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Introduction

One of the main goals of Dynamical Systems is to describe the typical behavior
of orbits, specially as time goes to infinity. Even in cases of very simple evolu-
tion laws the orbits may have a rather complicated behavior, specially because
systems may display sensitivity on the initial conditions, i.e. a small variation
on the initial state gives rise to a completely different behavior of its orbit. The
approach to this kind of systems has been particularly well succeeded through
physical measures, or Sinai-Ruelle-Bowen (SRB) measures, which characterize
asymptotically, in time average, a large set of orbits in the phase space.

Systems displaying uniformly expanding/contracting behavior on Riemannian
manifolds (uniformly expanding maps and Axiom A attractors for diffeomor-
phisms and flows) have been exhaustively studied in the last decades; see [Bow75,
BR75, KS69, Rue76, Sin68, Sin72]. Systems exhibiting expansion only in asymp-
totic terms have been considered in [Jak81], where the existence of physical mea-
sures for many quadratic transformations of the interval were established; see
also [BC85, BY92]. Related to [BC85] is the work [BC91] for Hénon maps ex-
hibiting strange attractors. Motivated by the results for multidimensional non-
uniformly expanding systems in [Via97, Alv00], general conclusions for systems
exhibiting non-uniformly expanding behavior were drawn in [ABV00].

The aim of these notes is to present an introduction to physical measures for
partially hyperbolic attractors in finite dimensional compact Riemannian mani-
folds. Here we essentially give an overview of the main results in [PS82,BV00] for
the mostly expanding case, and [ABV00,ADLP14] for the mostly expanding case.
The strategy used in [ADLP14] to build SRB measures for partially hyperbolic
attractors whose central direction is weakly expanding will be discussed in more
detail in Section 3.

1. SRB measures

We start by presenting some basic results on Ergodic Theory to motivate the
definition of SRB measure. Given a probability measure space (X,A, µ), we say
that a map f : X → X is measurable if f−1(A) ∈ A for all A ∈ A. We say that f
preserves µ, or µ is invariant under f , if µ(f−1(A)) = µ(A) for all A ∈ A. It easily
follows from this definition that if µ is an f -invariant probability measure, then
the sets {x ∈M : x ∈ A} and {x ∈M : fn(x) ∈ A} have the same µ measure for
every n ∈ N. This means that the probability of finding a point in a measurable
set does not depend on the moment we consider.

Let X be a compact metric space. We denote by P(X) the space of probability
measures defined on the Borel σ-algebra of X. We introduce the weak* topology
on P(X) in the following way: a sequence (µn)n in P(X) converges to µ ∈ P(X)
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if and only if ∫
ϕdµn →

∫
ϕdµ, for each continuous ϕ : X → R.

We associate to a measurable map f : X → X an operator f∗ : P(X)→ P(X),
assigning to each µ ∈ P(X) the push-forward f∗µ, which is defined as

f∗µ(A) = µ(f−1(A)), for each A ∈ A.

One can easily check that f∗ is continuous whenever f is continuous. Note that
µ is invariant by f if and only if f∗µ = µ. If f is continuous, then taking some
measure µ ∈ P(X), a Dirac measure for instance, we define a sequence of measures
in P(X),

µn =
1

n

n−1∑
j=0

f j∗µ.

A weak* accumulation point of this sequence is necessarily a fixed point for f∗.

Theorem 1.1 (Krylov-Bogolyubov). — If f : M →M is continuous map of
a compact metric space M , then f has some invariant Borel probability measure.

Some of the first results on the probabilistic features of dynamical systems with
invariant probability measure go back to the work of Poincaré for conservative
systems and can be translated to our context in the following way:

Theorem 1.2 (Poincaré). — Let f preserve a probability measure µ. If A is
a measurable set, then for almost every x ∈ A, there are infinitely many n ∈ N
for which fn(x) ∈ A.

The previous result gives no information on the asymptotic frequency that
typical orbits visit A, i.e.

lim
n→∞

#{0 ≤ j < n : f j(x) ∈ A}
n

. (1)

Does this limit exist? Does it depend on x? Birkhoff Ergodic Theorem gives
answers to these questions and, in fact, gives more general conclusions. Before
we state it, let us introduce some important concept on this subject.

Assume that f preserves a measure µ. We say that µ is ergodic if µ(A) = 0 or
µ(M \A) = 0 whenever A ∈ A satisfies f−1(A) = A. Observing that f−1(A) = A
implies that f(A) ⊂ A and f(M \A) ⊂M \A, this means that the space cannot
be decomposed into two parts which are relevant (positive measure) that do not
interact.

Theorem 1.3 (Birkhoff). — Assume that f preserves a probability measure µ.
If ϕ is integrable, then there is an integrable function ϕ∗ such that for µ almost
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every x ∈M

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) = ϕ∗(x).

Moreover, if µ is ergodic, then ϕ∗(x) =
∫
ϕdµ for µ almost every x ∈M .

Taking ϕ as the characteristic function of a measurable set A, we easily deduce
that the limit in (1) exists for µ almost every x ∈ M . Furthermore, if µ is
ergodic, then that limit is equal µ(A). This means that the frequency of visits to
A coincides with the proportion that A occupies in the phase space.

The results that we have presented so far concern dynamics over a probability
measure space with no additional structure on the underlying phase space M .
Frequently M has a Riemannian manifold structure and a volume form which
gives rise to a Lebesgue measure on the Borel sets of M . As already seen, Birkhoff
Ergodic Theorem states that asymptotic time averages exist for almost every
point, with respect to an invariant measure µ, and they coincide with the spatial
average, provided µ is ergodic. However, an invariant measure can lack of physical
meaning, in the sense that sets with full µ measure may have zero Lebesgue
measure.

An invariant probability measure µ is called an Sinai-Ruelle-Bowen (SRB)
measure for f : M →M if, for a positive Lebesgue measure set of points x ∈M ,

lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) =

∫
ϕdµ, (2)

for all continuous ϕ : M → R. This means that the averages of Dirac measures
over the orbit of x converge in the weak* topology to the measure µ. We define
B(µ), the basin of µ, as the set of points x ∈ M for which (2) holds for all
continuous ϕ.

It is straightforward to check that a Dirac measure supported on an attracting
fixed point (or a periodic orbit, more generally) is an SRB measure. These are
examples of SRB measures which are singular with respect to Lebesgue measure
on M . However, there may be SRB measures which are absolutely continuous
with respect to Lebesgue measure. We leave it as an exercise to see that if µ is an
ergodic probability measure µ defined on the Borel sets of M , then µ(B(µ)) = 1
(to see this, use the fact that the space of continuous functions has a count-
able dense subset). It follows immediately that if, additionally, µ is absolutely
continuous with respect to Lebesgue measure, then µ is an SRB measure.

The systems that we are interested in this work are neither singular nor abso-
lutely continuous with respect to Lebesgue measure. Actually we are interested in
measures supported in partially hyperbolic attractors whose volume is zero, hence
we cannot expect them to be absolutely continuous with respect to Lebesgue mea-
sure on the ambient manifold. On the other hand, as these attractors contain
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some local unstable manifolds, the SRB measures cannot be supported in peri-
odic attractors, as well. These SRB measures will actually be the so called Gibbs
u-states that we introduce in Subsection 2.1.

2. Partially hyperbolic attractors

Let f : M →M be Ck diffeomorphism (k ≥ 2) defined on a finite dimensional
Riemannian manifold M endowed with a normalized volume form on the Borel
sets that we denote by Leb and call Lebesgue measure. Given a submanifold
γ ⊂M we use Lebγ to denote the measure on γ induced by the restriction of the
Riemannian structure to γ.

A compact invariant set A ⊂ M is called an attractor if there is an open set
U ⊃ A such that

f
(
U
)
⊂ U and A =

⋂
n≥0

fn(U). (3)

Notice that if there is an open set U ⊃ A satisfying the second condition in (3),
then there is an open set U ′ ⊃ A satisfying both conditions in (3); see e.g. [Shu87,
Lemma 2.9].

An attractor A is said to be partially hyperbolic, if there is an f -invariant
splitting TAM = Ecs⊕Ecu such that for some choice of a Riemannian metric on
M there is a constant 0 < λ < 1 such that:

1. Ecs ⊕ Ecu is a dominated splitting : for all x ∈ A
‖Df | Ecs

x ‖ · ‖Df−1 | Ecu
f(x)‖ ≤ λ.

2. Ecs is uniformly contracting or Ecu is uniformly expanding : for all x ∈ A
‖Df | Ecs

x ‖ ≤ λ or ‖Df−1 | Ecu
f(x)‖−1 ≤ λ.

The attractor A is called hyperbolic if both Ecs and Ecu are uniform. To empha-
size the uniform behavior, we shall write Es instead of Ecs in the first case, and
Eu instead of Ecu in the second case.

Classical results by Sinai, Ruelle and Bowen give a good description of the
statistical properties for

– Anosov diffeomorphisms [Sin72];
– Axiom A attractors [Rue76];
– Axiom A flows [BR75].

In particular, they prove the existence of ergodic Gibbs u-states, which in the
uniformly hyperbolic case happen to be SRB measures.

2.1. Gibbs u-states. — Let W u(x) be the unstable manifold through a point
x ∈ A. Given ε > 0 and Σ a C1 disk through x transverse to W u(x), let Π(x,Σ, ε)
be a box around W u(x) made of the union of all local unstable manifolds W u

ε (z)
with z ∈ A ∩ Σ. Given any invariant probability measure µ supported on Λ, by
Rokhlin Disintegration Theorem, for each z ∈ A ∩ Σ there are
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– a probability measure µ̂ on A ∩ Σ;
– a probability measure µz on W u

ε (z);

such that for any Borel set B ⊂ Π(x,Σ, ε) we have

µ(B) =

∫
µz(B)dµ̂(z).

We say that an invariant probability measure µ supported on Λ is a Gibbs u-state
if the measures µz given by Rokhlin Disintegration Theorem are absolutely con-
tinuous with respect to LebWu

ε (z). Moreover, as the unstable direction is uniform,
the density of µz with respect to Lebesgue measure on each unstable leaf through
z is uniformly bounded from above and below.

Notice that in the uniformly hyperbolic case, an ergodic Gibbs u-state is nec-
essarily an SRB measure. To see this, one just have to see that for an ergodic
measure Birkhoff’s averages are constant almost everywhere on local unstable
and local stable disks.

2.2. Mostly contracting case. — Here we consider a partially hyperbolic
attractor A whose tangent bundle splits as TAM = Ecs ⊕ Eu. Notice that in
this case, there is a well-defined local unstable manifold through each x ∈ A.
The strategy used in [BV00] to prove the existence of SRB measures for partially
hyperbolic attractors in this case is based on previous work, where Gibbs u-states
have already been obtained.

Theorem 2.1 (PS82). — Let A ⊆ M be a partially hyperbolic attractor for
f ∈ Diff2(M). Then there is some Gibbs u-state supported on A.

This result was proved in [PS82] considering a local unstable manifold γ ⊂ A
and showing that any weak* accumulation point of the sequence

µn =
1

n

n−1∑
j=0

f j∗ Lebγ

has conditional measures on local unstable manifolds which are absolutely con-
tinuous with respect to Leb on those manifolds.

To prove that the u-Gibbs states given by the previous theorem are in fact
SRB measures, we need some contraction in the Ecu direction. Giving a point
x ∈ A we define the largest Lypaunov exponent in the Ecs direction as

λc+(x) = lim sup
n→∞

1

n
‖Dfn|Ecs

x ‖.

Theorem 2.2 (BV00). — Let f ∈ Diff2(M) have a partially hyperbolic attrac-
tor A for which TAM = Ecs ⊕ Eu, and assume that

for any local unstable manifold Du ⊂ A we have λc+(x) < 0 for x in a
set with positive LebDu measure.
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Then there exist SRB measures µ1, ..., µ` supported in A such that for Leb almost
every x with ω(x) ⊂ A we have x ∈ B(µj) for some 1 ≤ j ≤ `.

The results in [BV00] give also sufficient conditions for the existence a unique
SRB measure. In the remaining of this subsection we give a rough idea on how
it is proved in [BV00] that a Gibbs u-state is an SRB measure and, additionally,
there is a finite number of ergodic Gibbs u-states. Let R be the set of regular
points of f , i.e. the set of points x ∈ Λ for which both conditions hold:

1. given any continuous function ϕ : M → R, both limits

lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) and lim
n→−∞

1

n

n−1∑
j=0

ϕ(f j(x)) (4)

exist and coincide;
2. the largest Lyapunov exponent of f at x

lim sup
n→∞

1

n
‖Dfn|Ecs

x ‖ = lim sup
n→−∞

1

n
‖(Dfn|Ecs

x )−1‖. (5)

exists and is negative.

By Pesin theory, through each regular point x ∈ R there is a well defined local
stable manifold W s

loc(x). A strong stable leaf W u is called regular if Lebesgue
almost every point in W u is regular. We define S ⊂ R as the set of regular points
in regular leaves.

Lemma 2.3. — The set S has full µ measure.

Proof. — Actually, considering a box Π(x,Σ, ε), let (µz)z be the conditional mea-
sures along the unstable manifolds of Π(x,Σ, ε) and µ̄ the quotient measure. Ac-
cording to Birkhoff and Oseledets Theorems, the limits in (4) and (5) exist for µ
almost every point. Thus, these limits exist µz almost everywhere for µ̄ almost
every z. It remains to see that the limit in (5) is negative. Since the limit in
(5) when n → −∞ is constant on unstable leaves and by assumption there is a
positive Lebesgue measure subset of points where it is negative, then it is nega-
tive almost everywhere. Consider a covering of S by boxes Π(x,Σ, ε) to get the
result.

We say that x, y ∈ S belong in the same accessibility class if there are points
x = z0, z1, . . . , zn = y in S such that at least one of the points yi or yi+1 belongs
in a stable or unstable leaf. This defines an equivalence relation, and points in a
same equivalence class necessarily have the same Birkhoff averages. Using ideas
similar to those in the proof of the previous lemma we are able to deduce:

Lemma 2.4. — Accessibility classes are open sets of S.
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It follows that there must be an at most countable number of accessibility
classes. Discarding those accessibility classes which have zero µ measure, and
recalling that Birkhoff averages are constant on accessibility classes, for any ac-
cessibility classe C, the measure defined by

µC(B) =
µ(B ∩ C
µ(C)

is ergodic. Hence, the ergodic components of µ are precisely the normalizations
of these measures µC . These measures have obviously conditional measures on
local unstable leaves absolutely continuous with respect to Lebesgue measures on
those leaves.

It remains to see that there are only finitely many accessibility classes. As-
suming, by contradiction, that there is an infinite sequence (Cn) of accessibility
classes, take for each n a regular strong unstable leaf γn such that S ∩ γn is
nonempty and contained in Cn. taking a subsequence, if necessary, and using
Ascoli-Arzela Theorem, we may assume that the disks γn converge in the C0

norm to some strong unstable disk Du. By assumption, there is a subset of
points x in Du for which λc+(x) < 0, and so through each of those points passes a
local unstable leave. As the points in those local unstable leaves and Du belong in
the same accessibility class, one necessarily deduces that there are distinct large
n and m such that Cn ∩ Cm 6= ∅. This gives a contradiction.

2.3. Mostly expanding case. — Assume now we have a partially hyperbolic
attractor A whose tangent bundle splits as TAM = Ecs⊕Eu. In this case we need
some some expansion in the Ecu direction, particularly ensuring the existence of
local unstable manifolds. Reducing the trapping region U , if necessary, we may
assume that the fibre bundles Es and Ecu have a (not necessarily invariant)
continuous extension to U .

We say that H ⊂ U is non-uniformly expanding (NUE) along Ecu if there are
ε > 0 and a Riemannian metric on M such that for all x ∈ H

lim sup
n→+∞

1

n

n∑
j=1

log ‖Df−1|Ecu
fj(x)
‖ < −ε.

The set H ⊂ U is weakly non-uniformly expanding (WNUE) along Ecu if there
are ε > 0 and some Riemannian metric on M such that for all x ∈ H

lim inf
n→+∞

1

n

n∑
j=1

log ‖Df−1|Ecu
fj(x)
‖ < −ε.

Theorem 2.5 (ABV00). — Let f ∈ Diff2(M) have a partially hyperbolic at-
tractor A for which TAM = Ecs ⊕ Eu, and assume that

there is H ⊆ U with Leb(H) > 0 such that f is NUE along Ecu.
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Then there exist SRB measures µ1, ..., µ` supported on A such that for Lebesgue
almost every x ∈ H we have x ∈ B(µj) for some 1 ≤ j ≤ `.

A key step in the proof of this result in [ABV00] is that for some centre-unstable
disk D there are H1, H2, H3 · · · ⊂ D such that the weak* accumulation points
(which are not necessarily invariant) of the sequence of measures

µn =
1

n

n−1∑
j=0

f j∗ (LebD |Hj), n ≥ 1,

have the u-Gibbs property. Moreover, there is some uniform constant α > 0 such
that for all n ≥ 1

µn(M) =
1

n

n−1∑
j=0

LebD(Hj) ≥ α.

To prove this last property it is essential to have NUE and not just WNUE.
Though the proof of this result in [ABV00] is deep and technically intricate, the
rough idea is that the above property implies that an accumulation point (which
now is an invariant measure) of

µn =
1

n

n−1∑
j=0

f j∗ Lebγ

must necessarily have some ergodic component whose conditional measures on
local unstable manifolds are absolutely continuous with respect to Lebesgue mea-
sure on those unstable manifolds.

Using a different approach, in [ADLP14] it is possible to deduce the same
conclusion under the assumption WNUE along Ecu.

Theorem 2.6 (ADLP14). — Let f ∈ Diff2(M) have a partially hyperbolic at-
tractor A for which TAM = Ecs ⊕ Eu, and assume that

there is H ⊆ U with Leb(H) > 0 such that f is WNUE along Ecu.

Then

1. there exist closed invariant transitive sets Ω1, ...,Ω` ⊂ A such that for Leb
almost every x ∈ H we have ω(x) = Ωj for some 1 ≤ j ≤ `;

2. there exist SRB measures µ1, ..., µ` supported on Ω1, ...,Ω`, whose basins have
nonempty interior, such that for Leb almost every x ∈ H we have x ∈ B(µj)
for some 1 ≤ j ≤ `.

Notice that the first item is a consequence of the second one, but for the strategy
developed in [ADLP14] we need to prove it independently, for it is a fundamental
step towards proving the second item. Differently from [ABV00], the strategy
used in [ADLP14] to prove the existence of an SRB measure supported on each
transitive piece Ωj is based on the existence of some geometric structures and
induced schemes that we introduce in Subsection 2.5.
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It remains an interesting question to know whether these results hold true
under the (weaker?) assumption that the map f has all Lyapunov exponents
along Ecu positive: there exists some ε > 0 such that for every x ∈ H and every
non-zero vector v ∈ Ecu

x

lim sup
n→∞

1

n
log ‖Dfn(x)v‖ > ε. (6)

Notice that condition (6), unlike NUE or WNUE, does not depend on the choice
of the metric. Clearly, if dim(Ecu) = 1, then (6) is equivalent to WNUE.

Problem 2.7. — Assume that f has all Lyapunov exponents positive along Ecu

on a subset of U with positive Lebesgue measure. Is there a Riemannian metric
on M such that f is WNUE along Ecu on some subset of U with positive Lebesgue
measure?

2.4. Examples. — Here we present an open class of diffeomorphisms intro-
duced in [ABV00, Appendix A] defined on the d-dimensional torus M = T d,
with d ≥ 4, whose tangent bundle splits into TM = Ecs ⊕ Ecu, having non-
uniformly expanding behavior in the Ecu direction, and non-uniformly contract-
ing behavior in the Ecs direction Lebesugue almost everywhere. Further examples
of partially hyperbolic attractors which are not uniformly hyperbolic can be found
in [BV00, Section 6].

Our construction allows in particular one of the two fibre bundles to keep the
uniform behavior, thus obtaining examples of systems which are not uniformly
hyperbolic but satisfy the assumptions of the theorems above.

We start with a linear Anosov diffeomorphism f0 on M = T d and let TM =
Eu⊕Es be the corresponding hyperbolic decomposition. Let V be a small neigh-
borhood of a fixed point of f0 and let f : M → M be a C2 diffeomorphism such
that

(a) f admits invariant cone fields Ccu and Ccs with small width α > 0 and
containing, respectively, the unstable bundle Eu and the stable bundle Es

of the Anosov diffeomorphism f0;
(b) there exists σ1 > 1 such that

| detDf(x)| > σ1

for any x ∈ V ;
(c) there exists σ2 < 1 satisfying

‖(Df | TxDcu)−1‖ < σ2 and ‖(Df | TxDcs)‖ < σ2

for x ∈M \ V and any disks Dcu, Dcs tangent to Ccu, Ccs, respectively;
(d) there exists some small δ0 > 0 satisfying

‖(Df | TxDcu)−1‖ < 1 + δ0 and ‖(Df | TxDcs)‖ < 1 + δ0

for any x ∈ V and any disks Dcu, Dcs tangent to Ccu, Ccs, respectively.
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For instance, if f1 is a torus diffeomorphism satisfying (a), (b), (d), and coin-
ciding with f0 outside V , then any map f in a C1 neighbourhood of f1 satisfies
all the previous conditions. The C1 open classes of transitive non-Anosov dif-
feomorphisms presented in [BV00, Section 6], as well as other robust examples
from [Mañ78], are constructed in this way and they fit in the present setting:
both these diffeomorphisms and their inverses satisfy (a)–(d).

Now, using the same arguments as in [ABV00, Lemma A1], we may conclude
that for sufficiently small δ0 > 0 Lebesgue almost every point x ∈ M spends a
positive fraction of the time outside the domain V . Then, using assumptions (c)
and (d) above, there exists c0 > 0 such that

lim sup
n→∞

1

n

n−1∑
j=0

log ‖(Df |Ecu
fj(x))

−1‖ ≤ −c0

These arguments also show that f is non-uniformly contracting along the
centre-stable direction, if it satisfies (a)–(d): Lebesgue almost every x ∈M has

lim sup
n→∞

1

n

n−1∑
j=0

log ‖Df |Ecs
fj(x)‖ ≤ −c0 .

This in particular implies that it is mostly contracting along the Ecs direction.

2.5. Gibbs-Markov-Young structures. — Here we introduce the geometric
structures that will enable us to prove the second part of Theorem 2.6. An
embedded disk γ ⊂M is called an unstable disk if

dist(f−n(x), f−n(y))→ 0, as n→∞
for every x, y ∈ γ. Similarly, γ is called a stable manifold if

dist(fn(x), fn(y))→ 0, as n→∞
for every x, y ∈ γ.

LetDu be the unit disk in some Euclidean space and Emb1(Du,M) be the space
of C1 embeddings from Du into M . We say that Γu = {γu} is a continuous family
of C1 unstable manifolds if there is a compact set Ks and Φu : Ks × Du → M
such that

i) γu = Φu({x} ×Du) is an unstable manifold;
ii) Φu maps Ks ×Du homeomorphically onto its image;

iii) x 7→ Φu|({x} ×Du) defines a continuous map from Ks into Emb1(Du,M).

Continuous families of C1 stable manifolds are defined similarly.
We say that Λ ⊂ M has a hyperbolic product structure if there exist a contin-

uous family of unstable manifolds Γu = {γu} and a continuous family of stable
manifolds Γs = {γs} such that

i) Λ = (∪γu) ∩ (∪γs);
ii) dim γu + dim γs = dimM ;
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1

Figure 1. Stable and unstable leaves

iii) each γs meets each γu in exactly one point;
iv) stable and unstable manifolds meet with angles bounded away from 0.

Let Λ ⊂ M have a hyperbolic product structure defined by the families of
stable and unstable leaves Γs and Γu. A subset Λ0 ⊂ Λ is called an s-subset if Λ0

also has a hyperbolic product structure and its defining families Γs0 and Γu0 can
be chosen with Γs0 ⊂ Γs and Γu0 = Γu; u-subsets are defined analogously.

1

Figure 2. s- and u-subsets

Given x ∈ Λ, let γ∗(x) denote the element of Γ∗ containing x, for ∗ = s, u. For
each n ≥ 1, let (fn)u denote the restriction of the map fn to γu-disks, and let
detD(fn)u be the Jacobian of D(fn)u.
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We say that f admits a Gibbs-Markov-Young (GMY) structure if there exist
a set Λ with hyperbolic product structure and constants C > 0 and 0 < α < 1,
depending on f and Λ, satisfying the following properties:

(P0) Lebesgue detectable: Lebγ(Λ) > 0 for each γ ∈ Γu.
(P1) Markov : there are pairwise disjoint s-subsets Λ1,Λ2, · · · ⊂ Λ such that

(a) Lebγ
(
(Λ \ ∪Λi) ∩ γ

)
= 0 on each γ ∈ Γu;

(b) for each i ∈ N there is Ri ∈ N such that fRi(Λi) is u-subset, and for
all x ∈ Λi

fRi(γs(x)) ⊂ γs(fRi(x)) and fRi(γu(x)) ⊃ γu(fRi(x)).

(P2) Contraction on stable leaves : for all γs ∈ Γs, x, y ∈ γs and n ≥ 1

dist(fn(y), fn(x)) ≤ Cαn.

(P3) Backward contraction on unstable leaves : for all γu ∈ Γu, x, y ∈ Λi ∩ γu and
0 ≤ n < Ri

dist(fn(y), fn(x)) ≤ CαRi−n dist(fRi(x), fRi(y)).

(P4) Bounded distortion: for all γu ∈ Γu and x, y ∈ Λi ∩ γu

log
detD(fRi)u(x)

detD(fRi)u(y)
≤ C dist(fRi(x), fRi(y)).

(P5) Regularity of the stable foliation: defining Θ: γ ∩ Λ→ γ′ ∩ Λ for γ, γ′ ∈ Γu

by taking Θ(x) equal to γs(x) ∩ γ′, then Θ is absolutely continuous.

This GMY structure allows us to introduce a return time function R : Λ→ N
and an induced map F : Λ→ Λ defined by

F |Λi = fRi|Λi and R|Λi = Ri.

The following result is standard for piecewise hyperbolic maps and a proof of it
can be found in [You98, Section 2].

Theorem 2.8. — Let F : Λ→ Λ be the induced map of a GMY structure for f .
Then

1. the induced map F has a unique SRB measure ν;
2. if the return time R : Λ→ N is integrable with respect to ν, then

µ =
∞∑
j=0

f j∗ (ν|{R > j})

is a finite measure and its normalization is an SRB measure for f .

The strategy to prove the second part of Theorem 2.6 (existence of SRB mea-
sures) is to see that on each transitive component Ωj given by the first part we
may build a GMY structure Λ ⊆ Ωj with integrable return times, and a then use
Theorem 2.8.
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3. GMY structures

We dedicate this section to give an idea how to prove the existence of a GMY
structure under the assumptions of Theorem 2.6. We essentially describe the
geometric construction on a reference leaf. Properties (P0)-(P4) follow easily from
the construction. Property (P5) is standard for uniformly hyperbolic attractors
and the classical ideas can be adapted to the partially hyperbolic setting; see
[ADLP14, Section 6.3] for details.

3.1. Hyperbolic times. — Given 0 < σ < 1, we say that n is a σ-hyperbolic
time for x ∈ A if

n∏
j=n−k+1

‖Df−1 | Ecu
fj(x)‖ ≤ σk, for all 1 ≤ k ≤ n.

For n ≥ 1 we define

Hn = Hn(σ) = {x ∈ A : n is a σ-hyperbolic time for x }.

As a consequence of WNUE we have:

Lemma 3.1. — There exist θ > 0 and σ > 0 such that for every x ∈ H

lim sup
n→∞

#{1 ≤ j ≤ n : x ∈ Hj(σ)}
n

≥ θ.

The dominated splitting TAM = Es⊕Ecu gives rise to Df -invariant conefields
{Cs

x}x∈V and {Ccu
x }x∈V in a neighborhood V of A. We say that D ⊂ V is a

cu-disk if TxD ⊂ Ccu
x for all x ∈ V .

Lemma 3.2. — Let D be a cu-disk. There exists C > 1 such that for each
x ∈ Hn ∩D there exists a neighborhood Vn(x) of x in D so that:

1. fn maps Vn(x) diffeomorphically onto Bcu(fn(x), δ1);
2. backward contraction: for all 1 ≤ k ≤ n and y, z ∈ Vn(x),

distfn−k(Vn(x))(f
n−k(y), fn−k(z)) ≤ σk/2 distfn(Vn(x))(f

n(y), fn(z));

3. bounded distortion: for all y, z ∈ Vn(x)

log
| detDfn | TyD|
| detDfn | TzD|

≤ C distfn(D)(f
n(y), fn(z))ζ .

The sets Vn(x) are called hyperbolic pre-disks.

Lemma 3.3. — Let D be a cu-disk with LebD(H) > 0. There are hyperbolic
pre-disks V1, V2, · · · ⊆ D and integers n1 < n2 < · · · such that for Bk = fnk(Vk)

lim
k→∞

LebBk f
nk(H ∩D)

LebBk(Bk)
= 1.
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Using the previous lemma and taking an accumulation disk of the sequence
(Bk)k we can prove the result below, which gives that the attractor can be de-
composed into a finite number of transitive pieces, thus giving the first part of
Theorem 2.6. See [ADLP14, Section 3] for details.

Proposition 3.4. — There exist closed invariant sets Ω1, ...,Ω` ⊆ A such that
for Lebesgue almost every x ∈ H we have ω(x) = Ωj for some 1 ≤ j ≤ `.
Moreover, each Ωj is transitive and contains a cu-disk ∆j of radius δ1 on which
f is WNUE along Ecu for Leb∆j

almost every point in ∆j.

To prove the second part of Theorem 2.6 it is enough to show that there is
a GMY structure Λ ⊆ Ωj with integrable return times for each Ωj. Recall that
each Ωj is transitive and contains a cu-disk ∆j of radius δ1 on which f is WNUE
along Ecu for Leb∆j

almost every point in ∆j. From here on we fix

Ω := Ωj and ∆ := ∆j ⊂ Ωj.

3.2. Construction on a reference leaf. — In this section we describe an
algorithm for the construction of a partition of some subdisk of ∆ which is the
basis of the construction of the GMY structure. We first fix some arbitrary
1 ≤ j ≤ ` and for the rest of the paper we let Ω = Ωj and ∆ = ∆j as in
Proposition 3.4. We also fix a constant δs > 0 so that local stable manifolds
W s
δs

(x) are defined for all points x ∈ K. For any subdisk ∆′ ⊂ ∆ we define

C(∆′) =
⋃
x∈∆′

W s
δs(x).

Let π denote the projection from C(∆′) onto ∆′ along local stable leaves. We
say that a centre-unstable disk γu ⊂ M u-crosses C(∆′) if π(γ) = ∆′ for some
connected component γ of γu∩C(∆′). The proof of the next lemma can be found

1

Figure 3. Disk u-crossing

in [ADLP14, Lemmas 4.3].
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Lemma 3.5. — There are p ∈ ∆ and N0 ≥ 1 such that for all δ0 > 0 sufficiently
small and each hyperbolic pre-disk Vn(x) ⊆ ∆ there is 0 ≤ m ≤ N0 such that
fn+m(Vn(x)) intersects W s

δs/2
(p) and u-crosses C(Bu

δ0
(p)), where Bu

δ0
(p) is the ball

in ∆ of radius δ0 centred at p.

We now fix p ∈ ∆, N0 ≥ 1 and δ0 > 0 sufficiently small so that the conclusions
of Lemma 3.5 hold. Considering the constant

K0 = max
x∈M

{
‖Df−1(x)‖, ‖Df(x)‖

}
, (7)

we choose in particular δ0 > 0 small so that

2δ0K
N0
0 σ−N0 < δ1K

−N0
0 . (8)

Now we define
∆0 = Bu

δ0
(p) and C0 = C(∆0). (9)

We also choose δ0 > 0 small so that any cu-disk intersecting W s
3δs/4

cannot reach
the top or bottom parts of C0, i.e. the boundary points of the local stable mani-
folds W s

δs
(x) through points x ∈ ∆0. For every n ≥ 1 we define

Hn = {x ∈ ∆ ∩H : n is a hyperbolic time for x }.
It follows from Lemma 3.2 that for each x ∈ Hn ∩ ∆0 there exists a hyperbolic
pre-disk Vn(x) ⊂ ∆. Then, by Lemma 3.5 there are 0 ≤ m ≤ N0 and a centre-
unstable disk ωxn ⊆ ∆ such that

π(fn+m(ωxn)) = ∆0. (10)

We remark that condition (10) may in principle hold for several values of m.1

Figure 4. A returning disk

For definiteness, we shall always assume that m takes the smallest possible value.
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Notice that ωxn is associated to x by construction, but does not necessarily con-
tain x.

In the sequel we describe an inductive partitioning algorithm which gives rise
to a (Leb mod 0) partition P of the cu-disk ∆0.

First step of induction. — Notice that since ‖Df‖ is uniformly bounded, for
any n ≥ 1, all hyperbolic pre-disks Vn(x) contain a ball of some radius τn > 0
depending only on n. In particular, by compactness, the set Hn ∩∆0 is covered
by a finite number of hyperbolic pre-disks Vn(x). We fix some large n0 ∈ N and
ignore any dynamics occurring up to time n0. Then there exist `n0 and points
z1, . . . , z`n0 ∈ Hn0 such that

Hn0 ∩∆0 ⊂ Vn0(z1) ∪ · · · ∪ Vn0(z`n0 ).

We now choose a maximal subset of points x1, . . . , xjn0 ∈ {z1, . . . , z`n0} such that
the corresponding sets ωxin0

of type (10) are pairwise disjoint and contained in ∆0,
and let

Pn0 = {ωx1n0
, . . . , ω

xjn0
n0 }.

These are the elements of the partition P constructed in the n0-step of the algo-
rithm. Let

∆n0 = ∆ \
⋃

ω∈Pn0

ω.

For each 0 ≤ i ≤ jn0 , we define the inducing time

R|ωxin0 = n0 +mi

where 0 ≤ mi ≤ N is the integer associated to ωxin0
as in (10). Let now Zn0 be the

set of points in {z1, . . . , z`n0} which were not chosen in the construction of Pn0 ,
i.e.

Zn0 = {z1, . . . , z`n0} \ {x1, . . . , xjn0}.
We remark that for every z ∈ Zn0 , the set ωzn0

associated to z must either intersect
some ωxin0

∈ Pn0 or intersect the complement of ∆0 in ∆, since otherwise it would
have been included in the set Pn0 .

We now introduce some notation to keep track of which one of the above
reasons is responsible for the fact that z belongs to Zn0 . We let ∆c

0 = ∆ \∆0 and
for each ω ∈ Pn0 ∪ {∆c

0} we define

Zω
n0

=
{
x ∈ Zn0 : ωxn0

∩ ω 6= ∅
}

and the associated n0-satellite set

Sωn0
=
⋃

x∈Zωn0

Vn0(x).

Finally let
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1

Figure 5. First elements and satellites

Vn0 =

jn0⋃
i=1

V (xi)

and

Sn0 =
⋃

ω∈Pn0∪{∆
c
0}

Sωn0
∪ Vn0 .

Notice that Sn0

Hn0 ∩∆0 ⊂ Sn0 ∪
⋃

ω∈Pn0

ω.

General step of induction. — We now proceed inductively and assume that
the construction has been carried out up to time n − 1 for some n > n0. More
precisely, for each n0 ≤ k ≤ n − 1 we have a collection of pairwise disjoint sets
Pk = {ωx1k , ..., ω

xjk
k } which “return” at time k + m with 0 ≤ m ≤ N , and such

that for any k 6= k′, any two sets ω ∈ Pk and ω′ ∈ Pk′ we have ω ∩ ω′ = ∅. We
also have a set ∆k which is the set of points which do not yet have an associated
return time. To construct all relevant objects at time n, we note first all, as
before, that there are z1, . . . , z`n ∈ Hn ∩∆n−1 such that

Hn ∩∆n−1 ⊂ Vn(z1) ∪ · · · ∪ Vn(z`n),

and we choose a maximal subset of points x1, . . . , xjn ∈ {z1, . . . , z`n} such that
the corresponding sets of type (10) are pairwise disjoint and contained in ∆n−1.
Then we let

Pn = {ωx1n , . . . , ωxjnn }
These are the elements of the partition P constructed in the n-step of the algo-
rithm. We also define the set of points of ∆0 which do not belong to partition
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elements constructed up to this point:

∆n = ∆0 \
⋃

ω∈Pn0∪···∪Pn

ω.

For each 0 ≤ i ≤ jn we set
R|ωxin = n+mi,

where 0 ≤ mi ≤ N is the integer associated to ωxin0
as in (10). Let

Zn = {z1, . . . , z`n} \ {x1, . . . , xjn}
and for any ω ∈ Pn0 ∪ · · · ∪ Pn ∪ {∆c

0} define

Zω
n = {z ∈ Zn : ωzn ∩ ω 6= ∅}

and its n-satellite
Sωn =

⋃
z∈Zωn

Vn(z).

Finally let

1

Figure 6. Next elements

Vn =

jn⋃
i=1

V (xi)

and
Sn =

⋃
ω∈Pn0∪···∪Pn∪{∆

c
0}

Sωn ∪ Vn.

Note that for each n ≥ n0 one has

Hn ∩∆n−1 ⊂ Sn ∪
⋃

ω∈Pn0∪···∪Pn

ω. (11)

More specifically we have that Hn ∩ ∆n−1 ⊂ Sn, i.e. all points in ∆n−1 which
have a hyperbolic time at time n are ”covered” by Sn while the points which
have a hyperbolic time at time n but which are already contained in previously
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constructed partition elements, are trivially ‘covered” by the union of these par-
tition elements. The inclusion (11) will be crucial to prove the integrability of
the return times.

This inductive construction allows us to define the family

P =
⋃
n≥n0

Pn

of pairwise disjoint subsets of ∆0. At this point there is no guarantee that P forms
a Leb mod 0 partition of ∆0. This will follow as a consequence of Proposition 3.7
below.

3.3. The measure of satellites. — In this section we state some estimates on
the decay of the Lebesgue measure of satellites. This will be useful to show that
the elements of P defined in the previous section form a Leb∆ mod 0 partition
of the disk ∆0 introduced in (9). The estimates will also be used later to prove
the integrability of the return times with respect to Leb∆.

Lemma 3.6. — There is C > 0 such that for all k ≥ n0, ω ∈ Pk ∪ {∆c
0} and

n ≥ k, we have

LebD(Sn(ω)) < Cσ
n−k
2 LebD(ω).

Using this lemma one can prove the following result.

Proposition 3.7. —
∞∑

n=n0

Leb∆(Sn) <∞.

For a proof of these results see [ADLP14, Section 5].

3.4. The partition. — We are now ready to show that our inductive construc-
tion gives rise to a Leb∆ mod 0 partition of ∆0. Recall that ∆0 ⊃ ∆n0 ⊃ ∆n0+1 ⊃
..., where ∆n is the set of points which does not belong to any element of the
collection P constructed up to time n. It is enough to show that

Leb∆

(⋂
n

∆n

)
= 0. (12)

To prove this, notice that by Proposition 3.7, the sum of the Leb∆ measures of
the sets Sn is finite. It follows from Borel-Cantelli Lemma that Leb∆ almost
every x ∈ ∆0 belongs only to finitely many Sn’s, and therefore one can find n
such that x /∈ Sj for j ≥ n. Since Leb∆ almost every x ∈ ∆0 has infinitely many
hyperbolic times, it follows from (11) that x ∈ ω for some ω ∈ Pn0 ∪ · · · ∪Pn and
therefore (12) holds.



SRB MEASURES FOR PARTIALLY HYPERBOLIC ATTRACTORS 21

We are now ready to define the GMY structure on Ω as in the beginning of
Section 3.2. Consider the center-unstable disk ∆0 ⊂ ∆ as in (9) and the Leb∆

mod 0 partition P of ∆0 defined in Section 3.2. We define

Γs =
{
W s
δs(x) : x ∈ ∆0

}
.

Moreover, we define Γu as the set of all local unstable manifolds contained in C0

which u-cross C0. Clearly, Γu is nonempty because ∆0 ∈ Γu. We need to see
that the union of the leaves in Γu is compact. This follows ideas that we have
already used to prove Proposition 3.4. By the domination property and Ascoli-
Arzelà Theorem, any limit leaf γ∞ of leaves in Γu is still a cu-disk u-crossing
C0. Thus, by definition of Γu, we have γ∞ ∈ Γu. We thus define our set Λ
with hyperbolic product structure as the intersection of these families of stable
and unstable leaves. The cylinders {C(ω)}ω∈P then clearly form a countable
collection of s-subsets of Λ that play the role of the sets Λ1,Λ2, . . . in (P1) with
the corresponding return times R(ω). We refer to [ADLP14, Section 6] to see
that (P1)-(P5) hold. It remains to check the integrability of the return times.

3.5. Integrability of the return times. — So far, we have proved some
result in a general setting for an induced map F over a GMY structure Λ and the
respective quotient map F̄ . We have shown that F̄ has an absolutely continuous
measure with respect to a reference measure m̄ and this measure ν̄ lifts to a
measure ν which is an SRB measure for F .

Our goal now is to prove the integrability of the return time for the GMY
structure constructed in Section 3 with respect to R, which completes the proof
of Theorem 2.6. Noting that R is constant on stable leaves, by Proposition ?? it
is enough to show that R is integrable with respect to ν̄. Note also that in this
case we may think of Λ as being equal to the disk ∆0 and ν̄ as being Lebesgue
measure on ∆0.

Lemma 3.8. — The inducing time function R is ν̄-integrable on ∆0.

Proof. — For x ∈ ∆ we consider the orbit x, f(x), ..., fn−1(x) of the point x under
iteration by f for some large value of n. Then we define

H(n)(x) := number of hyperbolic times for x before time n

S(n)(x) := number of times x belongs to a satellite before time n

R(n)(x) := number of returns of x before time n

Each time x has a hyperbolic time, it either has a return within some finite
number of iterations, or it belongs to a satellite. Therefore,

R(n)(x) + S(n)(x) ≥ H(n)(x)

Dividing by n we get

R(n)(x)

n
+
S(n)(x)

n
≥ H(n)(x)

n
.
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Recall that there exist θ > 0 and arbitrarily large values of n such thatH(n)(x)/n ≥
θ, and therefore

R(n)(x)

n

(
1 +

S(n)(x)

R(n)(x)

)
≥ θ.

By Birkhoff’s Ergodic Theorem we have

S(n)(x)

R(n)(x)
−→

∫
Sdν̄ '

∞∑
n=n0

Leb∆(Sn) <∞.

(Note that R(n)(x) is the number of iterations under the induced map F ). It
follows from the last two equations that there is κ > 0 such that we can choose
arbitrarily large values of n for which

R(n)(x)

n
≥ κ. (13)

Arguing by contradiction, assume that
∫
Rdν̄ = +∞. Notice that the average

return times before time n is

n

R(n)(x)
−→

∫
Rdν̄ = +∞.

Therefore
R(n)(x)

n
−→ 0.

This contradicts (13), and so we must have∫
Rdν̄ < +∞.
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