ ≤ R, and so each factor in the
middle expression can be made arbitrarily close to 1 by taking Θ sufficiently large.
Hence,

E
(
etFn

)
≤
∑
u,s,R

(
u

s

)
etRe−2tR ≤

∑
u,s,R

(
u

s

)
e−tR ≤

∑
u,s

(
u

s

)
,

for Θ sufficiently large. Now, we have

∑
u,s

(
u

s

)
≤

2n
Θ∑
s=1

n∑
u=s

(
u

s

)
≤ n

2n
Θ∑
s=1

(
n

s

)
≤ n

2n
Θ∑
s=1

(
n
2n
Θ

)
≤ 2n2

Θ

(
n
2n
Θ

)
.

Using the Stirling formula, if we choose Θ large enough we have(
n

2n/Θ

)
≤ const

((
1 +

2
Θ

1− 2
Θ

)(
1 +

1− 2
Θ

2
Θ

) 2
Θ

1− 2
Θ

)(n−2n/Θ)

≤ const eh
∗(Θ)n,

where h∗(Θ)→ 0, as Θ→∞. The last inequality derives from the fact that each
factor in the middle expression can be made arbitrarily close to 1 by taking Θ
sufficiently large. This means that we may take N = N(Θ) ∈ N sufficiently large
so that for all n ≥ N we have E

(
etFn

)
≤ eh(Θ)n, where h(Θ)→ 0, as Θ→∞.
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If we take t = 1−6β
3 and Θ large enough so that τ2 = tε

C3
− h(Θ) > 0, then,

using Markov-Tchebychev’s inequality and Lemma 6.1, we have

Leb

(
Fn >

εn

C3

)
≤ e−t

εn
C3 E

(
etFn

)
≤ e−

tεn
C3 eh(Θ)n ≤ e−τ2n,

for any n > N2. Consequently, Leb{E2(n)} ≤ const e−τ2n, which implies that∑
n≥k Leb (E2(n)) ≤ const e−τ2k. Hence, applying Borel Cantelli’s lemma, we get

Leb(E2) = 0, where E2 = ∩k≥1∪n≥kE2(n) and finally conclude that (SRCS) holds
on the full Lebesgue measure set I − E2. Observe that {x ∈ I : Ra(x) > k} ⊂⋃
n≥k E2(n), and thus, for all n ∈ N,

Leb ({x ∈ I : Ra(x) > n}) ≤ conste−τ2n.

Acknowledgments. I wish to thank V. Araújo for pointing out the problem in
[13, Proposition 6.1] and for very helpful discussions.

References

[1] J.F. Alves, SRB measures for nonhyperbolic systems with multidimensional expan-
sion, Ann. Scient. c. Norm. Sup. (4) 33 (2000), no. 1, 1-32.

[2] J.F. Alves, C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems
whose central direction is mostly expanding, Inventiones Math. 140 (2000), no. 2,
351-298.

[3] J.F. Alves, M. Viana, Statistical stability for robust classes of maps with non-uniform
expansion, Ergodic Theory & Dynam. Systems 22 (2002), no. 1, 1-32.

[4] J.F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity
17 (2004), no. 4, 1193-1215.

[5] J.F. Alves, S. Luzzatto, V. Pinheiro, Markov structures and decay of correlations
for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincar Anal. Non
Linaire 22 (2005), no. 6, 817-839.
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