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Abstract. The emergence of clustering of rare events for chaotic dynamics was first
observed as a consequence of periodicity, i.e., by considering target sets that shrink to
a periodic point, one was able to create fast returns to these target sets which were
responsible for the appearance of a bulk of high observations of observable functions that
were maximised at the periodic point. This meant that the Rare Events Point Processes,
counting the number of entrances in these target sets, converge to a compound Poisson
process, with a geometric multiplicity distribution ruling the cluster sizes. In [AFFR16], a
new mechanism to create clustering of rare events was introduced by considering observable
functions maximised at a finite number of points that were linked by belonging to the
same orbit. We make a deep study of the potential of this mechanism to produce different
multiplicity distributions. Namely, we show that with the right choice of a system and
observable, one can obtain any given finitely supported cluster size distribution. We
also study the impact of symmetry and other properties of the systems on the possible
clustering size distributions, which are also classified for the case of periodic maximal
orbits.
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1. Introduction

In the last decade, the study of extreme value theory for dynamical systems, which turned
out to be intimately related with quantitative recurrence, has captured the attention of many
dynamicists (see for example [LFF+16, BLR19, AFF20, FFMa20, HV20, PS20, CHN21,
FFT21] and references therein) and inspired applications to climate dynamics (see [FMACY17,
MCB+18, MCF17, CFM+19, LFG+22] and references therein).
Observations of extreme or rare events are detected by abnormal high values of a given
observable function and correspond to the entrance of the orbits of the system into sensitive
regions of the phase space, which are assumed to shrink, as time evolves, to a set, M, of
zero measure, where the observable is maximised. We will refer to this set as the maximal
set.
In this context, Point Processes of Rare Events have revealed to be a very useful tool to keep
track of the number of rare events on a normalised time frame. Initially, M was assumed
to be a typical point and then one could prove that these point processes converged to a
standard Poisson process (see [HSV99, FFT10]). However, when M is a periodic point,
the extremal observations have a tendency to appear concentrated in the time line, forming
clusters of rare events associated to the fast recurrence imposed by the periodicity, which is
responsible for the appearance of compound Poisson process in the limit. Since, the systems
considered have nice mixing properties, there is an expansion at these periodic points which
explains the appearance of the geometric distribution for the size of the clusters, which is
of course associated to the Pólya–Aeppli distribution of the total number of extreme events
([HV09, FFT13]).
In [AFFR16], the authors introduced a new mechanism to create clustering of rare events
by considering thatM is made out of multiple points which are dynamically linked, in the
sense that they belong to the same orbit. This dynamical link between the points ofM is
responsible for the creation of what was called a fake periodic behaviour, which was able
to generate cluster size distributions other than the geometric one. In fact, other cluster
size distributions had already been observed, for example in [AFV15] but they were still
associated to periodic points, where the dynamical system was discontinuous.
The main purpose of this paper is to study deeper the device introduced in [AFFR16] to
create clustering and, in particular, its potential to generate different cluster size distribu-
tions. We will show that with an appropriate choice of the dynamics and observables we
can generate any finitely supported given distribution. However, as we will also show, the
choice of the dynamics plays a surprisingly important role since, for example, the existence
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of symmetry may preclude the possibility of certain distributions appearing. Moreover, we
will provide a more dynamical heuristics for the interpretation of the cluster distribution
formulae obtained in [FFT13]. A more probabilistic interpretation of these formulae already
appeared in [AFF20, Section 2.1], but the one we provide here is particularly useful for de-
scribing for example, the class of cluster size distributions that can arise whenM is made
out of a periodic orbit.
The paper is organised as follows. In Section 2 we establish the setting, give the definitions
and conditions in order to prove convergence of the Rare Events Point Processes. In Sec-
tion 3, we consider the case where the observable functions are maximised on multiple points
of a non-periodic orbit and study the possible cluster size distributions that can arise in this
situation. In Section 4, we study clustering patterns and provide a more dynamical inter-
pretation of the formulae that give the asymptotic cluster size distribution. In Section 5,
we study the possible cluster size distributions that may appear for observable functions
maximised at multiple points of the same periodic orbit. In Section 6, we provide the proofs
of the main results stated in Section 3, as well as a small simulation study to illustrate the
ability to generate any given finitely supported distribution for cluster size. In Section 7,
we provide the proof of the main result stated in Section 5 and we also consider some case
studies from [AFFR16] to illustrate the performance of the methods we introduce here to
obtain the cluster size distribution.

2. Context and background

In order to study the extremal behaviour of the chaotic dynamical systems, we consider
stochastic processes generated by such systems, simply by evaluating a given observable
function along its orbits,

2.1. The setting. Let (X ,B, f, µ) be an ergodic dynamical system where X is a a compact
Riemannian manifold with a Riemannian metric that we denote by dist, B is the Borel
σ-algebra, f : X → X is a measurable map and µ is an f -invariant probability measure on
(X ,B). In this paper, µ will always be absolutely continuous with respect to Leb, we will
say that it is an acip (absolutely continuous invariant probability). Given an observable
ϕ : X → R ∪ {±∞}, we consider the stochastic process (Xn)n∈N0 given by :

Xn = ϕ ◦ fn.

As mentioned earlier, a realisation of the process (Xn)n∈N0 corresponds to obtaining a point
x ∈ X , chosen according to the acip µ, and then evaluate the observable along its orbit
(fn(x))n∈N0 .
As in [AFFR16], we assume that ϕ achieves N global maxima at the points ξ1, . . . , ξN . We
denote by uF := ϕ(ξi) the maximum value (we allow uF = +∞) and for each ξi, ϕ is defined
on a neighbourhood of ξi by

ϕ(x) = hi(dist(x, ξi))

where hi : Vi → hi(Vi) is a decreasing bijection on a neighbourhood Vi of 0 in R+
0 and

hi(0) = uF . These requirements imply that the following set

U(u) := {X0 > u}

is the union of the balls B
(
ξi, h

−1
i (u)

)
when the level u is sufficiently large. We suppose that

the maps hi and the f -invariant measure µ are sufficiently regular in the following sense :
the quantity µ(U(u)), as a function of u, varies continiously on a neighbourhood of uF 1.

1Example : when the maps hi are continuous and µ has no atoms (absolutely continuous for instance).
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The extremal behaviour of the systems can then be partly described by the distributional
limit of the sequence of partial maxima defined for each n ∈ N as:

Mn = max {X0, . . . , Xn−1}.

Ergodicity implies that Mn converges a.s. to uF and in order to obtain a non-degenerate
weak limit for Mn, motivated by the i.i.d. setting we consider a sequence of levels (un)n∈N
such that:

nµ (X0 > un) −→
n→∞

τ > 0. (2.1)

We succeed in proving the existence of an Extreme Value Law whenever, for a sequence
satisfying (2.1), there exists a non-degenerate distribution function such that

µ (Mn ≤ un) −→
n→∞

1−H(τ), (2.2)

where the convergence is meant at the continuity points of H. Note that on the i.i.d.
case, the convergence in (2.1) is equivalent to (2.2), where H is the standard exponential
distribution function.
We observe that the inverse functions h−1

i determine the tail of the d.f. F and uF = ϕ(ξi) =
hi(0) is its right endpoint. Moreover, they can be classified according to one of the following
three types :

(1) there exists some positive function g : hi(Vi)→ R such that for all y ∈ R,

lim
s→hi(0)

h−1
i (s+ yh(s))

h−1
i (s)

= Exp(−y);

(2) hi(0) =∞ and there exists β > 0 such that for all y > 0,

lim
s→∞

h−1
i (sy)

h−1
i (s)

= y−β;

(3) hi(0) = D <∞ and there exists γ > 0 such that for all y > 0,

lim
s→D

h−1
i (D − sy)

h−1
i (D − s)

= yγ .

The tail of the d.f. F determines the possible three types of limiting Extreme Value Law
(given by the classical Extremal Types Theorem – see [LLR83, Section 1.4]), when the
sequence of levels (un)n∈N is taken as one parameter linear family like

un =
y

an
+ bn (2.3)

for y ∈ R, an > 0. In this case, τ is of one of the following three types expressed as a
function of the parameter y given in un, for some β, γ > 0, (see [LFF+16, Section 4.2.1]):

(1) τ1(y) = Exp(−y) for y ∈ R (Gumbel type);
(2) τ2(y) = y−β for y > 0 (Fréchet type);
(3) τ1(y) = (−y)γ for y ≤ 0 (Weibull type).

We recall that the study of the distributional limit of the maximum is intimately related to
quantitative recurrence ([Col01, FFT10]), which can be realised by noting that the event
{Mn ≤ un} implies that there are no exceedances, i.e., no occurrences of {Xi > un} for all
i = 0, . . . , n − 1, which could be expressed equivalently by saying that the hitting time to
the set U(un) = {X0 > un} is not less than n.
The study of the extremal behaviour and quantitative recurrence is enhanced by considering
point processes that keep track of the orbital visits to the sets U(u).
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Definition 2.1. For every A ⊂ R, u ∈ R, we define :

Nu(A) :=
∑

i∈A∩N0

1Xi>u.

Let R denote the set of elements J which can be written as a finite union of subsets [a, b)
of R+

0 . We define the Rare Event Point Process (REPP) Nn by :

∀ J ∈ R, Nn(J) := Nun(vnJ) =
∑

j∈(vnJ)∩N0

1Xj>un

with vn = 1/µ (X0 > un).

We rescale the time in the definition of the REPP because there are less and less exceedances
{Xi > un}, on a fixed time period, as the level un grows, and we need to compensate it by
expanding the time period as the level grows, which creates a concentration of data in a fixed
interval. In fact, the rescaling is done so that E [Nn([0, 1))] = µ (X0 > un) (bvnc+1) −→

n→∞
1.

In the i.i.d. setting, one can prove that Nn converges weakly to a standard homogeneous
Poisson process. However, in the presence of clustering of exceedances, Nn converges weakly
to a compound Poisson process. By the time rescaling, the jumps of height 1 occurring in a
cluster of size k for the REPP are compressed. Thus this series of jumps looks like a unique
jump of size k. Thus the cluster size is asymptotically ruled by the multiplicity distribution
of this limit process. Moreover note that {Nun([0, n)) = 0} = {Mn ≤ un}, hence the limit
distribution of (Mn)n∈N can be easily recovered from the convergence of the REPP.
We recall here the definition of a compound Poisson process.

Definition 2.2. A compound Poisson process of intensity θ and multiplicity distribution π
is a point process defined by

N(J) :=

∫
1Jd

( ∞∑
i=1

DiδT1+...+Ti

)
=
∞∑
i=1

DiδT1+...+Ti(J) =
∞∑
i=1

T1+...+Ti∈J

Di

where T1, T2, . . . , D1, D2, . . . are independent random variables defined on a probability
space, (Tn)n∈N is an i.i.d. sequence with common exponential distribution of mean 1/θ
and (Dn)n∈N is another i.i.d. sequence with common distribution π.

Note that by (2.1) and the definition of the normalising time factor vn, when there is no
clustering, the Poisson process has intensity θ = 1 and π(1) = 1. On the other hand, in the
presence of clustering we clearly have that the expected cluster size

∑∞
j=1 jπ(j) > 1, which

is compensated by a smaller frequency θ < 1 (so that E [Nn([0, 1))] −→
n→∞

1).

The parameter 0 ≤ θ ≤ 1 is called Extremal Index (EI) and the fact that in most situations
it is the reciprocal of the mean cluster size (see [AFF20]) makes it particularly useful to
quantify the intensity of clustering. Absence of clustering means θ = 1 and intense clustering
means that θ is close to 0.

2.2. Convergence of Rare Events Point Processes. The convergence of REPP in the
dynamical setting relies heavily on being able to use memory loss properties of the system in
a useful way, which was paved from the adjustment and generalisation of classical conditions
introduced by Leadbetter (see [LLR83]) to study stationary stochastic processes. These
adaptations are particularly sensitive in the case of presence of clustering where the definition
of a certain hierarchy of events is rather convenient to write the formulae for the multiplicity
distribution and the computation of the EI.
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Definition 2.3. Given q ∈ N and a level u, we define the following events :

U (0)(u) := {X0 > u}

A(0)
q (u) := {X0 > u,X1 ≤ u, . . . ,Xq ≤ u} = U (0)(u) ∩

q⋂
i=1

f−i
(

(U (0)(u))c
)

and for each κ ∈ N

U (κ)(u) := U (κ−1)(u) \ A(κ−1)
q (u)

A(κ)
q (u) := U (κ)(u) ∩

q⋂
i=1

f−i
(

(U (κ)(u))c
)
.

For u = un, we write A(κ)
q,n := A(κ)

q (un) and U (κ)
n := U (κ)(un).

We denote by U (0)
n (ξi) the ball B

(
ξi, h

−1
i (un)

)
for n sufficiently large. It follows that U (0)

n =⋃N
i=1 U

(0)
n (ξi) and we define

U (κ)
n (ξi) := U (κ)

n ∩ U (0)
n (ξi) and A(κ)

q,n(ξi) := A(κ)
q,n ∩ U (0)

n (ξi).

Given B ∈ B, for some s ≥ 0 and ` ≥ 0, we define :

Ws,`(B) :=

bsc+max {b`c−1,0}⋂
i=bsc

f−i(Bc).

U (κ)(u) occurs when there are at least κ + 1 exceedances, the first appears at time 0 and
there are less than q units of time between each exceedance (except the κ + 1-th one) and
the succeeding one. A(κ)

q (u) occurs when U (κ)(u) does and there is no exceedance up to q
units of time after the κ+ 1-th exceedance.
Usually, for every i, (U

(κ)
n (ξi))κ∈N0 is a sequence of nested topological balls and the events

A(κ)
q,n(ξi) are annuli around these topological balls such that U (κ)

n (ξi) = A(κ)
q,n(ξi)∪U (κ+1)

n (ξi).
Ws,`(B) occurs when the event B has not occurred during the time period of length b`c and
starting at time s.
We introduce below two conditions which allow to prove the convergence of the REPP. The
first is a condition of asymptotic independence, the second condition restricts the occurrence
of events f−i(A(0)

q,n) close together in time.

Condition (Д∗q). We say that Д∗q holds for the sequence (Xn)n∈N if for any integers
t, κ1, . . . , κς , n and any J =

⋃ς
j=2 Ij ∈ R with Ij = [aj , bj) and inf J ≥ t,∣∣∣∣∣∣µ

A(κ1)
q,n ∩

 ς⋂
j=2

Nun(Ij) = κj

− µ(A(κ1)
q,n

)
µ

 ς⋂
j=2

Nun(Ij) = κj

∣∣∣∣∣∣ ≤ γ(q, n, t)

where γ(q, n, t) is decreasing in t for each n and there exists a sequence (tn)n∈N such that
tn = o(n) and nγ(q, n, tn) −→

n→∞
0.

Condition (Д′q). We say that Д′q holds for the sequence (Xn)n∈N if there exists a sequence
(kn)n∈N such that

• kn −→
n→∞

∞, kntn = o(n) where tn is given by condition Д∗q ;

• lim
n→∞

n
bn/knc−1∑
j=q+1

µ
(
A(0)
q,n ∩ f−j(A(0)

q,n)
)

= 0.
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We recall now the main convergence result for the REPP, which also gives formulae for the
EI and the multiplicity distribution.

Theorem 2.4 (From [FFT10, FFT13]). Let (un)n∈N be a sequence satisfying nµ (X0 > un) −→
n→∞

τ for some τ > 0. Assume that Д∗q and Д′q hold for some q ∈ N0. Then the REPP (Nn)n∈N
converges in distribution to a compound Poisson process of intensity θ and an integer valued
multiplicity distribution π whenever the following limits exist :

θ := lim
n→∞

µ
(
A(0)
q,n

)
µ
(
U

(0)
n

) and ∀κ ∈ N, π(κ) = lim
n→∞

µ
(
A(κ−1)
q,n

)
− µ

(
A(κ)
q,n

)
µ
(
A(0)
q,n

) .

Note that, except for some exceptional cases as given in [AFF20], most of the times we have
θ−1 =

∑
κ∈N κπ(κ), it is the average cluster size.

The main advantage of the conditions above when compared to the classical ones is the fact
that they are easy to check if the systems have nice mixing properties, which are usually
captured by the rates of decay of correlations that we define next.

Definition 2.5. (Decay of correlations). Let C1,C2 denote Banach spaces of real valued
measurable functions defined on X . We denote the correlation of non-zero functions φ ∈ C1

and ψ ∈ C2 w.r.t. a measure µ as

Corµ(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ · (ψ ◦ fn) dµ−
∫
φ dµ

∫
ψ dµ

∣∣∣∣ .
We say that we have decay of correlations, w.r.t. the measure µ, for observables in C1 against
observables in C2 if we have Corµ(φ, ψ, n) −→

n→∞
0 for every φ ∈ C1 and every ψ ∈ C2.

Condition Д∗q is typically very easy to check from most of statements providing summable
decay of correlations for the systems in consideration, i.e.,

∑
n≥1 Corµ(φ, ψ, n) < ∞. See

[LFF+16, Section 4.4].
For some systems it is possible to prove summable decay of correlations for all ϕ in some
Banach space C1 against all L1(µ) functions ψ. This strong form of decay of correlations,
which we will express as summable decay of correlations against L1, allows us to prove
condition Д′q, as well. See for example [LFF+16, Proposition 4.2.13] .
When N = 1, i.e., when the observable is maximised at a single point of the phase space ξ,
for nice systems (for example, systems with summable decay of correlation against L1), a
dichotomy regarding the extremal behaviour has been proved. See [LFF+16, Theorem 4.3.5].
Namely, either ξ is a non periodic point in which case there is no clustering of exceedances,
the extremal index θ is equal to 1 and the Nn converges weakly to a standard Poisson
process; or ξ is a periodic point, say of period p, and in that case we have clustering of
exceedances, detected by an extremal index less than 1, which, in the case of an absolutely
continuous invariant probability measure with a regular density, it is given by the formula:

θ = 1− | detDfp(ξ)|−1.

Moreover, the REPP converges to a compound Poisson process of intensity θ and geometric
multiplicity distribution π :

π(κ) = θ(1− θ)κ−1, for each κ ∈ N.

Throughout the rest of text, we assume that the dynamical systems considered have sum-
mable decay of correlations against L1 and the observable admits N global maxima lying
on the orbit of ξ1 which is either a non-periodic point or a repelling periodic point.
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Moreover, we add other assumptions from which follows an ideal framework for the com-
putations. µ is absolutely continuous, the Lebesgue differentiation theorem holds for the
maxima and f is a one-dimensional map. The derivative Df(x) is defined and non-zero for
each point x = f j(ξ1) with j ∈ {0, . . . ,mN − 1} in the non-periodic case and for each point
x in the orbit of ξ1, in the periodic case. Finally the observable is such that there exists rn
equal to the radius of each extremal sets U (0)

n (ξi) within a constant factor of multiplication
depending on i and independent of n.

3. Non-periodic maximal orbits

We start by studying the non-periodic case, i.e. ξ1 is not periodic. We recall that the
observable ϕ has to achieve N global maxima ξ1, ξ2, . . . , ξN which are correlated :

∀ i ∈ {1, . . . , N}, ξi = fmi(ξ1)

with 0 = m1 < m2 < . . . < mN . In the applications, almost always, we will choose a
dynamical system (X ,B, f, µ) with summable decay of correlations of bounded variation
functions agains L1 and maps hi defining ϕ on a neighbourhood of each maxima. Note
that the maps hi give the radius of the balls U (0)

n (ξi). However we will first define the balls
U

(0)
n (ξi) and then find a corresponding observable ϕ.

In this case of non-periodicity, it is easy to check that

A(κ)
q,n(ξi) = U (κ)

n (ξi) \

(
N⋃

`=i+1

f−m`(U (κ)
n (ξ`))

)
for n sufficiently large. Note that "for n sufficiently large" will not be specified anymore. It
is an asymptotic information following from the continuity of f at each ξi and the fact that
we only know the expression of ϕ on the neighbourhoods of maximal points considered.
When N is equal to 1, the exceedances of a high threshold un appear scattered through the
time line (no clustering) and the multiplicity distribution π always satisfies π(1) = 1.
For N ≥ 2, we study several examples of dynamical systems and observable configurations
and analyse the possible emerging cluster size distributions.

3.1. The case of two maximal points and the effect of symmetry of the systems.
We start by considering that the observable achieves two global maxima at ξ1 and ξ2 = f(ξ1),
where ξ1 is not periodic. Suppose that U (0)

n is defined. Since N = 2, it is easy to compute
U

(κ)
n for κ ∈ N :

U (1)
n = U (0)

n (ξ1) ∩ f−1(U (0)
n (ξ2)) and ∀κ ≥ 2, U (κ)

n = ∅.

Then the multiplicity distribution π and the EI θ are given by :

π(1) = lim
n→+∞

µ(U
(0)
n )− 2µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )− µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

π(2) = lim
n→+∞

µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )− µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

π(κ) = 0 for all κ ≥ 3

θ = lim
n→+∞

(
1− µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )

)
(3.1)
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whenever the limits exist. θ−1 is the expectation of a distribution on {1, 2} so θ determines
the distribution and must be in [1/2, 1]. Then we only need to study

αn :=
µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )

.

Note that the case θ = 1 is not interesting as it leads to a distribution π verifying π(1) = 1,
which is a multiplicity distribution that we have already seen in the case N = 1.

Regarding the numerator of αn, we have to compare U (0)
n (ξ1) and the connected compo-

nent of ξ1 in the preimage f−1(U
(0)
n (ξ2)), which is equivalent to the comparison between

f(U
(0)
n (ξ1)) and U (0)

n (ξ2). Suppose that f is differentiable at ξ1. We consider an observable
such that : {

U (0)
n (ξ1) = B(ξ1, rn)

U (0)
n (ξ2) = B(ξ2, λ · |det Df(ξ1)| · rn)

(3.2)

for some λ ∈ R+
0 and (rn)n∈N vanishing to 0, which we assume to exist. In fact, since

f(U
(0)
n (ξ1)) is approximately B(ξ2, |det Df(ξ1)|rn), then λ is a relevant parameter for the

comparison, depending on whether λ is larger or less than 1.

3.1.1. Bernoulli maps. We consider a simple dynamical system given by X = S1 = [0, 1]/(0 ∼
1), f : S1 → S1 defined by f(x) = qx mod 1 with q an integer larger or equal to 2 and
µ = Leb which is an f -invariant probability measure.

Figure 3.1. Graphs of f : x 7→ qx mod 1 with q = 2 and q = 10.

Proposition 3.1. Assume that the dynamical system considered is given by f(x) = qx mod 1
on S1 with µ = Leb and the type of observables (depending on a parameter λ) such that the
balls U (0)

n (ξi) satisfy (3.2). Then the multiplicity distributions that we get for the limit of
the REPP are the distributions π on {1, 2} such that 1− 1

q ≤ π(1) < 1.

To be more precise, we obtain π(1) = 1− 1
qλ with λ ≥ 1.

Remark 3.2. Note that we cannot get π(2) > 1
q with the system f(x) = qx mod 1.

To see this, first observe that

µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )− µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

≤ 1

q
⇐⇒ (q+1)µ(U (0)

n (ξ1)∩f−1(U (0)
n (ξ2))) ≤ µ(U (0)

n ).

(3.3)
Secondly, the right hand side of (3.3) implies that: µ(U

(0)
n (ξ1)∩f−1(U

(0)
n (ξ2))) ≤ µ(U

(0)
n (ξ1))

and

µ(U (0)
n (ξ1) ∩ f−1(U (0)

n (ξ2))) ≤ 1

q
µ(f−1(U (0)

n (ξ2))) =
1

q
µ(U (0)

n (ξ2)) by invariance, (3.4)
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then we conclude that

(q + 1)µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2))) =

= µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2))) + qµ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

≤ µ(U
(0)
n (ξ1)) + µ(U

(0)
n (ξ2))

= µ(U
(0)
n ).

Finally, by (3.3), we obtain that π(2) := lim µ(U
(0)
n (ξ1)∩f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )−µ(U

(0)
n (ξ1)∩f−1(U

(0)
n (ξ2)))

is less or equal

to 1/q for all choices of observables achieving two maxima. With the same argument, it
is not possible to get π(2) > 1/q if ξ2 = fm2(ξ1) with an integerm2 not necessarily equal to 1.

A crucial point is that what prevents from improving the result is the first inequality in
(3.4). It is due to the fact that µ is translation-invariant and f(x + 1/q) = f(x) for every
x ∈ S1.

3.1.2. The full quadratic map. Let (I,B, f, µ) be the dynamical system where I is the in-
terval [−1, 1], f : I → I is the full quadratic map given by f(x) = 1− 2x2 and µ is an acip
with density given by :

ρ(x) =
dµ

dLeb
(x) =

1

π

1√
1− x2

. (3.5)

The symmetry of f and µ implies that

Figure 3.2. Graph of the full quadratic map.

µ(U (0)
n (ξ1) ∩ f−1(U (0)

n (ξ2))) ≤ 1

2
µ(f−1(U (0)

n (ξ2))),

as for the doubling map f(x) = 2x mod 1. Then we cannot get a multiplicity distribution π
on {1, 2} such that π(2) > 1/2. In fact, for the limit of the REPP of the full quadratic map,
one obtains the same multiplicity distributions already obtained for the doubling map.

Proposition 3.3. Assume that the dynamical system considered is given by f(x) = 1− 2x2

on [−1, 1] with an acip µ of density given by (3.5) and the type of observables (depending on
a parameter λ) such that the balls U (0)

n (ξi) satisfy (3.2). Then the multiplicity distributions
that we get for the limit of the REPP are the distributions π on {1, 2} such that 1

2 ≤ π(1) < 1.

To be more precise, we obtain π(1) = 1− 1
2λ with λ ≥ 1.

3.1.3. A family of tent maps. In order to obtain more diversified cluster distributions, we
need to break symmetry and consider the following family of tent maps.

fδ :

{
[0, 1] → [0, 1]

x 7→ δx 1[0,δ−1](x) +
1− x

1− δ−1
1(δ−1,1](x)

. (3.6)
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Figure 3.3. Graph of fδ.

We consider that λ > 1. These are uniformly expanding systems for which Lebesgue measure
is invariant.
In order to simplify the analysis, we assume that both ξ1 and ξ2 lie on (0, δ−1), which means
that, in particular, they share the same derivative.

Proposition 3.4. Let δ > 1. With the type of observables (depending on a parameter λ)
such that the balls U (0)

n (ξi) satisfy ( 3.2) and the points ξi are in (0, δ−1), the system fδ gives
the multiplicity distributions π on {1, 2} such that

1− δ−1 ≤ π(1) < 1.

Remark 3.5. As in Remark 3.2, we cannot get π(2) > δ−1 with the system given by fδ.
However, note that, within the family, we can make π(2) arbitrarily close to 1, which means
that except for the cases π(1) = 1 and π(1) = 0, we can generate any cluster size distribution
supported on {1, 2}.

3.2. The more general case with an arbitrary finite number of maximal points.
Given an N ∈ N, we consider the maximal points ξ1, . . . , ξN such that ξi = f i−1(ξ1), i.e.
mi = i− 1, and define the balls:

U (0)
n (ξ1) = B(ξ1, rn)

U (0)
n (ξ2) = B (ξ2, λ1 · |Df(ξ1)| · rn)

U (0)
n (ξ3) = B (ξ3, λ1λ2 · |Df(ξ1)Df(ξ2)| · rn)

...

U (0)
n (ξN ) = B (ξN , λ1λ2 . . . λN−1 · |Df(ξ1)Df(ξ2) . . .Df(ξN−1)| · rn)

(3.7)

for some λ1, . . . , λN−1 ∈ R+
0 .

3.2.1. Application to the family of tent maps. In this more general setting, the family of
tent maps considered earlier can generate quite a diverse scope of finitely supported cluster
size distributions.

Proposition 3.6. Let fδ be given as in (3.6), for δ > 1 and consider that the observable is
such that the balls U (0)

n (ξi) satisfy (3.7), with λ1, . . . , λN−1 ≥ 1, and the points ξi are in
(0, δ−1), for all i = 1, . . . , N . Then, the cluster size distribution π defined on {1, . . . , N} is
such that

π{κ,...,N}(κ) = 1− δ−1/λN−κ for every κ ∈ {1, . . . , N − 1},
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where πA denotes the conditional probability π(·∩A)
π(A) . Moreover, the EI is given by

θ−1 =
N∑
κ=1

N−1∏
i=N−κ+1

1

λiδ
.

Remark 3.7. Note that ∀κ ∈ {1, . . . , N − 1}, π{κ,...,N}(κ) ∈ [1− δ−1, 1).

Corollary 3.8. With the type of observables considered in (3.7) (depending on parameters
λ1, . . . , λN−1), the family (fδ)δ>1 can generate multiplicity distributions π on {1, . . . , N}
such that

∀κ ∈ {1, . . . , N}, π(κ) > 0.

Proof. Given such a distribution on {1, . . . , N}, the quantity minκ∈{1,...,N−1} π{κ,...,N}(κ)

is non-zero. Then take δ > 1 such that minκ∈{1,...,N−1} π{κ,...,N}(κ) ≥ 1 − δ−1 and apply
Proposition 3.6. �

Numerical results are given in the appendix (see 6.2) where we illustrate the phenomenon
with two distributions : a uniform distribution and a binomial distribution. For each case,
we highlight the fact that the REPP records clusters whose size is asymptotically ruled by
the prescribed distribution and the wait time between each cluster is ruled by an exponential
law of mean θ−1 where θ is the EI.

3.2.2. Application to a family of distorted tent maps. In the previous section, the system is
piecewise linear, equipped with Leb and the derivative at the correlated maxima is always
equal to δ. We want a system for which the derivative at ξi is equal to δi > 1, for each
i ∈ {1, . . . , N − 1} (the derivative at ξN does not affect the multiplicity distribution).

Definition 3.9. Given ∆ = (δ1, . . . , δN−1) with δi > 1, let f∆ : I −→ I denote an interval
map satisfying these three properties :

• f∆ is a piecewise linear and uniformly expanding map;
• the f∆-invariant probability measure is Leb within a constant factor of multiplica-
tion;
• there exists ξ1 ∈ I such that |Df∆(ξi)| = δi for every i ∈ {1, . . . , N − 1}, with
ξi := f i−1

∆ (ξ1) for every i ∈ {1, . . . , N}, and the points ξi have two preimages.

We provide a plot of such a map in Figure 3.4. Similarly to Proposition 3.6, we have:

Figure 3.4. Graph of f∆
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Figure 3.5. Graph of Tβ .

Proposition 3.10. Let f∆ be as described above and consider that the observable is such
that the balls U (0)

n (ξi) satisfy (3.7), with λ1, . . . , λN−1 ≥ 1, and the points ξi are in (0, δ−1),
for all i = 1, . . . , N . Then, the cluster size distribution π is given by

π(1) = 1− 1

λN−1δN−1

π(κ) =

N−1∏
i=N−κ+1

1

λiδi
−

N−1∏
i=N−κ

1

λiδi
for all κ ∈ {1, . . . , N − 1}

π(N) =
N−1∏
i=1

1

λiδi
;

π(κ) = 0 for all κ ≥ N + 1

θ−1 =
N∑
κ=1

N−1∏
i=N−κ+1

1

λiδi

.

Remark 3.11. Observe that the distribution π satisfies π{κ,...,N}(κ) = 1 − δ−1
N−κ/λN−κ for

every κ ∈ {1, . . . , N − 1} and λ 7→ 1− δ−1
N−κ/λ is a bijection from [1,+∞) to

[
1− δ−1

N−κ, 1
)
.

3.2.3. Application to β maps. In all the previous examples (the Bernoulli maps, the full
quadratic map and the tent maps fδ and f∆), the preimage of a ball U (0)

n (ξi) had at least
two connected components. One that contains the point ξi−1 and the others contain the
other preimages of ξi. The presence of multiple connected components prevents from having
the multiplicity distribution for which π(2) = 1, for example (see Remarks 3.2 and 3.5).
Hence, in order to be able to generate any finitely supported cluster size distribution, we
consider a family of systems admitting points with a unique preimage, namely, we consider
the family of β maps:

Tβ :

{
S1 → S1

x 7→ βx mod 1
, where β ∈ (1, 2).
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For β > 1, the maps Tβ admit an acip µ = µβ whose density ρ = ρβ w.r.t. Leb is given by

x 7→
+∞∑
n=0

x<Tnβ (1)

1

βn

within a constant factor of multiplication (see [Par60]). Moreover, these systems have decay
of correlations against L1-observables. Now, for β in the interval (1, 2) there is an interval
of points with a unique preimage. Let ξ1 ∈ [0, 1], ξ2 = Tβ(ξ1), . . . , ξN = TN−1

β (ξ1) for
which the Lebesgue differentiation theorem holds. Let β be sufficiently close to 1 in order to
have a point ξ1 such that the points ξ1, . . . , ξN−1 belong to the interval (1− 1/β, 1/β) (i.e.,
ξ2, . . . , ξN have a unique preimage). Let ϕ be an observable such that the balls U (0)

n (ξi)
are as in (3.7), with parameters λ1, . . . , λN−1 ≥ 1. As for the previous examples, the ball
where the orbit enters first determines the size of the cluster but the way to enter changes
by uniqueness of the preimage.
A cluster of size 1 is due to the entrance of the orbit in the set

B
(
ξN , λ1λ2 . . . λN−2λN−1β

N−1rn
)︸ ︷︷ ︸

U
(0)
n (ξN )

\B
(
ξN , λ1λ2 . . . λN−2β

N−2rn
)︸ ︷︷ ︸

Tβ(U
(0)
n (ξN−1))

and the only way to enter in it is to get close to ξN−1 one unit of time before that. Note that
in the previous examples, there were connected components of f−1(U

(0)
n (ξN )) other than the

component of ξN−1, which created other possibilities to enter in U (0)
n (ξN ) \ f(U

(0)
n (ξN−1)).

Then it prevented from having π(1) less than a certain positive value as the parameter λN−1

did not affect the proportion between the different connected components of f−1(U
(0)
n (ξN )).

That is the reason why it may be expected in the case of a unique preimage that the limit
probability to have a cluster of size 1 is equal to 0 when λN−1 is equal to 1.
In the same way, a cluster of size 2 is due to the entrance of the orbit in the set

B
(
ξN , λ1λ2 . . . λN−3λN−2β

N−2rn
)︸ ︷︷ ︸

U
(0)
n (ξN−1)

\B
(
ξN , λ1λ2 . . . λN−3β

N−3rn
)︸ ︷︷ ︸

Tβ(U
(0)
n (ξN−2))

and the only way to enter in it is to get close to ξN−2 one unit of time before. It is expected
that the limit probability to have a cluster of size 2 is equal to 0 when λN−2 is equal to 1,
and so on.
Then we can state:

Theorem 3.12. Let β ∈ (1, 2) and ξ1 ∈ (1 − 1/β, 1/β) such that the points ξ1, . . . , ξN−1

belong to (1 − 1/β, 1/β) and the Lebesgue differentiation theorem holds for all such points.
With the type of observables (depending on parameters λ1, . . . , λN−1) such that the balls
U

(0)
n (ξi) satisfy (3.7), the system Tβ gives the multiplicity distributions π on {1, . . . , N} such

that
π{κ,...,N}(κ) = 1− 1/λN−κ, for every κ ∈ {1, . . . , N − 1},

with λ1, . . . , λN−1 ≥ 1 and the EI is given by

θ−1 =

N∑
κ=1

N−1∏
i=N−κ+1

1

λi

Corollary 3.13. Considering the type of observables such that the balls U (0)
n (ξi) satisfy

(3.7), which depend on N ∈ N and the parameters λ1, . . . , λN−1, the family (Tβ)β∈(1,2)

generates any multiplicity distributions π of finite support in N.
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4. Clustering patterns

In this section we consider the possible clustering patterns for the exceedances within each
cluster. The multiplicity distribution is easy to determine for a certain pattern. With other
patterns, it is not as easy and we will need to have a better understanding of the formulae
giving the multiplicity distribution π. The idea is simply to consider the set that the orbit
has to hit for giving rise to the cluster with the desired size.
We recall that the formulae for the limit cluster size distribution have been reinterpreted in a
more probabilistic approach in [AFF20, Section 2.1]. Here, the analysis is more dynamically
driven and the orbit structure of maps plays a prominent role.
Before we continue, we would like to stress the role played by the constants λi on the magni-
tude of the exceedances. Namely, observe that if λi is larger than 1 then the corresponding
exceedance is larger than the previous one, while it it is less than 1, then the opposite occurs.

4.1. Examples of observables. We start by considering the systems f∆ and Tβ introduced
above. Recall that the observable ϕ is defined by functions hi for i ∈ {1, . . . N} having the
same type of behaviour among the three types defined in Section 2.1. For each domain of
attraction, we consider the following function hi :

(I) h(1)
i (x) = −C log

(
x

Bi

)
with C > 0, Bi > 0, then h(1)

i (0) =∞ and τ(y) = Exp(−y);

(II) h(2)
i (x) =

(
Bi
x

)1/α

with α > 0, Bi > 0, then h(2)
i (0) =∞ and τ(y) = 1/yα;

(III) h(3)
i (x) = D −

(
x

Bi

)1/α

with D ∈ R, α > 0, Bi > 0, then h(3)
i (0) = D < ∞ and

τ(y) = (−y)α.

The constants Bi depend on the desired shape of the balls U (0)
n (ξi). Here we consider

Bi = λ1λ2 . . . λi−1 · |Df(ξ1)Df(ξ2) . . .Df(ξi−1)|.

The parameters λi are larger or equal to 1. Moreover the sequences (rn)n∈N and (un)n∈N
depend on the observable :

h
(1)
i : rn = Exp

(
−un
C

)
and un = C log

(
2n
∑n

i=1 ρ(ξi)Bi
τ

)
then un = y/an + bn with an = 1/C and bn = C log (2n

∑n
i=1 ρ(ξi)Bi);

h
(2)
i : rn =

1

uαn
and un =

(
2n
∑n

i=1 ρ(ξi)Bi
τ

)1/α

then an = 1/(2n
∑n

i=1 ρ(ξi)Bi)
1/α and bn = 0;

h
(3)
i : rn = (D − un)α and un = D −

(
τ

2n
∑n

i=1 ρ(ξi)Bi

)1/α

then an = (2n
∑n

i=1 ρ(ξi)Bi)
1/α and bn = D,

where ρ is the density of the acip for the system f∆ or the system Tβ .

For f equal to f∆ or Tβ and x ∈ U (0)
n (ξ1), we can easily check that

|f i−1(x)− ξi| = |f i−2(x)− ξi−1| · |Df(ξi−1)|.

This gives immediately the following estimates between exceedances within a cluster.
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(1) h(1)
i : Let x be a point in U (0)

n (ξj). If x is sufficiently close to ξj , it is sent in U
(0)
n (ξi)

via f i−j (with i > j) and the comparison between both exceedances is given by :

ϕ(f i−j(x))− ϕ(x) = C log (λj . . . λi−1)

(2) h(2)
i :

ϕ(f i−j(x))

ϕ(x)
= (λj . . . λi−1)1/α

(3) h(3)
i :

D − ϕ(f i−j(x))

D − ϕ(x)
=

1

(λj . . . λi−1)1/α

4.2. Occurrence of clustering patterns. In the examples studied in the previous section,
the clusters of size κ have a simple pattern corresponding to an increasing sequence of
exceedances, as λ1, ..., λN−1 ≥ 1, and such a cluster appears when the orbit hits the last κ
balls U (0)

n (ξN−κ), ..., U
(0)
n (ξN−1).

When there exists an i for which λi < 1, the clustering pattern does not necessarily cor-
respond to an increasing sequence of exceedances and the sets U (κ)

n (ξi) are not easy to
compute. It follows that the multiplicity distribution for the limit is difficult to determine.
That is why we need a deeper understanding of the meaning of the formulae giving the
multiplicity.

4.2.1. Observations regarding the example of Tβ. Here take f = Tβ . In Figure 4.1 below,
we represent the balls U (0)

n (ξi). The preimages f−(i−1)
(
U

(0)
n (ξi)

)
are sets around ξ1, given

by the dotted lines.

Figure 4.1. U (0)
n (ξi) and the preimages f−(i−1)

(
U

(0)
n (ξi)

)
.

Using the example given by Figure 4.1, on Figure 4.2 we represent the set A(0)
q,n by encircling

its connected components (two components in U (0)
n (ξ2), two in U (0)

n (ξ4), one in U (0)
n (ξ5)).
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Figure 4.2. The set A(0)
q,n

Figure 4.3. The set A(1)
q,n

Applying f -invariance to the measures of f−1(A(0)
q,n(ξ2)), f−3(A(0)

q,n(ξ4)) and f−4(A(0)
q,n(ξ5)),

we obtain that µ(A(0)
q,n) is equal to the measure of f−1(A(0)

q,n(ξ2))∪f−3(A(0)
q,n(ξ4))∪f−4(A(0)

q,n(ξ5))
(represented by the brace).
Note that this set is a set of points (around ξ1) whose orbit hits at least one ball among
the balls U (0)

n (ξi) up to N − 1 units of time. Moreover it is the largest set among the sets
f−(i−1)

(
U

(0)
n (ξi)

)
. Here it actually coincides with f−1

(
U

(0)
n (ξ2)

)
.

Using the example given by Figure 4.1, on Figure 4.3, we represent the set A(1)
q,n by encircling

its connected components (two components in U (0)
n (ξ2), two in U (0)

n (ξ3), one in U (0)
n (ξ4)).

Applying f -invariance to the measures of f−1(A(1)
q,n(ξ2)), f−2(A(1)

q,n(ξ3)) and f−3(A(1)
q,n(ξ4)),

we obtain that µ(A(1)
q,n) is equal to the measure of f−1(A(1)

q,n(ξ2))∪f−2(A(1)
q,n(ξ3))∪f−3(A(1)

q,n(ξ4))
(represented by the brace).
Note that this set is a set of points (around ξ1) whose orbit hits at least two balls among
the balls U (0)

n (ξi) up to N − 1 units of time. Moreover it is the second largest set among
the sets f−(i−1)

(
U

(0)
n (ξi)

)
. Here it coincides with f−3

(
U

(0)
n (ξ4)

)
.
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More generally, by using f -invariance of the measure µ, the quantity µ(A(κ)
q,n) is equal to

the measure of the entrance around ξ1 (see the diagram on the left in Figure 4.4) cor-
responding to a cluster of size larger or equal to κ + 1, i.e. a set of points (around
ξ1) whose orbit hits at least κ + 1 balls among the balls U (0)

n (ξi). Then the quantity
πn(κ) :=

(
µ(A(κ−1)

q,n )− µ(A(κ)
q,n)
)
/µ(A(0)

q,n) is exactly the probability that the orbit enters in
the set around ξ1 corresponding to a cluster of size κ conditionaly to the entrance of the
orbit in the set around ξ1 corresponding to the beginning of a cluster.

Figure 4.4. Cluster size depending on the entrance around ξ1.

Moreover µ(A(κ)
q,n) is the measure of the κ-th largest set among the sets f−(j−1)(U

(0)
n (ξj))

for j ∈ {1, . . . , N}. Then, considering

U (0)
n (ξi) = B (ξi, λ1 . . . λi−1 · |Df(ξ1)Df(ξ2) . . .Df(ξi−1)| · rn)

and using the fact that f is piecewise linear, we have:

µ(A(κ)
q,n) = µ

(
B(ξ1,Λ

(1)
κ rn)

)
with {Λ(1)

0 ≥ Λ
(1)
1 ≥ . . . ≥ Λ

(1)
N−1} = {1, λ1, λ1λ2, λ1λ2λ3, . . . , λ1λ2λ3 . . . λN−1} and

Λ
(1)
N+j = 0 for every j ≥ 0. If the Lebesgue differentiation theorem holds for ξ1, then

µ(A(κ)
q,n) ∼ 2ρ(ξ1)Λ

(1)
κ rn and

π(κ) =
Λ

(1)
κ−1 − Λ

(1)
κ

Λ
(1)
0

.

Moreover the EI θ is given by θ−1 =
∑N

κ=1 κπ(κ) =

∑N−1
κ=0 Λ

(1)
κ

Λ
(1)
0

=

∑N−1
κ=0 λ1 . . . λκ

Λ
(1)
0

.

In the example of Figure 4.1, we have N = 5, f−4(U
(0)
n (ξ5)) ⊂ f−2(U

(0)
n (ξ3)) ⊂ U

(0)
n (ξ1) ⊂

f−3(U
(0)
n (ξ4)) ⊂ f−1(U

(0)
n (ξ2)) and then Λ

(1)
1 = λ1, Λ

(1)
2 = λ1λ2λ3, Λ

(1)
3 = 1, Λ

(1)
4 = λ1λ2,

Λ
(1)
5 = λ1λ2λ3λ4.

4.2.2. Observations regarding the example of f∆. Now take f = f∆. Here the points ξi have
two preimages. We will denote by ξ′i the preimage of ξi+1 other than ξi. In this case, hitting
a set around ξ1 (set that we will denote by E

(1)
n ) is not the only way to start a cluster.

A cluster can also start when the orbit visits a set around ξ′i (set that we will denote by
E

(i+1)
n ).
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Figure 4.5. Diagram showing the different ways to enter in some balls
U

(0)
n (ξi) in this case.

As in the case of Tβ , f -invariance implies that computing π(κ) consists in measuring the
subset of

⋃N
i=1E

(i)
n which leads to clusters of size κ. We consider

U (0)
n (ξi) = B (ξi, λ1 . . . λi−1 · |Df(ξ1)Df(ξ2) . . .Df(ξi−1)| · rn)

and E(1)
n , E

(2)
n , . . . , E

(N)
n the different entrances for the start of a cluster:

• E(1)
n is the connected component of ξ1 in

⋃N
j=1 f

−(j−1)(U
(0)
n (ξj));

• for every i ∈ {2, . . . , N}, E(i)
n is the connected component of ξ′i−1 in

⋃N
j=i f

−(j−i+1)(U
(0)
n (ξj)).

The goal is to measure for each entrance the subset which leads to a cluster of size κ. We
write π(κ) =

∑N
i=1 αiπ

(i)(κ) where the coefficient αi is the limit proportion of E(i)
n among

the entrances E(1)
n , . . . , E

(N)
n , i.e.,

αi = lim
n→∞

µ(E
(i)
n )

µ(E
(1)
n ) + µ(E

(2)
n ) + . . .+ µ(E

(N)
n )

,

and π(i)(κ) is the probability, conditionaly to an entrance in E
(i)
n , that the orbit hits the

subset of E(i)
n leading to a cluster of size κ. Adapting the ideas of the previous example and

using the facts that f is piecewise linear and µ is normalised Leb, we obtain :

E(1)
n = B

(
ξ1,Λ

(1)
0 rn

)
,

E(i)
n = B

(
ξ′i, (1− ri)λ1 . . . λi−1δ1 . . . δi−1Λ

(i)
0 rn

)
,

αi =
(1− ri)λ1 . . . λi−1δ1 . . . δi−1Λ

(i)
0∑N

j=1 (1− rj)λ1 . . . λj−1δ1 . . . δj−1Λ
(j)
0

,

π(i)(κ) =
Λ

(i)
κ−1 − Λ

(i)
κ

Λ
(i)
0

,

with {Λ(i)
0 ≥ Λ

(i)
1 ≥ . . . ≥ Λ

(i)
N−i} = {1, λi, λiλi+1, λiλi+1λi+2, . . . , λiλi+1λi+2 . . . λN−1},

Λ
(i)
N−i+j = 0 for every j ≥ 1, r1 = 0, rj = δ−1

j−1 for every j ∈ {2, . . . , N} and by convention
δ1 . . . δi−1 = 1 and λ1 . . . λi−1 = 1 when i = 1.

Note that if i ≥ 2, the radius of the ball E(i)
n is the one of

⋃N
j=i f

−(j−i)(U
(0)
n (ξj)) affected

by a factor 1 − ri which is the inverse of the derivative at ξ′i−1. Moreover, 1 − ri can
also be considered as the proportion, in the preimage of a ball around ξi, of the connected
component of ξ′i−1. This is not the case for i = 1 (here 1− r1 = 1) because E(1)

n is exactly
the ball

⋃N
j=i f

−(j−i)(U
(0)
n (ξj)). In the next section, we will use these ideas which adapt well

to systems which are not necessarily piecewise linear.
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5. Periodic maximal orbits

Now, we consider the periodic case. Let (X ,B, f, µ) be a dynamical system satisfying with
decay of correlations against L1 and let ϕ be an observable defined asabove. Given the
correlated maxima ξi = fmi(ξ1), with a repelling p-periodic point ξ1, and balls U (0)

n (ξi), it
is easy to check that :

A(κ)
q,n(ξi) = U (κ)

n (ξi) \

(
N+i⋃
`=i+1

f−m`(U (κ)
n (ξ`))

)
(5.1)

where mj+N = mj + p and ξj+N = ξj . We assume that 0 = m1 < m2 < . . . < mN < p.

When N is equal to 1, the clusters consist of strictly decreasing bulk of exceedances and
the multiplicity distribution π is always geometric. The fact that the cluster size is not
necessarily equal to 1 is due to the periodicity: when the orbit hits U (0)

n , it can return after
p units of time. The fact that ξ1 is repelling means that, once the orbit visits its vicinity,
it is repelled farther and farther away from ξ1 and ends up escaping the periodicity of the
point, that is the reason why the exceedances among a cluster are decreasing and the cluster
is of finite size. Here the goal is to see how these results are affected when N is larger than
1.
As we will see in the following example, the formula (5.1) does not simplify the computations
and we will adapt the ideas of Section 4.2 to the periodic case, for a more direct approach.

5.1. The doubling map case with period 2. Here we consider the system given by
f(x) = 2x mod 1 with a periodic point of period 2, ξ1, and ξ2 := f(ξ1).

Figure 5.1. Graph of f(x) = 2x mod 1 with the orbit of a 2-periodic point.

Consider an observable such that the connected components of U (0)
n are of the shape :

U (0)
n (ξ1) = B(ξ1, rn), U (0)

n (ξ2) = B (ξ2, 2λ rn)

with λ ≥ 1 and let J ≥ 0 be the integer such that λ/4J ≥ 1 > λ/4J+1. By computing the
sets U (κ)

n (ξi), explicitely, the multiplicity distribution is given by :

κ ∈ {1, . . . , J} : π(κ) =
3

4κ

κ = J + 1 : π(J + 1) =
1

4J
− 1 + λ/22J+1

3λ

κ ≥ 1 : π(J + 1 + κ) =
1

2κ
1 + λ/22J+1

3λ

(5.2)
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More generally, with the system given by f(x) = qx mod 1 and the orbit of a periodic point
of period p, for integers q and p larger or equal to 2, this method becomes cumbersome, as
the sets U (κ)

n (ξi) are more difficult to determine. On the other hand, the method developed
in the next section will turn out to be useful to compute the multiplicity distribution for
this type of system.

5.2. A prototype example with simple combinatorics. We consider a dynamical sys-
tem f with decay of correlations against L1 and admitting an acip µ with a density ρ
(w.r.t. Leb). We also assume that there exists a repelling p-periodic point ξ1 such that the
Lebesgue differentiation theorem holds for the points ξi = f i−1(ξi) for every i ∈ {1, . . . , p},
ξi is the unique preimage of ξi+1 for every i ∈ {1, . . . , p− 1} and ξ1 has two preimages: ξp
and another point ξ′p.

Figure 5.2. Diagram showing the unique way to enter in some balls U (0)
n (ξi)

in this case.

Now consider an observable ϕ so that the corresponding extremal sets are such that:



U (0)
n (ξ1) = B(ξ1, rn)

U (0)
n (ξ2) = B (ξ2, λ1 · d1 · rn)

U (0)
n (ξ3) = B (ξ3, λ1λ2 · d1d2 · rn)

...

U (0)
n (ξp) = B (ξp, λ1λ2 . . . λp−1 · d1d2 . . . dp−1 · rn)

(5.3)

with di = |Df(ξi)| and for some λ1, . . . , λN−1 ∈ R+
0 .

To create a cluster of exceedances when the orbit is not in any of the extremal sets U (0)
n (ξi),

the orbit has to enter in a set around ξ′p, which corresponds to a topological ball around ξ′p,
which in turn will lead to the entrance in U (0)

n after less than p units of time, i.e., a set of
points close to ξ′p whose orbit hits U (0)

n after less than p units of time. This set, denoted by
E

(1)
n , is the connected component containing ξ′p in

⋃p
i=1 f

−i(U
(0)
n (ξi)).

To understand how the ideas of the non-periodic case can be adapted to the periodic case,
we just have to act as though fp(ξi) was not ξi, for every i ∈ N (see Figure 5.3). Then the
goal is to measure the subset in E(1)

n which leads to a cluster of size κ and we have to sort
the sets f−i(U (0)

n (ξi)) ∩ E(1)
n for i ∈ N. Let r1 be the limit proportion, in f−1(B(ξ1, x)), of

the connected component containing ξp (as x goes to 0). Observe that :

µ
(
f−i(U (0)

n (ξi)) ∩ E(1)
n

)
∼ (1− r1) · µ

(
f−(i−1)(U (0)

n (ξi)) ∩ f(E(1)
n )
)

∼ 2 · (1− r1) · ρ(ξ1)
λ1λ2 . . . λq
(d1 . . . dp)M

rn
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Figure 5.3. Cluster size depending on the entrance around ξ′p.

with M ∈ N0 and q ∈ {0, . . . , p − 1} such that i − 1 = pM + q. Then we just have to
compute the quantities λ1λ2 . . . λq/D

M with D := d1 . . . dp (D > 1 since ξ1 is repelling) and
for M ∈ N0, q ∈ {0, . . . , p− 1} (by convention, λ1 . . . λq = 1 for q = 0).
In the example of Figure 5.3, we have

1 ≥ λ1λ2 ≥
1

D
≥ λ1λ2

D
≥ 1

D2
≥ λ1λ2

D2
≥ . . . (5.4)

To include the quantities λ1/D
M (for M ≥ 0) in (5.4), we have to know for which integer

J does one of the following bounds holds: 1
DJ
≥ λ1 ≥ λ1λ2

DJ
or λ1λ2

DJ
≥ λ1 ≥ 1

DJ+1 . To
determine this, we have to draw more sets U (0)

n (ξi) in the diagram. For instance, if we have
1
DJ
≥ λ1 ≥ λ1λ2

DJ
, after sorting, we get:

1 ≥ λ1λ2 ≥
1

D
≥ λ1λ2

D
≥ . . . ≥ λ1λ2

DJ−1
≥ 1

DJ
≥ λ1 ≥

λ1λ2

DJ
≥ 1

DJ+1
≥ λ1

D
≥ λ1λ2

DJ+1
≥

≥ 1

DJ+2
≥ λ1

D2
≥ λ1λ2

DJ+2
≥ . . .

It follows that the multiplicity distribution π is given by:

π(κ) =
Λ

(1)
κ−1 − Λ

(1)
κ

Λ
(1)
0

.

with
{

Λ
(1)
0 ≥ Λ

(1)
1 ≥ Λ

(1)
2 ≥ . . .

}
=

{
λ1λ2 . . . λq

DM

∣∣∣ M ∈ N0, q ∈ {0, . . . , p− 1}
}
. Moreover

the EI θ is given by:

θ−1 =

∞∑
κ=1

κπ(κ) =

∑∞
κ=0 Λ

(1)
κ

Λ
(1)
0

=
D

D − 1

∑N−1
q=0 λ1 . . . λq

Λ
(1)
0

.

Note that π(κ) might be zero for some κ. It occurs when {λ1 . . . λi−1/D
M | M ∈ N0} ∩

{λ1 . . . λj−1/D
M | M ∈ N0} is not empty for different integers i and j in {1, . . . , N} and

then π = 0 on an infinite subset of N.
The multiplicity distributions that we get belong to a family of distributions on N, denoted
by Π, that we will call eventually pseudo periodic distributions:

Π = {distribution π on N | ∃K, p ∈ N, ∃D > 1, ∀κ ≥ K, π(κ+ p) = π(κ)/D}.

We denote by ΠK
p,D the set of distributions π ∈ Π with rank K, pseudo-period p and

attenuation coefficient D and we write Πp,D :=
⋃
K∈N ΠK

p,D.
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Figure 5.4. Multiplicity distribution in the case N = 3, D = 1.1 and λi
such that λ1 = 1.8, λ1λ2 = 1.3.

Here the multiplicity distributions that we get are all in Πp,D with p the number of maximal
points, D = d1 . . . dp. The rank K, depending on ϕ, is for instance the integer such that
Λ

(1)
K = min {1, λ1, . . . , λ1 . . . λp−1}.

Figure 5.5. Diagram showing the different ways to enter in some balls
U

(0)
n (ξi) in this case.

5.3. A more general scenario. After the example of Section 5.2, a possible generalisation
consists on allowing the points ξi+1 to have preimages other than ξi. As in the non-periodic
case, we consider the different entrances E(i)

n . More precisely we consider for every i ∈
{1, . . . , p} the factor ri which is the limit proportion, in f−1(B(ξi, x)), of the connected
component of ξi−1 (as x tends to 0) with ξ0 := ξp. Then µ(E

(i)
n ) ∼ 2 · (1 − ri) · ρ(ξi)L

(i)
0 rn

where the quantities L
(i)
κ play the same role as Λ

(i)
κ and will be defined in (5.6), after we

clarify the notations for the balls U (0)
n (ξi). Then the probability that the orbit enters in E(i)

n
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is equal to

αi :=
(1− ri)ρ(ξi)L

(i)
0∑N

j=1 (1− rj)ρ(ξj)L
(j)
0

,

while the probability to start a cluster of size κ conditionaly to an entrance in E(i)
n is equal

to

π(i)(κ) =
L

(i)
κ−1 − L

(i)
κ

L
(i)
0

.

In the previous cases, the notations were taylored to compare the preimages f−(i−1)(U
(0)
n (ξi))

with U
(0)
n (ξ1). In this periodic case, we have to compare the preimages f−(i−j)(U

(0)
n (ξi))

with U (0)
n (ξj) for every j. Then it is not useful to write

U (0)
n (ξi) = B (ξi, λ1λ2 . . . λi−1 · d1d2 . . . di−1 · rn) .

Now, in order to simplify the notation we set

`i := λ1λ2 . . . λi−1 · d1d2 . . . di−1 so that U (0)
n (ξi) = B(ξi, `irn), (5.5)

Then the quantities L
(i)
κ are defined by :

{L(i)
0 ≥ L

(i)
1 ≥ L

(i)
2 ≥ . . .} =

{
`i+q

di . . . di+q−1DM

∣∣∣ M ∈ N0, q ∈ {0, . . . , p− 1}
}
, (5.6)

where D = d1 . . . dp > 1, `j+p := `j , dj+p := dj and by convention di . . . di+q−1 = 1 when
q = 0.
Finally the multiplicity distribution π and the EI θ are given by :

π(κ) =

p∑
i=1

αiπ
(i)(κ) =

p∑
i=1

(1− ri)ρ(ξi)L
(i)
0∑p

j=1 (1− rj)ρ(ξj)L
(j)
0

L
(i)
κ−1 − L

(i)
κ

L
(i)
0

, (5.7)

θ−1 =

p∑
i=1

αiθ
−1
i with θ−1

i =

∞∑
κ=1

κπ(i)(κ) =

∑∞
κ=0 L

(i)
κ

L
(i)
0

=
1

L
(i)
0

D

D − 1

p−1∑
q=0

li+q
di . . . di+q−1

.

Note that π is a convex combination of multiplicity distributions of Πp,D that we introduced
in Section 5.2 and it follows that π is also in Πp,D.
Consequently a simple idea for building examples and getting new multiplicity distributions
would consist in considering multiplicity distributions of Section 5.2 and making a convex
combination. However the constraint is that these distributions and the weights of the
combination must be functions of the same parameters as we can see in the expression in
(5.7). Nevertheless this idea will be applied in the proof of Proposition 5.2, below.

5.4. Illustration and applications. First we return to the example given in 5.1. More
generally, we will determine the multiplicity distribution and the EI for f(x) = qx mod 1
with q ≥ 2. Then, assuming the existence of some dynamical systems similar to f∆, we will
classify the limiting cluster size distributions that we could get. Finally, we explain how the
method can be redesigned when some points of the orbit are not global maxima and why
these ideas can be applied in the non-periodic case.
We consider again the system given by f(x) = qx mod 1 with the p-periodic point ξ1 and
ξi := f i−1(ξ1) (for example ξ1 := 1/(qp − 1)). In this case, ri = 1/q. Considering the
notation (5.5), i.e. U (0)

n (ξi) = B(ξi, `irn), we obtain :
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Figure 5.6. Graph of f(x) = 5x mod 1 with the orbit of a 4-periodic point.

π(κ) =

p∑
i=1

(1− 1/q)L
(i)
0∑p

j=1 (1− 1/q)L
(j)
0

L
(i)
κ−1 − L

(i)
κ

L
(i)
0

=

∑p
i=1 L

(i)
κ−1 −

∑p
i=1 L

(i)
κ∑p

j=1 L
(j)
0

. (5.8)

Concerning the example given in 5.1, we find the distribution (5.2) for the limiting cluster
size distribution by considering q = p = 2, l1 = 1 and l2 = 2λ (see 7.1 in the appendix for
the details).
As in Section 3.2.2, we want to find a family of dynamical systems admitting the desired
properties, in the periodic case. Now that we have introduced the notion of entrances for
computing the multiplicity distribution, we can interpret the family (f∆)∆∈(1,∞)N−1 as a
family containing the relevant parameters ri. In Definition (3.9), the second point and the
third point imply that for every (ρ2, . . . , ρN ) ∈ (0, 1)N , there exists ∆ ∈ (1,∞)N−1 such
that for f∆ the limit proportion ri is equal to ρi (i ∈ {2, . . . , N}). Then ri = δ−1

i+1 and we
set r1 = 0. We want the same properties in the periodic case, with a family indexed by the
p-tuple of limit proportions ri.

Definition 5.1. Given R = (r1, . . . , rp) with ri ∈ (0, 1), gR : I −→ I denotes an interval
map satisfying these three properties :

• it is equipped with an acip µ of density ρ;
• it has summable decay of correlations against L1(µ);
• there exists a repelling p-periodic point ξ1 in I such that the limit proportion, in
g−1
R (B(ξi, x)), of the connected component of ξi−1 is equal to ri (as x tends to 0)
for every i ∈ {1, . . . , p}, with ξi := gi−1

R (ξ1) for every i ∈ {1, . . . , p} and ξ0 := ξp.
Moreover gR is differentiable at ξ1, . . . , ξp.

Using the notation introduced in (5.5)) i.e. U (0)
n (ξi) = B(ξi, `irn), we obtain :

π(κ) =

p∑
i=1

(1− ri)L(i)
0 ρ(ξi)∑p

j=1 (1− rj)L(j)
0 ρ(ξj)

L
(i)
κ−1 − L

(i)
κ

L
(i)
0︸ ︷︷ ︸

π(i)(κ)

. (5.9)

Note that this is a convex combination of distributions π(i) with non-zero weights which can
be adjusted by the parameters ri ∈ (0, 1). This is what we use in the following statement
which illustrates the kind of multiplicity distribution that we could get for the limit of the
REPP in the periodic case.

Proposition 5.2. Assume that such a family (gR)R∈(0,1)p exists. Given p ∈ N and a1, . . . , ap ∈
R+

0 such that a1+. . .+ap < 1, there exist a dynamical system and an observable such that the
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REPP converges in distribution to a compound Poisson process of multiplicity distribution
π satisfying :

• ∀κ ∈ {1, . . . , p}, π(κ) = aκ;
• π ∈ Π0

p,D with D = 1− a1 − a2− . . .− ap.

For the proof (see 7.2), we use the family (gR)R∈(0,1)p with parameters `i such that for every
j ∈ {1, . . . , p}, π(j) is in Π0

p,D and its support is pN − j + 1 = {pk − j + 1 | k ∈ N}. Then
the difficulty is just to show that the parameters ri can be chosen to adjust the quantities
π(j)(p− j + 1) and the weights of the convex combination.
Using the notation (5.5, we can also address the case of an observable achieving a maximum
value at only N points of the orbit with N < p. Namely, consider an observable admitting
N global maxima ξ1, . . . , ξN defined by ξi := fmi(ξ1) for every i ∈ {1, . . . , N} (0 = m1 <
m2 < . . . < mN < p) with ξ1 a repelling p-periodic point. We set for every j ∈ {1, . . . , N},

U (0)
n (f j−1(ξ1)) = B

(
f j−1(ξ1), `jrn

)
with `j equal to 0 for j 6∈ {m1 + 1, . . . ,mN + 1}. Then the connected components of U (0)

n

are the balls U (0)
n (ξi) for i ∈ {1, . . . , N}. We need to adjust the definition of the quantities

L
(i)
κ . Namely, for every i ∈ {1, . . . , p},

{L(i)
0 ≥ L

(i)
1 ≥ L

(i)
2 ≥ . . .} =

{
`i+q

di . . . di+q−1DM

∣∣∣ M ∈ N0, q ∈ {0, . . . , p− 1} s.t. `i+q 6= 0

}
.

Note that we consider L
(i)
κ for i ∈ {1, . . . , p} and not "i ∈ {1, . . . , N}" because there can

still be p entrances E(1)
n , . . . , E

(p)
n which are sets around preimages of f i(ξ1) other than

points of the orbit. Then using the same formula, we obtain multiplicity distributions in
ΠN,D with D = d1 . . . dp > 1.
We apply this in the appendix 7.3 with an example given in [AFFR16, Section 5.2.1]. It is
the good example for explaining how to proceed in some cases where the radii of U (0)

n (ξi)
are not all proportional to rn.

Remark 5.3. We remark that the notation introduced in (5.5) is also useful in the non-
periodic case, when the global maxima are not defined bymi−1 = i−1 for all i ∈ {1, . . . , N}.
Namely, we consider an observable admitting N global maxima ξ1, . . . , ξN defined by
ξi := fmi(ξ1) for every i ∈ {1, . . . , N} (0 = m1 < m2 < . . . < mN ) with ξ1 a non-periodic
point. We set for every j ∈ {1, . . . ,mN + 1},

U (0)
n (f j−1(ξ1)) = B

(
f j−1(ξ1), `jrn

)
with `j equal to 0 for j 6∈ {m1 + 1, . . . ,mN + 1} and the quantities L

(i)
κ are given by

{L(i)
0 ≥ L

(i)
1 ≥ L

(i)
2 ≥ . . .} =

{
`i+q

di . . . di+q−1

∣∣∣ q ∈ {0, . . . , N ′ − i} such that li+q 6= 0

}
(assuming that L

(i)
κ = 0 for κ larger or equal to the cardinality of the right hand side) and

π(κ) =

mN+1∑
i=1

(1− δi−1)L
(i)
0∑p

j=1 (1− δj−1)L
(j)
0

L
(i)
κ−1 − L

(i)
κ

L
(i)
0

.

We apply this idea in the appendix 7.4 with an example given in [AFFR16, Section 4.3].
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6. Multiplicity distributions in the non-periodic case – proofs of the main
results and numerical simulations

6.1. Proofs of Propositions 3.1, 3.3, 3.6 and Theorem 3.12.

Proof of Proposition 3.1. µ(U
(0)
n ) = 2(1 + qλ)rn.

If λ ≥ 1, then

π(1) = lim
n→+∞

µ(U
(0)
n )− 2µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

µ(U
(0)
n )− µ(U

(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2)))

= lim
n→+∞

µ(U
(0)
n )− 2µ(B(ξ1, rn))

µ(U
(0)
n )− µ(B(ξ1, rn))

=
qλ− 1

qλ
= 1− 1

qλ

where λ 7→ 1− 1/(qλ) is a bijection from [1,+∞) to [1− 1/q, 1).

If λ ≤ 1, then

π(1) = lim
n→+∞

µ(U
(0)
n )− 2µ(B(ξ1, λrn))

µ(U
(0)
n )− µ(B(ξ1, λrn))

=
1 + qλ− 2λ

1 + qλ− λ
= 1− λ

1 + (q − 1)λ

where λ 7→ 1− λ/(1 + (q − 1)λ) is a bijection from (0, 1] to [1− 1/q, 1). �

Proof of Proposition 3.3. First we cannot get π(2) > 1/2 by symmetry, as explained
before Proposition 3.3. Secondly we want to get the multiplicity distributions on {1, 2}
such that π(2) ≤ 1/2.

Note that µ(U
(0)
n (ξ1)) = µ(B(ξ1, rn)) ∼ 2ρ(ξ1)rn and µ(U

(0)
n (ξ2)) = µ(B(ξ1, 4|ξ1|λrn)) ∼

2 · 4λρ(ξ2)|ξ1|rn then µ(U
(0)
n ) ∼ 2(ρ(ξ1) + 4λρ(ξ2)|ξ1|)rn. Without loss of generality, assume

that ξ1 ∈ (0, 1).

U (0)
n (ξ1) ∩ f−1(U (0)

n (ξ2)) =(
max

{
ξ1 − rn,−

√
ξ2

1 + 2λ|ξ1|rn
}
,min

{
ξ1 + rn,−

√
ξ2

1 − 2λ|ξ1|rn
})

On the one hand,

ξ1 + rn ≥ −
√
ξ2

1 + 2λ|ξ1|rn ⇐⇒ 2λ|ξ1|rn ≤ 2|ξ1|rn − r2
n︸ ︷︷ ︸

∼ 2|ξ1|rn

.

and

ξ1 − rn ≤ −
√
ξ2

1 − 2λ|ξ1|rn ⇐⇒ 2λ|ξ1|rn ≤ 2|ξ1|rn + r2
n︸ ︷︷ ︸

∼ 2|ξ1|rn

.

Note that ρ(ξ1)
ρ(ξ2) = 2|ξ1|.

If λ > 1, then µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2))) ∼ µ(B(ξ1, rn)) ∼ 2ρ(ξ1)rn and

π(1) =
4λρ(ξ2)|ξ1| − ρ(ξ1)

4λρ(ξ2)|ξ1|
= 1− 1

2λ

where λ 7→ 1− 1/(2λ) is a bijection from (1,+∞) to (1/2, 1).
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If λ < 1, then µ(U
(0)
n (ξ1) ∩ f−1(U

(0)
n (ξ2))) ∼ µ

((
−
√
ξ2

1 + 2λ|ξ1|rn,−
√
ξ2

1 − 2λ|ξ1|rn
))
∼

2λρ(ξ1)rn and

π(1) =
ρ(ξ1) + 4λρ(ξ2)|ξ1| − 2λρ(ξ1)

ρ(ξ1) + 4λρ(ξ2)|ξ1| − λρ(ξ1)
= 1− λ

1 + λ

where λ 7→ 1− λ/(1 + λ) is a bijection from (0, 1) to (1/2, 1).

If λ = 1, then

µ(U (0)
n (ξ1)∩f−1(U (0)

n (ξ2))) = µ

((
−
√
ξ2

1 + 2λ|ξ1|rn, ξ1 + rn

))
∼ (λ+1)ρ(ξ1)rn = 2ρ(ξ1)rn

and π(1) = 1
2 . �

Proof of Proposition 3.6. In the last proofs, we only had to set a parameter λ larger or
equal to 1 (or less or equal to 1). Here, we consider parameters λ1, . . . , λN−1 larger or equal
to 1 for this proof. This makes the computations easier because we can check by induction
that for all κ ∈ N0, for all i ∈ {1, . . . , N},

U (κ)
n (ξi) =

{
U

(0)
n (ξi) if κ ≤ N − i
∅ if κ > N − i

Then A(κ)
q,n is equal to U (0)

n (ξN−κ) if κ ≤ N − 1 and is equal to ∅ otherwise. The Rare Event
Point Process converges to a compound Poisson process with intensity θ and multiplicity
distribution π given by :

π(1) = 1− 1

λN−1δ

π(κ) =
N−1∏

i=N−κ+1

1

λiδ
−

N−1∏
i=N−κ

1

λiδ
for all κ ∈ {1, . . . , N − 1}

π(N) =
N−1∏
i=1

1

λiδ

π(κ) = 0 for all κ ≥ N + 1

θ−1 =
N∑
κ=1

N−1∏
i=N−κ+1

1

λiδ

The distribution π satisfies π{κ,...,N}(κ) = 1 − δ−1/λN−κ for every κ ∈ {1, . . . , N − 1} and
λ 7→ 1− δ−1/λ is a bijection from [1,+∞) to [1− δ−1, 1).
Note that the parameter λN−1 defines π(1), and if π(1) is defined, the parameter λN−2

defines π(2) and so on. If all the parameters λi are given, then π(1), . . . , π(N − 1) are
defined and we get π(N) = 1− π(1)− . . .− π(N − 1). �

Proof of Theorem 3.12. First note that :

U (κ)
n (ξi) =

{
U

(0)
n (ξi) if κ ≤ N − i
∅ if κ > N − i

Then A(κ)
q,n is equal to U

(0)
n (ξN−κ) if κ ≤ N − 1, ∅ otherwise. By linearity of Tβ on

(0, 1 − 1/β), uniqueness of the preimage and Tβ-invariance of µ, we have µ(U
(0)
n (ξi+1)) =

λ1 . . . λiµ(U
(0)
n (ξ1)). Then Rare Event Point Process converges to a compound Poisson
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process with intensity θ and multiplicity distribution π given by :

π(1) = 1− 1

λN−1

π(κ) =
N−1∏

i=N−κ+1

1

λi
−

N−1∏
i=N−κ

1

λi
for all κ ∈ {1, . . . , N − 1}

π(N) =

N−1∏
i=1

1

λi
> 0

π(κ) = 0 for all κ ≥ N + 1

θ−1 =

N∑
κ=1

N−1∏
i=N−κ+1

1

λi

The distribution π satisfies π{κ,...,N}(κ) = 1 − 1/λN−κ for every κ ∈ {1, . . . , N − 1} and
λ 7→ 1− 1/λ is a bijection from [1,+∞) to [0, 1).
Note that the parameter λN−1 defines π(1), and if π(1) is defined, the parameter λN−2

defines π(2) and so on. If all the parameters λi are given, then π(1), . . . , π(N − 1) are
defined and we get π(N) = 1− π(1)− . . .− π(N − 1). �

6.2. Numerical simulation results. Consider the observable ϕ defined on a neighbour-
hood of every ξi by ϕ(x) = 1

|x−ξi|
∏i−1
j=1 (λjδ), i.e. hi(x) = 1

x

∏i−1
j=1 (λjδ), and the sequence

of levels given by un = 2n
τ

∑N
i=1

∏i−1
j=1 (λjδ) so that nµ (X0 > un) −→

n→∞
τ . We define

vn = 1/µ (X0 > un). Note that rn = 1/un.
We estimate by empirical averages the EI θ and the quantities π(κ) for κ ∈ {1, . . . , N}.
For every test i, we compute the time Ti before the first exceedance and we write θ−1

i =
Tiτ/n ' Ti/vn. Then we count the exceedances among the first cluster (the cluster ends
when an exceedance is not followed by another during a time period of length N) and we
denote the number of exceedances by Ki. Then we obtain estimators θ̃−1 = 1

L

∑L
i=1 θ

−1
i of

θ−1 and p̃(κ) = 1
L

∑L
i=1Ki1Ki=κ of π(κ) where L is the number of runs.

6.2.1. Uniform multiplicity distribution. Take τ = 1, N = 10, n = 1000, L = 1000 and
parameters λi which lead to a multiplicity distribution which is uniform. There we give the
Q-Q plot between the exponential distribution of mean θ−1 and the distribution of the θ̃i−1,
and the histogram of the cluster sizes.

Figure 6.1. Q-Q plot between the exponential distribution of mean θ−1

and the distribution of the θ̃−1
i .
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Figure 6.2. Histogram of the cluster sizes.

6.2.2. Binomial multiplicity distribution. Same thing but with parameters which lead to a
multiplicity distribution on {1, . . . , 10} which is the distribution of a random variable X
such that the law of X − 1 is the binomial distribution with paramaters (9, 0.7).

Figure 6.3. Q-Q plot between the exponential distribution of mean θ−1

and the distribution of the θ̃−1
i .

Figure 6.4. Histogram of the cluster sizes.

7. Multiplicity distributions in the periodic case – proofs and case studies

7.1. Example given in 5.1 using the approach introduced in Section 5.3. Consider
q = p = 2, l1 = 1 and l2 = 2λ. Using (5.8), the multiplicity distribution is defined by :

π(κ) =

∑2
i=1 L

(i)
κ−1 −

∑2
i=1 L

(i)
κ∑2

j=1 L
(j)
0
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with
{

L
(1)
0 ≥ L

(1)
1 ≥ . . .

}
=
{

1/4M , λ/4M
∣∣∣ M ∈ N0

}
and{

L
(2)
0 ≥ L

(2)
1 ≥ . . .

}
=
{

1/(2× 4M ), λ/(2× 4M−1)
∣∣∣ M ∈ N0

}
.

Let J ≥ 0 be an integer such that λ/4J ≥ 1 > λ/4J+1.

κ ∈ {0, . . . , J} : L(1)
κ = λ/4κ;

κ ≥ 1 : L
(1)
J+2κ = λ/4J+κ;

κ ≥ 0 : L
(1)
J+2κ+1 = 1/4κ;

κ ∈ {0, . . . , J + 1} : L(2)
κ = λ/(2× 4κ−1);

κ ≥ 1 : L
(2)
(J+1)+2κ = λ/(2× 4J+κ);

κ ≥ 0 : L
(2)
(J+1)+2κ+1 = 1/(2× 4κ),

then

κ ∈ {0, . . . , J} : L(1)
κ + L(2)

κ =
3λ

4κ

κ ≥ 0 : L
(1)
J+2κ+1 + L

(2)
J+2κ+1 =

1

4κ

(
1 +

λ

2× 4J

)
κ ≥ 1 : L

(1)
J+2κ + L

(2)
J+2κ =

λ

4J+κ
+

1

2× 4κ−1
.

Thus the multiplicity distribution is given by :

κ ∈ {1, . . . , J} : π(κ) =
3λ/4κ−1 − 3λ/4κ

3λ

=
3

4κ
,

κ = J + 1 : π(J + 1) =
3λ/4J −

(
1 + λ

2×4J

)
3λ

=
1

4J
− 1 + λ/22J+1

3λ
,

κ ≥ 0 : π((J + 1) + 2κ+ 1) =

1
4κ

(
1 + λ

2×4J

)
−
(

λ
4J+κ+1 + 1

2×4κ

)
3λ

=
1

22κ+1

1 + λ/22J+1

3λ
,

κ ≥ 1 : π((J + 1) + 2κ) =

(
λ

4J+κ
+ 1

2×4κ−1

)
− 1

4κ

(
1 + λ

2×4J

)
3λ

=
1

22κ

1 + λ/22J+1

3λ
,

we find the same distribution as (5.2).

7.2. Possible cluster size distributions in the periodic case.

Proof of Proposition 5.2. Consider the dynamical system given by gR with R to be
chosen later, and an observable ϕ such that U (0)

n (ξi) = B (ξi, `irn). We want an entrance
of the orbit in E

(i)
n to be followed by a cluster of size at least p − i + 1. Then we set

`i = (d1 . . . di−1). Then the quantities L
(i)
κ are defined by :

∀κ ∈ {0, . . . , p− i}, L(i)
κ = 1,

∀κ ∈ {1, . . . , p}, ∀ j ∈ N0, L(p−i+k+jp)
κ = 1/Dj−1,
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with D = |DgR(ξ1) . . .DgR(ξp)|, and π(i) is defined on the support pN− i+ 1 by :

∀ j ∈ N, π(i)(jp− i+ 1) =
1

Dj−1

(
1− 1

D

)
.

Since L
(i)
0 = 1 for every i ∈ {1, . . . , p}, the multiplicity distribution is defined by :

∀κ ∈ N0, π(κ) =

p∑
i=1

(1− ri)ρ(ξi)∑p
j=1 (1− rj)ρ(ξj)

π(i)(κ).

For every κ ∈ {1, . . . , p},

π(κ) =
(1− rp−κ+1)ρ(ξp−κ+1)∑p

j=1 (1− rj)ρ(ξj)
π(p−κ+1)(κ) =

(1− rp−κ+1)ρ(ξp−κ+1)∑p
j=1 (1− rj)ρ(ξj)

(
1− 1

D

)
since π(i)(κ) 6= 0 ⇐⇒ i = p−κ+ 1. We want to express D as a function of the parameters
ri. By gR-invariance, the measure of g−1

R (B(ξi, x)) is equivalent to ρ(ξi)x, as x tends to zero,
and its connected component containing ξi−1 is of measure equivalent to ρ(ξi−1) x

|DgR(ξi−1)| .

Then ri = ρ(ξi−1)
ρ(ξi)|DgR(ξi−1)| and

1
D = r1 . . . rp.

Now let a1, . . . , ap be positive real numbers such that a1 + . . . + ap < 1 and set ηκ :=
(1− rp−κ+1)ρ(ξp−κ+1). First we want π(κ) = aκ for every κ ∈ {1, . . . , p}, i.e. :

∀κ ∈ {1, . . . , p}, ηκ∑p
j=1 ηj

1−
p∏
j=1

(
1− ηj

ρ(ξp−j+1)

) = aκ.

If such real numbers ηκ exist, then 1 −
∏p
j=1 (1− ηj/ρ(ξp−j+1)) = a1 + . . . + ap since∑p

κ=1
ηκ∑p
j=1 xj

= 1. This implies

∀κ ∈ {1, . . . , p}, ηκ∑p
j=1 ηj

=
aκ∑p
j=1 aj

,

and it follows that there exists γ ≥ 0 such that ηκ = γaκ for every κ ∈ {1, . . . , p}. We have
to check that this is consistent with the equality 1−

∏p
j=1 (1− ηj/ρ(ξp−j+1)) = a1 + . . .+ap.

Let ψ(γ) := 1 −
∏p
j=1 (1− γaj/ρ(ξp−j+1)). The parameters ri have to be chosen in (0, 1),

then γ must be in (0, 1/M) with M := max
κ∈{1,...,p}

{
aκ

ρ(ξp−κ+1)

}
. ψ is continuous as a function

of γ, ψ(0) = 1 and ψ (1/M) = 0, then it follows from the intermediate value theorem that
there exists γ ∈ (0, 1/M) such that ψ(γ) = a1 + . . .+ ap. Then we get π(κ) = aκ for every
κ ∈ {1, . . . , p}.

The second point follows from the following facts :

• D = 1/(1− a1 − . . .− ap) by definition of γ;
• π(i) ∈ Π0

p,D.

�

7.3. Example given in [AFFR16] for the periodic case. In [AFFR16], the authors
illustrate the content with the following example concerning the periodic case.
Consider the dynamical system given by f(x) = 2x mod 1 on S1 and the observable :

ϕ(x) =


− log |x− ζ| for x close to ζ
|x− f(ζ)|−1/2 for x close to f(ζ)

|x− f3(ζ)|−1/2 for x close to f3(ζ)
0 otherwise
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with the 5-periodic point ζ := 1/31. Given τ and (un)n∈N satisfying nLeb(X0 > un) −→
n→∞

τ ,
the connected components of {ϕ > un} are given by :

U
(0)
n (ζ) = B(ζ,Exp(−un))

U
(0)
n (f(ζ)) = B(f(ζ), 1/u2

n)

U
(0)
n (f3(ζ)) = B(f3(ζ), 1/u2

n)

.

The problem is that we cannot define the sequence rn. However note that Exp(−un) =
n→∞

o(1/u2
n), meaning that U (0)

n (ζ) is asymptotically negligible compared with the connected
components of f−1(U

(0)
n (f(ζ))) and f−3(U

(0)
n (f3(ζ))). Then this ball has asymptotically

no effect and the multiplicity distribution can be more easily computed by considering the
observable :

ϕ̃(x) =

 |x− f(ζ)|−1/2 for x close to f(ζ)

|x− f3(ζ)|−1/2 for x close to f3(ζ)
0 otherwise

.

Then the theory is applied with N = 2,m1 = 0,m2 = 2, ξ1 = f(ζ), ξ2 = f2(ξ1), `1 = `3 = 1,
`2 = `4 = `5 = 0 and rn = 1/u2

n. Concerning the system, the quantities di are equal to 2

and δi = 1
2 . Then the quantities L

(i)
κ are defined by :



{L(1)
0 ≥ L

(1)
1 ≥ . . .} = {1/25M , 1/25M+2 |M ∈ N0}

{L(2)
0 ≥ L

(2)
1 ≥ . . .} = {1/25M+1, 1/25M+4 |M ∈ N0}

{L(3)
0 ≥ L

(3)
1 ≥ . . .} = {1/25M , 1/25M+3 |M ∈ N0}

{L(4)
0 ≥ L

(4)
1 ≥ . . .} = {1/25M+2, 1/25M+4 |M ∈ N0}

{L(5)
0 ≥ L

(5)
1 ≥ . . .} = {1/25M+1, 1/25M+3 |M ∈ N0}

L
(1)
2κ = 1/25κ, L

(1)
2κ+1 = 1/25κ+2

L
(2)
2κ = 1/25κ+2, L

(2)
2κ+1 = 1/25κ+4

L
(3)
2κ = 1/25κ, L

(3)
2κ+1 = 1/25κ+3

L
(4)
2κ = 1/25κ+2, L

(4)
2κ+1 = 1/25κ+4

L
(5)
2κ = 1/25κ+1, L

(5)
2κ+1 = 1/25κ+3

and we obtain : 
π(2κ+ 1) =

21

26

(
1

2

)5κ

π(2κ) =
67

13

(
1

2

)5κ

as in [AFFR16].

7.4. Example given in [AFFR16] for the non-periodic case. In [AFFR16], the authors
illustrate the content with the following example concerning the non-periodic case.
Consider the dynamical system given by f(x) = 2x mod 1 on S1 and the observable :

ϕ(x) =


− log |x− ζ| for x close to ζ
|x− f(ζ)|−1/2 for x close to f(ζ)

|x− f3(ζ)|−1/2 for x close to f3(ζ)
0 otherwise
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with the non-periodic point ζ :=
√

2/16. Given τ and (un)n∈N satisfying nLeb(X0 >
un) −→

n→∞
τ , the connected components of {ϕ > un} are defined by :

U
(0)
n (ζ) = B(ζ,Exp(−un))

U
(0)
n (f(ζ)) = B(f(ζ), 1/u2

n)

U
(0)
n (f3(ζ)) = B(f3(ζ), 1/u2

n)

.

As mentionned in 7.3, the ball U (0)
n (ζ) has asymptotically no effect and we consider :

ϕ̃(x) =

 |x− f(ζ)|−1/2 for x close to f(ζ)

|x− f3(ζ)|−1/2 for x close to f3(ζ)
0 otherwise

.

Then the theory is applied with N = 2,m1 = 0,m2 = 2, ξ1 = f(ζ), ξ2 = f2(ξ1), `1 = `3 = 1,
`2 = 0 and rn = 1/u2

n. Concerning the dynamical system, the quantities di are equal to 2,
δ0 = 0 and δ1 = δ2 = 1

2 . Then the quantities L
(i)
κ are defined by :

L
(1)
0 = 1, L

(1)
1 = 1/4

L
(2)
0 = 1/2

L
(3)
0 = 1

L
(i)
κ = 0 otherwise

and we obtain :  π(1) = 6/7
π(2) = 1/7
π(κ) = 0 for all κ ≥ 3

as in [AFFR16].
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