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Abstract. This is a survey article on a question, posed in 1985 by M. Co-
hen, whether the smash product A#H of a semisimple Hopf algebra and a
semiprime left H-module algebra A is itself semiprime.

1. The question

This paper is a survey on the following question which was raised by Miriam
Cohen in [10] and which, to the best of my knowledge, has not yet been completely
answered.

Question 1.1 (M. Cohen, 1985). Is the smash product A#H semiprime in
case H is a semisimple Hopf algebra acting on a semiprime algebra A ?

Recall that a ring R is semiprime if its prime radical, the intersection of its
prime ideals, is zero. Equivalently R is semiprime if and only if it has no nilpotent
non-zero ideals.

1.1. Preliminaries. After Bergman’s article [4] “Everybody knows what a
Hopf algebra is”, Hopf algebras could be considered a well-established part of alge-
bra. Nevertheless I shall briefly review Hopf algebras and their action on algebras.
Standard texts on this subjects are [1,9,22,38,48,52]. Let k be a field of char-
acteristic zero.1 Unadorned tensors ⊗ are considered over k. A Hopf algebra is an
algebra and a coalgebra satisfying certain relations. Hence let us first define the
notion of a coalgebra over a field k.

Definition 1.2. A coalgebra (C,∆, ϵ) is a k-vector space C with k-linear maps
∆ : C → C ⊗ C resp. ϵ : C → k, called the comultiplication and counit of C
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respectively, such that the following diagrams are commutative.
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I will denote an (associative, unital) algebra A over k by a triple (A, µ, η) where
µ : A ⊗ A → A is the multiplication and η : k → A is a k-linear algebra map with
η(1) = 1A being the identity of A.

Definition 1.3. Given a coalgebra (C,∆, ϵ) and an algebra (A, µ, η) the space
of linear maps Hom(C, A) becomes an algebra via the convolution product:

f ∗ g = µ ◦ (f ⊗ g) ◦∆ : C
∆ !! C ⊗ C

f⊗g
!! A ⊗ A

µ
!! A

for all f, g ∈ Hom(C, A), while the identity element of Hom(C, A) is η ◦ ϵ.

A Hopf algebra H is an algebra and a coalgebra with certain compatibility
conditions and the inverse element of the identity map in the convolution algebra
End(H).

Definition 1.4. A Hopf algebra (H, µ, η,∆, ϵ, S) over k is an algebra (H, µ, η)
and a coalgebra (H,∆, ϵ) such that ∆ and ϵ are algebra maps and idH has an
inverse in (End(H), ∗, η ◦ ϵ) which is denoted by S and called the antipode of H.

Example 1.5. Let (H, µ, η,∆, ϵ, S) be a finite dimensional Hopf algebra and
H∗ = Hom(H, k). Then (H∗,∆∗, ϵ∗, µ∗, η∗, S∗) is also a Hopf algebra. Where
f∗ : V ∗ → W ∗ is the transpose map of a linear map f : W → V of finite dimensional
spaces defined by f∗(ϕ) = ϕ ◦ f , for all ϕ ∈ V ∗. Obviously k∗ is identified with
k. In particular this means that for η(1) = 1H one has that for all f ∈ H∗,
η∗(f) = f ◦ η ∈ k∗ which is identified with f(1H). Moreover if {g1, . . . , gn} is a
basis for H and {p1, . . . pn} is a dual basis for H∗, then the comultiplication µ∗ of
H∗ takes the form

(1.1) µ∗(f) =
n∑

i=1

n∑

j=1

f(gigj)pi ⊗ pj ∀f ∈ H∗.

For this survey, the two most important examples of finite dimensional Hopf
algebras are the following ones.

Example 1.6. Let G be a finite group.

(1) The group algebra k[G] is a Hopf algebra with

∆(g) = g ⊗ g, ϵ(g) = 1, S(g) = g−1 ∀g ∈ G.

(2) The dual group algebra k[G]∗ = Hom(k[G], k) with dual basis {pg}g∈G is
a Hopf algebra where

∆(pg) =
∑

h∈G

pgh−1 ⊗ ph, ϵ(pg) = δe,g, S(pg) = pg−1 ∀g ∈ G.

Here e denotes the identity element of G and δx,y is the Kronecker symbol.
Note that pg ∈ k[G]∗ is defined as pg(h) = δg,h for any g, h ∈ G. Since the
multiplication of k[G]∗ is given by the convolution product, the elements
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pg are pairwise orthogonal idempotents. Thus as an algebra k[G]∗ is
simply the direct product of |G| copies of k.

Definition 1.7. A finite dimensional Hopf algebra is called trivial if it is
isomorphic as a Hopf algebra to a group algebra or a dual group algebra.

1.2. Hopf algebra actions. The category H-Mod of left H-modules is a
tensor (or monoidal) category. More precisely given two left H-modules V and W
their tensor product V ⊗W becomes again a left H-module by the following action:

h · (v ⊗ w) = ∆(h)(v ⊗ w) =
∑

(h)

(h1 · v) ⊗ (h2 · w),

for all h ∈ H, v ∈ V, w ∈ W. The identity object of the category H-Mod is I = k,
since the natural isomorphisms V ⊗k ≃ k ≃ k⊗V are morphisms in H-Mod, where
H acts on k via the counit ϵ. An algebra (A, µ, η) in a tensor category (C,⊗, I) is
an object in this category having morphisms µ : A ⊗ A → A and η : I → A in C
which satisfy the usual associativity and unity constraints.

Definition 1.8. An algebra A in the category of left H-modules is called a
(left) H-module algebra.

This means that an ordinary k-algebra (A, µ, η) is a left H-module algebra if
it has a left H-module action · : H ⊗ A → A, such that ∀h ∈ H, a, b ∈ A:

(1.2) h·(ab) = h·µ(a⊗b) = µ(h·(a⊗b)) =
∑

(h)

µ((h1·a)⊗(h2·b)) =
∑

(h)

(h1·a)(h2·b),

(1.3) h · 1A = h · η(1k) = η(h · 1k) = η(ϵ(h)) = ϵ(h)1A.

Example 1.9. Let G be a group and A a k-algebra. Then the possible left
k[G]-module algebra structures on A correspond to group homomorphisms ψ : G →
Aut(A) from G to the group of automorphisms of A. To see this, note that if A is
a left k[G]-module algebra, then equations (1.2) and (1.3) show that for each g ∈ G
the map ψ(g) : A → A with ψ(g)(a) = g · a for all a ∈ A, is an automorphism of
A with inverse ψ(g−1). That ψ is a homomorphism of groups follows from A being
a k[G]-module. It is easy to check that any such group homomorphism ψ will give
raise to a k[G]-module algebra structure; a particular case is if ψ(g) = idA for all
g ∈ G.

Example 1.10. Let G be a finite group and A a k-algebra. Then the possible
left k[G]∗-module algebra structures on A correspond to possible gradings of A by
G, i.e. A =

⊕
g∈G Ag with AgAh ⊆ Agh. To see this, note that if A is a left

k[G]∗-module algebra, then define Ag := pg · A. Since the pg’s form a complete set
of orthogonal idempotents, A =

⊕
g∈G Ag. Moreover since ph ·Ag = 0 if h ̸= g, one

has that AgAh ⊆ Agh using equation (1.2). Equation (1.3) implies that 1A ∈ Ae.
On the other hand, given any grading A =

⊕
g∈G Ag by G one defines pg ·a = πg(a),

for all g ∈ G, a ∈ A, where πg is the canonical projection of A onto Ag. In particular
the trivial grading A = Ae and Ag = {0}, for all g ̸= e, yields a left k[G]∗-module
algebra structure.

As seen, trivial Hopf algebras act either as group actions or as group gradings. A
recent result of Etingof and Walton, [17] shows that over an algebraically closed field
of characteristic 0 any action of a semisimple Hopf algebra H on a (commutative)
integral domain A is virtually an action of a group algebra:
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Theorem 1.11 (Etingof-Walton, 2013). Let A be an integral domain and k an
algebraically closed field of characteristic 0. For any action of a semisimple Hopf
algebra H on A exists a Hopf ideal I of H and a group G such that

I · A = 0 and H/I ≃ k[G].

According to the terminology of [17], a Hopf algebra H acts inner faithfully on
an algebra A if there does not exist a non-zero Hopf ideal J of H with J · A = 0.
It is clear that given any Hopf algebra H acting on A, the sum I of all those Hopf
ideals J with J ·A = 0 is again a Hopf ideal and hence H/I acts inner faithfully on
A.

As pointed out in [17, Proposition 5.4], theorem 1.11 can be extended to filtered
algebras A such that the Hopf action preserves the filtration and such that the
associated graded algebra gr(A) is a commutative integral domain.

1.3. Smash product.

Definition 1.12 (Smash product). The smash product A#H of a Hopf algebra
H and a left H-module algebra A is defined on the tensor product A#H := A⊗H
with multiplication:

(a#h)(b#g) =
∑

(h)

a(h1 · b)#h2g,

and identity 1A#1H .

It is not difficult to show that this multiplication equips A#H with a well-
defined, associative and unital k-algebra structure. For H = k[G] and a left k[G]-
module algebra, the smash product A#H is known as the skew group ring of A
and G and is denoted by A ∗G. For the trivial action, g ·a = a for all g ∈ G, a ∈ A,
one recovers the group algebra A ∗ G = A[G] of G over A. For group gradings,
the smash product A#k[G]∗ has been used for instance in [13]. The algebra A
becomes a left A#H-module structure by the action (a#h) • b = a(h · b) for all
a, b ∈ A, h ∈ H. The left A#H-submodules of A are precisely the left ideals of A
that are stable under the H-action.

Definition 1.13 (Subalgebra of Invariants). Let M be a left H-module. The
subspace MH = {m ∈ M | h · m = ϵ(h)m, ∀h ∈ H} is called the subspace of
H-invariant elements of M . For M = A a left H-module algebra, the subspace AH

becomes a subalgebra of A, called the subalgebra of invariants.

For a left A#H-module M , there is a natural identification of MH as the set
of left A#H-linear maps from A to M via the isomorphism:

HomH(A, M) → MH f *→ (1)f, ∀f ∈ HomH(A, M),

where homomorphisms of left modules are written opposite of scalars. For M =
A one obtains EndA#H(A) ≃ AH . In particular (A#H, A, (A#H)H , AH) is the
standard Morita context of the left A#H-module A via the identification of AH

with EndA#H(A) and (A#H)H with HomA#H(A, A#H) (see [11]).
The origin of Cohen’s question stemmed from the next two results, which in

characteristic 0 can be stated as follows:

Theorem 1.14 (Fisher-Montgomery, 1978; Lorenz-Passman, 1980). Let A be
a k[G]-module algebra, with G a finite group. Then A#k[G] is semiprime if A is
G-semiprime.
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Here G-semiprime means that A does not contain any non-zero nilpotent G-
stable ideals. For the proof see [18,33]. Actually their proof deals more generally
with algebras not necessarily over fields, such that A does not have |G|-torsion. The
proof given by Lorenz and Passman uses the fact that the skew group ring A ∗G is
a finite normalizing extension of A.

Theorem 1.15 (Cohen-Montgomery, 1984). Let A be a G-graded k-algebra,
with G a finite group. Then A#k[G]∗ is semiprime if A is G-graded semiprime.

For the proof see [12]. Here G-graded semiprime means that A does not contain
any non-zero nilpotent G-graded ideals.

Summarizing: theorems 1.14 and 1.15 show that Cohen’s question has a positive
answer for actions of trivial Hopf algebras.

1.4. Semisimple Hopf algebra. Suppose that for a fixed finite dimensional
Hopf algebra H the following implication holds for any left H-module algebra A:

(1.4) A semiprime =⇒ A#H semiprime.

Considering A = k, one concludes that H ≃ k#H is semiprime and hence semisim-
ple Artinian. Let me call H strongly semisimple if it is finite dimensional and
satisfies (1.4) for all left H-module algebras A. Hence Cohen’s question can be
reformulated as ”Are all semisimple Hopf algebras strongly semisimple ?”. There-
fore it is important to have a closer look at semisimple Hopf algebras. Larson and
Radford characterized in [25] semisimple Hopf algebras over a field of characteristic
zero.

Theorem 1.16 (Larson-Radford, 1988). The following are equivalent for a
Hopf algebra H over k:

(1) H is a semisimple algebra;
(2) H∗ is a semisimple algebra;
(3) S2 = id.

1.5. Blattner-Montgomery duality. Let A be a left H-module algebra over
a finite dimensional Hopf algebra H. The smash product B = A#H has the
structure of a left H∗-module algebra given by

f · (a#h) :=
∑

(h)

a#f(h2)h1, ∀a ∈ A, h ∈ H, f ∈ H∗.

Blattner and Montgomery showed in [6] that A#H#H∗ = B#H∗ ≃ Mn(A), where
n = dim(H) and Mn(A) denotes the algebra of n×n-matrices over A. Hence if H∗

is strongly semisimple, then the left H∗-module algebra B = A#H is semiprime
provided B#H∗ ≃ Mn(A) is semiprime, i.e. provided A is semiprime. Cohen’s
question can be therefore rephrased as follows:

Corollary 1.17. Every semisimple Hopf algebra is strongly semisimple if and
only if for any semisimple Hopf algebra H and left H-module algebra A:

A is semiprime ⇐⇒ A#H is semiprime.

Note that the subalgebra of invariants of B = A#H is BH∗
= A. Moreover

A ⊆ B = A#H is what is called a H∗-Galois extension, which basically means that
A and B#H∗ are Morita equivalent. While in general a H∗-Galois extension A ⊆ B
cannot be expressed as a smash product, but as a crossed product, Cohen’s question
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could be generalized to H-Galois extension BcoH ⊆ B with H being semisimple.
This more general approach has been considered in [40] where in particular the
Krull relations, i.e. maps between Spec(A) and Spec(B)) were studied.

1.6. Trivial Hopf algebras. Note that if H is a commutative n-dimensional
semisimple Hopf algebra, then H has a complete orthogonal set of idempotents
{p1, . . . , pn} of H such that Hpi is one-dimensional. Let {g1, . . . , gn} be the cor-
responding dual basis in H∗. By equation (1.1) one has that for all 1 ≤ i ≤ n:
∆H∗(gi) =

∑
s,t gi(pspt)gs ⊗ gt = gi ⊗ gi, i.e. the basis {g1, . . . , gn} of H∗ consists

of group-like elements. Hence H∗ is a group algebra.
Analogously one has for a cocommutative finite dimensional semisimple Hopf

algebra H that H∗ is commutative and semisimple by Larson and Radford’s theo-
rem and hence H ≃ H∗∗ is a group ring.

Corollary 1.18. Let H be any semisimple Hopf algebra over k.

(1) If H is commutative, then there exists a group G such that H ≃ k[G]∗.
(2) If H cocommutative, then there exists a group G such that H ≃ k[G].

Trivial Hopf algebras are precisely those that are semisimple and commutative
or cocommutative. For Cohen’s question it is therefore important to consider non-
commutative, non-cocommutative semisimple Hopf algebras.

1.6.1. A non-trivial semisimple Hopf algebra and a non-trivial action. The
smallest example of a non-trivial semisimple Hopf is the following (see [35])

Example 1.19 (Masuoka 1995). Let G = C2 ×C2 be the Klein group with C2

being the cyclic group of order 2. Let x and y be a pair of generators of G. Denote
by R = C[G] the group algebra of G over C and let σ be the involution of R that
swaps x and y. The element z2− 1

2 (1+x+y−xy) is central in the skew polynomial
ring R[z;σ]. Moreover the Hopf algebra structure of R extends to a Hopf algebra
structure of the quotient:

H8 = R[z;σ]/⟨z2 − 1

2
(1 + x + y − xy)⟩,

where one sets

∆(z) =
1

2
(1 ⊗ 1 + 1 ⊗ x + y ⊗ 1 − y ⊗ x)(z ⊗ z), S(z) = z, ϵ(z) = 1.

Note that S = id shows that H8 is semisimple by Larson and Radford’s theorem.
Etingof and Walton’s theorem 1.11 showed that any action of semisimple Hopf
algebra on a commutative domain is virtually given by a group action. If A is a
non-commutative domain, then there might exist an action of a semisimple Hopf
algebra H that does not act as a trivial Hopf algebra. The following example stems
from Kirkman et al. [23, Example 7.4]:

Example 1.20 (A non-trivial action of H8 on the quantum plane). Let A =
Cq[u, v] be the quantum plane at the parameter q with q2 = −1. Masuoka’s eight-
dimensional semisimple Hopf algebra H8 acts on A as follows:

x · u = −u, y · u = u, z · u = v
x · v = v, y · v = −v, z · v = u.
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Note that

z · (uv) =
1

2
((z · u)(z · v) + (z · u)(xz · v) + (yz · u)(z · v) − (yz · u)(xz · v))

=
1

2
(vu − vu − vu − vu) = −vu ̸= vu = (z · u)(z · v)

This shows that z does not act as an algebra endomorphism.

2. Conditions on A

There are two possible ways to tackle Cohen’s problem: by additional assump-
tions on the left H-module algebra A (apart from being semiprime) and by addi-
tional conditions on the Hopf algebra H (apart from being semisimple). I will focus
first on additional properties on the module algebra A.

2.1. Separable extensions. Maschke’s theorem says that a group algebra
H = k[G] of a finite group G is a semisimple Artinian ring if and only if char(k) ! |G|.
Sweedler proved an analogues theorem for Hopf algebras in [53]:

Theorem 2.1 (Sweedler). The following statements are equivalent for a Hopf
algebra over a field k:

(a) H is a semisimple Artinian Hopf algebra;
(b) H is a separable k-algebra;
(c) k is a projective left H-module;
(d) ∃t ∈ H : ∀h ∈ H : ht = ϵ(h)t and ϵ(t) = 1.

The element t ∈ H such that ht = ϵ(h)t for all h ∈ H is called a left integral
in H. Such integrals exists in a Hopf algebra if and only if the Hopf algebra is
finite dimensional (see [24,30,46]). In the case of a group algebra H = k[G], an
integral corresponds to (a scalar multiple) of t =

∑
g∈G g. Note that a left integral

t is also a right integral in case H is semisimple and hence t is a central idempotent
of H. The condition (d) of Sweedler’s theorem can be seen as a generalization of
Maschke’s theorem, because ϵ(t) = |G|1H is non-zero if and only if char(k) ! |G|.

A generalization of a separable k-algebra is the notion of a separable ring ex-
tension that was introduced by Hirata and Sugano in [20]:

Definition 2.2 (Hirata-Sugano, 1966). A ring extension R ⊆ S is separable if
the multiplication map mult : S⊗RS → S splits as S-bimodule.

Equivalently R ⊆ S is a separable ring extension if there exists an element
γ ∈ S⊗RS that is S-centralizing, i.e. sγ = γs for all s ∈ S, and that satisfies
mult(γ) = 1. An element γ in S⊗RS with these properties is called a separable
idempotent.

A characterization of semisimple Hopf algebras in terms of separable extensions
is given as follows:

Corollary 2.3. H is semisimple if and only if A ⊆ A#H is a separable
extension for any left H-module algebra A.

Proof. Let H be a semisimple Hopf algebra and let t be an integral in H with
ϵ(t) = 1 from theorem 2.1(d). Let γ =

∑
(t) 1#S(t1)⊗A 1#t2 ∈ (A#H)⊗A (A#H).

If µ denotes the multiplication of A#H, then

µ(γ) =
∑

(t)

(S(t2) · 1A)#S(t1)t3 = 1A#
∑

(t)

S(t1)ϵ(S(t2))t3 = 1A#ϵ(t)1H = 1A#1H .
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Given an element h ∈ H one has h⊗∆(t) =
∑

(h,t) h1⊗t1h2⊗t2h3 (see for example
[30]). Thus

h
∑

(t)

S(t1) ⊗ t2 =
∑

(h,t)

h1S(t1h2) ⊗ t2h3 =
∑

(t)

S(t1) ⊗ t2h.

i.e. γ(1#h) = (1#h)γ. Also for any a ∈ A one has

γa =
∑

(t)

1#S(t1)⊗A(1#t2)(a#1)

=
∑

(t)

(1#S(t1))(t2 · a#1)⊗A1#t3 =
∑

(t)

((t2S(t3) · a)#S(t1)⊗A1#t4 = aγ

Hence γ is a separable idempotent for A ⊆ A#H. !

2.2. Von Neumann regular algebras. Separable extensions R ⊆ S have
the good property that any short exact sequence of left S-modules that splits as
left R-modules also split as left S-modules (see [20, Proposition 2.6]). Hence any
left S-module that is projective as left R-module is also projective as left S-module
by [20, Proposition 1.6]. Moreover if M is a left S-module that is flat as left R-
module, then M ≃ lim Pλ for some finitely generated projective left R-modules Pλ.
The modules S⊗RPλ are finitely generated projective left S-modules and hence

S⊗RM ≃ lim(S⊗RPλ)

is a flat left S-module. The map ϕ : S⊗R M → M with s⊗m = sm is left S-linear
and splits as left R-module map with retraction map sending m to 1⊗Rm for all
m ∈ M . Since R ⊆ S is separable, ϕ also splits as left S-module map, i.e. M is
isomorphic to a direct summand of a flat left S-module and therefore itself flat as
left S-module.

This shows that if R ⊆ S is separable and R is either semisimple Artinian or
von Neumann regular, then so is S.

Corollary 2.4. Let H be a semisimple Hopf algebra acting on A.

(1) If A is von Neumann regular, then A#H is von Neumann regular.
(2) If A is semisimple Artinian, then A#H is semisimple Artinian.

The second implication was first proved by M. Cohen in [10] while the von
Neumann regular case appeared in [28].

2.3. Classical ring of quotient. Corollary 2.4 showed that Cohen’s question
has a positive answer for semiprime Artinian module algebras A. In this section
I will recall a theorem by Skryabin and van Oystaeyen from [51] that says that
the same is true if A is semiprime Noetherian. A natural question arises whether,
in case A embeds into an semisimple Artinian overring Q, the Hopf action on A
extend to the overring Q. Then Q#H would be semiprime as seen above and one
intends to deduce that A#H is semiprime as well. Obviously the first choice for
such overrings Q are suitable rings of quotients of A. Skryabin and van Oystaeyen
showed in [51] that Cohen’s question has a positive answer if A is a Noetherian
semiprime left H-module algebra. Their result is based on the following theorem,
that says that for an algebra A with an Artinian classical ring of quotient Q, any
Hopf algebra action H on A can be extended to Q. Recall that the classical ring of
quotients Q of A, if exists, satisfies the following universal property: if ϕ : A → S is
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a ring homomorphism from A to a ring S such that for any non-zero divisor a ∈ A,
the image ϕ(a) is invertible in S, then there exists a unique ring homomorphism
ϕ : Q → S such that ϕ|A = ϕ|A .

Theorem 2.5 (Skryabin - Van Oystaeyen, 2006). If A has a right Artinian
classical ring of quotient Q, then any left Hopf module action on A extends to Q.

Proof. I will shortly sketch the ideas of their proof. First of all an algebra A
is a left H-module algebra if and only if A is a left H-module and H “measures”
A, i.e. equations (1.2) and (1.3) are satisfied. The measuring of H to A can be also
expressed through the existence of an algebra homomorphism

ρ : A → Hom(H, A)

from A to the convolution algebra Hom(H, A). The H-module action is then given
by h · a := ρ(a)(h), for a ∈ A, h ∈ H. In order to obtain a measuring of H on Q,
Skryabin and Van Oystaeyen considered the following diagram:

A
ρ

!!! "

""

Hom(H, A)! "

""

Q
∃!ρ′

!!❴❴❴❴❴❴ Hom(H, Q)

To prove the existence of the unique algebra map ρ′ : Q → Hom(H, Q) one uses
the universal property of Q showing that ρ(u) is invertible in Hom(H, Q) for any
non-zero divisor u ∈ A. In order to do so, H is replaced by a finite dimensional
subcoalgebra C. This is possible because a measuring only depends on the coalgebra
structure of H and furthermore because H is the union of its finite dimensional
subcoalgebras C. Since Q is Artinian, Hom(C, Q) is also Artinian and hence it is
enough to show that ρ(u) is not a zero divisor for any non-zero divisor u ∈ A. In
a final step it is proven that the measuring given by ρ′ is actually a left H-module
action on Q. !

Since a Noetherian semiprime algebra A has a semisimple Artinian classical
algebra of quotient Q, any action of a (semisimple) Hopf algebra H extends to
Q. By Corollary 2.4 Q#H is semisimple Artinian and also an Ore localization of
A#H. Thus A#H is semiprime.

Corollary 2.6 (Skryabin - Van Oystaeyen, 2006). If A is semiprime right
Noetherian and H semisimple, then A#H is semiprime.

Example 2.7. Skryabin and Van Oystaeyen’s result Corollary 2.6 applies in
particular to the non-trivial action of H8 on the quantum plane A = Cq[u, v] for
q2 = −1, showing that Cq[u, v]#H8 is semiprime.

2.4. Gabriel localization. It is natural to ask, when a Hopf algebra action
extends to a quotient algebra of A obtained by other methods than by Ore local-
ization. For example when does the H-action extends to a localization Q = AF
with respect to a Gabriel filter F? Recall that a filter F of left ideals of a ring A
is called a Gabriel filter if the following two conditions are fulfilled:

(i) Ia−1 ∈ F for all I ∈ F and a ∈ A;
(ii) ∀AJ ⊆ AA : [∃I ∈ F , ∀a ∈ I : Ja−1 ∈ F ] ⇒ J ∈ F ,
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where Ja−1 = {b ∈ A : ba ∈ J}. The algebra A becomes a topological ring with
respect to F , where the elements of F are considered the neighborhoods of zero of
the topology.

Theorem 2.8 (Montgomery, 1993, Selvan 1994, Sidorov 1996). Let F be a
Gabriel filter on a left H-module algebra A over some Hopf algebra H. If for each
h ∈ H the map

ρh : A −→ A with ρh(a) = h · a, ∀a ∈ A

is continuous with respect to the topology induced by F , then the H-action extends
to the localization Q = AF . In case H is finite dimensional, the continuity of all
maps ρh is equivalent to the condition that any left ideal in F contains an H-stable
left ideal which still belongs to F .

For the proof see [39,49,50]. Actually Sidorov proved in [50] more generally
that any F-continuous local action of a Hopf algebra on A can be extended to a
global action on AF , where H acts locally on A if the action of an element h ∈ H
is defined on some element of F .

In [47], D. Rumynin claimed that an action of a semisimple Hopf algebra always
extends to the maximal left ring of quotient of a left non-singular left H-module
algebra A. Recall that the maximal left ring of quotient of a left non-singular ring
is the Gabriel localization with respect to the filter F of essential left ideals. In the
case of A being left non-singular, AF is the injective hull of A as a left A-module.
However there was a gap in the proof of [47] and an (unsuccessful) attempt to fix
it in [32] could only conclude that the Hopf action extends to the maximal left ring
of quotients of A if and only if AF coincides with the Gabriel localization of A with
respect to the filter associated to the injective hull of A as A#H-module.

2.5. Martindale ring of quotient. The disadvantage of dealing with the
classical or the maximal ring of quotient is that further assumptions like the Goldie
or non-singularity condition have to be made. Martindale developed a theory of
embedding any semiprime ring R into a certain overring such that its center Z(R)
is a von Neumann regular ring. M. Cohen, already in her early paper [10], extended
the Hopf action of a Hopf algebra H on a semiprime left H-module algebra A to a
certain subring of Martindale’s quotient algebra.

Theorem 2.9 (Cohen, 1985). Let A be any semiprime left H-module algebra.
The H-action extends to

Q0 = lim{Hom(AI, AA) | I is an H-stable ideal of A with zero annihilator}.

J. Matczuk in [37] used the overring Q0 to define the H-central closure of A as
the subalgebra generated by A and Z(Q0)H . In [31] I adapted R. Wisbauer’s ap-
proach from [54] to define the H-central closure of a semiprime H-module algebra
on a certain self-injective module which had the advantage of using module theo-
retical results to tackle Cohen’s question. For this purpose one defines an algebra
structure on A ⊗ Aop ⊗ H as follows: for all a, a′, b, b′ ∈ A and h, g ∈ H set:

(a ⊗ b ⊗ h)(a′ ⊗ b′ ⊗ g) =
∑

(h)

a(h1 · a′) ⊗ (h3 · b′)b ⊗ h2g.

It has been show in [28] (see also [14, 21, 45]) that A ⊗ Aop ⊗ H becomes an
associative unital algebra with this multiplication, which I denote by Ae ◃▹ H,
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where Ae = A ⊗ Aop stands for the enveloping algebra of A. Note that if H is
cocommutative, then Ae becomes a left H-module algebra and Ae ◃▹ H = Ae#H is
the ordinary smash product. Moreover A has a natural Ae ◃▹ H-module structure
such that its submodules are precisely its H-stable two-sided ideals. The following
two theorems appeared in [28] and were published in [29].

Theorem 2.10 (Lomp, 2002). Let Â be the self-injective hull of A as left Ae ◃▹
H-module. Then

(1) Â is a left H-module algebra with subalgebra A;
(2) Â is isomorphic to Matczuk’s H-central closure, i.e.

Â ≃ ⟨A, Z(Q0)
H⟩ ⊆ Q0;

(3) EndAe◃▹H(Â) ≃ Z(Q0)H ;
(4) Z(Q0)H is von Neumann regular and self-injective.

As an application one can prove that Cohen’s question has a positive answer
for commutative module algebras.

Theorem 2.11 (Lomp, 2002). Let H be any semisimple Hopf algebra and
A a commutative left H-module algebra. If A is semiprime, then A#H is also
semiprime.

Proof. The idea of the proof as given in [29] is as follows: A being commu-
tative implies that Â is commutative. Zhu’s result [56] says that ÂH ⊆ Â is an
integral extension. Since ÂH is von Neumann regular by 2.10(4), also Â is von
Neumann regular (which in the commutative reduced case means that they are
0-dimensional rings). As Â ⊆ Â#H is a separable extension, also Â#H is von
Neumann regular by 2.4. As Â#H is a central extension of A#H, the later one is
semiprime. !

Linchenko and Montgomery generalized the last theorem in [27] to semiprime
H-module algebras that satisfy a polynomial identity.

Theorem 2.12 (Linchenko-Montgomery, 2007). Let H be any semisimple Hopf
algebra and A a left H-module algebra that satisfies a polynomial identity. If A is
semiprime, then A#H is also semiprime.

Proof. Linchenko and Montgomery’s original statement is more general than
the statement that I give here (due to my general characteristic zero assumption).
The basic ideas of their proof can be summarized as follows: The polynomial ring
A[t] is also a left H-module algebra, where H acts trivially on t. Using Amitsur’s
theorem one concludes that Jac(A[t]) = 0 and hence one can for simplicity assume
Jac(A) = 0. Hence Jac(A#H#H∗) = 0 holds, using Blattner-Montgomery duality.
Since A#H is a projective A#H#H∗-module (using the assumption of H∗ being
semisimple), also Rad(A#H) = 0 as A#H#H∗-module. This implies in particular
that Jac(A#H) does not contain any H∗-stable left ideal of A#H. On the other
hand, in [26] Linchenko proved that the Jacobson radical of a finite dimensional
module algebra is stable under the Hopf action and the fact that primitive factors of
PI-algebras are finite dimensional over their centre allows to show that Jac(A#H)
is H∗-stable and hence zero. !

Linchenko and Montgomery’s proof works also for finite dimensional involutive
weak Hopf algebras (see [8]).
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2.6. Large subalgebra of invariants. A necessary condition of Cohen’s
question is that strongly semisimple Hopf algebras H have the property that semi-
prime left H-module algebras A have a large subalgebra of invariants AH in the
sense that any non-zero H-stable left ideal intersects AH non-trivially. To see this
let t be an integral of H with ϵ(t) = 1. If A is semiprime and H strongly semisim-
ple, then A#H is semiprime. Since (I#t)2 ̸= 0 for any H-stable left ideal I of
A, one concludes that 0 ̸= (t · I) ⊆ I ∩ AH . It is not known whether this holds
for any semiprime left H-module algebra A over a semisimple Hopf algebra. For
group actions this fact was first proved by Bergman and Isaacs in [5]. For finite
dimensional Hopf algebras with cocommutative coradical a similar statement had
been proved by Beidar and Torrecillas in [3]. The following theorem, proved by
Bahturin and Linchenko in [2], involves not necessarily unital module algebras.

Theorem 2.13 (Bathurin-Linchenko, 1998). The following statements are equiv-
alent for a finite dimensional Hopf algebra H.

(a) Any, not necessary unital, left H-module algebra A is nilpotent if AH is
nilpotent.

(b) Any, not necessary unital, left H-module algebra A satisfies a polynomial
identity if AH does.

(c) dim(T/⟨TH⟩) < ∞ for T = T (H)/k, where T (H) is the tensor algebra of
H.

Bathurin and Linchenko also mentioned that any Hopf algebra that satisfies one
of the conditions of theorem 2.13 is semisimple, but were not able of proving the
converse. However every Hopf algebra H of theorem 2.13 has the property that any
semiprime left H-module algebra A has a large subalgebra of invariantsAH because
any H-stable left ideal I of A can be considered a non-unital left H-module algebra
and hence if IH = I ∩ AH = {0} then I would be nilpotent.

As a weak form of Cohen’s question one can formulate the following

Question 2.14. Let H be a semisimple Hopf algebra and A a semiprime left
H-module algebra. Does AH intersect any non-zero H-stable left ideal of A non-
trivially ?

2.7. Prime and Simple smash products. I conclude this section with short
note on the characterization of prime and simple smash products as given by Os-
terburg et al. in [44] in terms of the so-called Connes spectrum. In the whole
section we will assume that k is an algebraically closed field of characteristic 0.
Denote by l(X) (resp. r(X)) the left (resp. right) annihilator of a subset X in a
ring A. A left H-module algebra A is called H-prime if l(I) = r(I) = {0} for all
non-zero H-stable ideals I of A, while A is called H-simple if {0} and A are the
only H-stable ideals of A. A hereditary subalgebra of A is a subalgebra B of A
such that there exist an H-stable left ideal L and an H-stable right ideal R of A
such that B = RL. Let H(A, H) be the set of hereditary subalgebras B of A with
l(B) ∩ B = r(B) ∩ B = {0}. From [44, Theorem 4.8 and 4.9] one has

Theorem 2.15 (Osterburg-Passman-Quinn, 1992). Let H be a strongly semisim-
ple Hopf algebra H, A a left H-module algebra and set e = 1#t, where t a left
integral of H with ϵ(t) = 1.

(1) A#H is prime if and only if A is H-prime and BeB has zero left and
right annihilator in B#H for all B ∈ H(A, H).
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(2) A#H is simple if and only if A is H-simple and BeB = B#H for all
B ∈ H(A, H).

Osterburg et al. also expressed their result in terms of the so-called Connes
spectrum whose definition I shall shortly present here. Since H is semisimple and
k algebraically closed, H decomposes into a direct product of full matrix rings over
k. Let Irr(H) denote the set of irreducible representations π : H → Mdπ (k) of
dimension dπ. For any B ∈ H(A, H) and π ∈ Irr(H) one defines

Bm
π =

⎧
⎨

⎩X ∈ Mdπ (B) | ϵ(h)X =
∑

(h)

π(h3)(h1 · X)π(S−1(h2), ∀h ∈ H

⎫
⎬

⎭ .

Bl
π =

⎧
⎨

⎩X ∈ Mdπ (B) | ϵ(h)X =
∑

(h)

π(h2)(h1 · X), ∀h ∈ H

⎫
⎬

⎭ .

Br
π =

⎧
⎨

⎩X ∈ Mdπ (B) | ϵ(h)X =
∑

(h)

(h1 · X)π(S−1(h2), ∀h ∈ H

⎫
⎬

⎭ .

The Connes spectrum is then defined as a subset of Irr(H) by

CS(A, H) = {π ∈ Irr(H) | l(Bl
πBr

π)∩Bm
π = r(Bl

πBr
π)∩Bm

π = {0}, ∀B ∈ H(A, H)}.

The strong Connes spectrum is defined as

CS∗(A, H) = {π ∈ Irr(H) | Bl
πBr

π = Bm
π , ∀B ∈ H(A, H)}.

The main result of [44] is that in case H is strongly semisimple, A#H is H-prime
if and only if A is H-prime and Irr(H) = CS(A, H), while A#H is H-simple if and
only if A is H-simple and Irr(H) = CS∗(A, H).

3. Conditions on H

Instead of assuming further conditions on A one might intend to classify semisim-
ple Hopf algebras H over k. Zhu proved in 1994 that Hopf algebras of prime di-
mensions are group algebras (see [55]) and Etingof and Gelaki proved in [15] that
Hopf algebras whose dimension is a product of two prime numbers are trivial.

3.1. Semisolvable Hopf algebras. Recall that a Hopf subalgebra U of H is
called normal if it is stable under the adjoint action, i.e.

∀h ∈ H : adh(U) =
∑

(h)

h1US(h2) ⊆ U.

If H does not contain proper normal Hopf subalgebras, then it is called a simple
Hopf algebra. If U is normal in H, then H = H/U+ becomes a Hopf algebra with
U+ = U∩Ker(ϵ). Moreover H can be recovered from U and H as a crossed product.
In [41] Montgomery and Witherspoon defined a Hopf algebra H to be semisolvable
if it has a normal series

k = H0 " H1 " · · ·Hm−1 " Hm = H

with Hi−1 normal in Hi such that Hi/H+
i−1 is either commutative or cocommu-

tative. In particular if H is semisimple, then all these subquotients Hi/H+
i−1 are

trivial. Masuoka showed in [36] that every Hopf algebra of dimension pn, with p
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a prime number has a central group like element from which it follows that such
Hopf algebras are semisolvable.

Example 3.1. Let H8 = C[C2×C2][z;σ]/⟨z2− 1
2 (1+x+y−xy)⟩ be Masuoka’s

eight dimensional semisimple Hopf algebra. Then

U = C[C2 × C2] " H8 and H8/U+ ≃ C[C2].

is a normal series for H8, i.e. H8 is semisolvable.

The importance of the semisolvable condition for this paper is the following the-
orem due to Montgomery and Schneider from [40, Corollary 8.16] which says that
Cohen’s question has a positive answer for semisimple semisolvable Hopf algebras.

Theorem 3.2 (Montgomery-Schneider, 1999). Any semisimple semisolvable
Hopf algebra is strongly semisimple.

Note that Montgomery and Schneider’s notion of strongly semisimple Hopf
algebras (as used in [40]) is presumably stronger than the one used in this survey.
They call a Hopf algebra H strongly semisimple if P ∩ AH is semiprime for any
prime ideal P of a left H-module algebra A. They showed in [40, Theorem 8.10]
that A#H is semiprime for any H-prime left H-module algebra A. Hence it is not
difficult to see that Montgomery and Schneider’s condition implies condition (1.4).

The first semisimple non-semisolvable Hopf algebra had been found by D.
Nikshych in [43] as a Drinfeld twist of the group algebra of A5 (see the next
subsection for the definition of twists). The group algebra H = k[A5] is a sim-
ple Hopf algebra and a suitable twist will keep simplicity while turning H into a
non-trivial simple, semisimple Hopf algebra. It is possible to find such twists for all
simple groups. The smallest semisimple non-semisolvable Hopf algebra has dimen-
sion 36 and was found by S. Natale and C. Galindo in [19]. There exists a twist of
H = k[S3 × S3] which turns H into a non-trivial semisimple Hopf algebra that is
simple as a Hopf algebra and hence not semisolvable.

3.2. Drinfeld twists. In the last section I show that twists of strongly semisim-
ple Hopf algebras are strongly semisimple.

Definition 3.3. A twist for a Hopf algebra H is an invertible element J ∈
H ⊗ H, such that

(J ⊗ 1)(∆⊗ 1)(J) = (1 ⊗ J)(1 ⊗∆)(J),

(ϵ⊗ 1)(J) = 1 = (1 ⊗ ϵ)(J)

holds. Given such a twist J , the comultiplication of H can be deformed to obtain
a Hopf algebra (H, m,∆J , ϵ, SJ) with

∆J (h) := J∆(h)J−1, SJ(h) := US(h)U−1

for all h ∈ H with U := m(1 ⊗ S)(J).

Since the algebra structure of a twisted Hopf algebra HJ is unchanged, it is
clear that HJ is semisimple if and only if H is semisimple. Given a twist J of a Hopf
algebra H and a left H-module algebra A its possible to deform the multiplication
of A to obtain a left HJ -module algebra on A
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Definition 3.4. Let (A, µ, η) be a left H-module algebra and J a twist for H.
The new multiplication on A defined by

a ·J b := µJ (a ⊗ b) := µ(J−1 · (a ⊗ b)) for all a, b ∈ A.

makes A a left HJ -module algebra, where J−1 ∈ H ⊗ H acts componentwise on
A ⊗ A. The new HJ -module algebra is denoted by AJ .

An elementary result first proven by S. Majid in [34] shows that the smash
products A#H and AJ#HJ are isomorphic as algebras.

Theorem 3.5 (Majid, 1997). A#H ≃ AJ#HJ as algebras.

Note that twisting is an invertible operation and one has H = HJ J−1

. It is not
difficult to prove that AJ is semiprime if A is. Thus if H is strongly semiprime and
A is a semiprime left HJ -module algebra, then AJ−1

is a semiprime left H-module
algebra. Hence AJ−1

#H is semiprime and by Majid’s isomorphism also A#HJ is
semiprime. This shows the following Corollary which appeared in [29].

Corollary 3.6. The class of strongly semisimple Hopf algebras is closed under
Drinfeld twists.

Let k be an algebraically closed field of characteristic zero. Etingof and Gelaki
showed in [16] that any semisimple triangular Hopf algebra over k is a Drinfeld twist
of a group algebra. Thus these Hopf algebras are strongly semisimple. Moreover
S. Natale showed in her monograph [42] that any semisimple Hopf algebra H of
dimension less than 60 over k is semisolvable or a Drinfeld twist of a semisolvable
Hopf algebra or the dual of a semisolvable one.

4. Conclusion

Corollary 4.1. Cohen’s question has a positive solution (over field of char-
acteristic 0) for

(1) any semisimple Hopf algebra H that is a twist of a semisolvable Hopf
algebra;

(2) any semiprime module algebra A that either satisfies a polynomial identity
or has an Artinian ring of quotients.

In order to shed more light into Cohen’s question I suggest to consider the
following questions/tasks:

(1) Do all semiprime module algebras over semisimple Hopf algebras have a
large subalgebra of invariants ?

(2) Find a semisimple Hopf algebra H that is not a twist of a semisolvable
Hopf algebra and a suitable H-action on a semiprime algebra A.

(3) Extend Etingof-Walton’s result of semisimple Hopf algebras on integral
domains. What can be said about semisimple Hopf algebra actions on
simple domains or free algebras in terms of their smash products?

(4) Look at more general actions than Hopf algebra actions like actions of
weak Hopf algebras, Hopfish algebras or bialgebroids to find possible coun-
terexamples. In particular does there exists a counterexample for Cohen’s
question for the 13 dimensional weak Hopf algebra associated to the Lee-
Yang fusion rule (see [7, Section 5]) ?
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[34] S. Majid, Quasi-∗ structure on q-Poincaré algebras, J. Geom. Phys. 22 (1997), no. 1, 14–58,
DOI 10.1016/S0393-0440(96)00022-8. MR1441698 (98b:81099)

[35] A. Masuoka, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995), no. 1-3,
361–373, DOI 10.1007/BF02762089. MR1357764 (96j:16045)

[36] A. Masuoka, The pn theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc. 124
(1996), no. 3, 735–737, DOI 10.1090/S0002-9939-96-03147-4. MR1301036 (96f:16046)

[37] J. Matczuk, Centrally closed Hopf module algebras, Comm. Algebra 19 (1991), no. 7, 1909–
1918, DOI 10.1080/00927879108824237. MR1121113 (92i:16031)

[38] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series
in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR1243637
(94i:16019)

[39] S. Montgomery, Biinvertible actions of Hopf algebras., Isr. J. Math. 83 (1993), no. 1-2, 45–71.
[40] S. Montgomery and H.-J. Schneider, Prime ideals in Hopf Galois extensions, Israel J. Math.

112 (1999), 187–235, DOI 10.1007/BF02773482. MR1715517 (2001e:16075)
[41] S. Montgomery and S. J. Witherspoon, Irreducible representations of crossed products, J. Pure

Appl. Algebra 129 (1998), no. 3, 315–326, DOI 10.1016/S0022-4049(97)00077-7. MR1631261
(99d:16030)

[42] S. Natale, Semisolvability of semisimple Hopf algebras of low dimension, Mem. Amer. Math.
Soc. 186 (2007), no. 874, viii+123, DOI 10.1090/memo/0874. MR2294999 (2008b:16066)

[43] D. Nikshych, K0-rings and twistings of finite dimensional semisimple Hopf algebras, Comm.
Alg. 26 (1998), 321-342.

[44] J. Osterburg, D. S. Passman, and D. Quinn, A Connes spectrum for Hopf algebras, Abelian
groups and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence,
RI, 1992, pp. 311–334, DOI 10.1090/conm/130/1176129. MR1176129 (93i:16041)

[45] F. Panaite and F. Van Oystaeyen, Some bialgebroids constructed by Kadison and Connes-
Moscovici are isomorphic, Appl. Categ. Structures 14 (2006), no. 5-6, 627–632, DOI
10.1007/s10485-006-9052-5. MR2306561 (2008c:16056)

[46] B. Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588–596.
MR0280522 (43 #6242)

[47] D. Rumynin, Maximal Quotient Algebra of a Hopf-Module Algebra, Algebra and Logic 32
(1993), 300–308.

http://www.ams.org/mathscinet-getitem?mr=2568355
http://www.ams.org/mathscinet-getitem?mr=2568355
http://www.ams.org/mathscinet-getitem?mr=0240169
http://www.ams.org/mathscinet-getitem?mr=0240169
http://www.ams.org/mathscinet-getitem?mr=926744
http://www.ams.org/mathscinet-getitem?mr=926744
http://www.ams.org/mathscinet-getitem?mr=1995055
http://www.ams.org/mathscinet-getitem?mr=1995055
http://www.ams.org/mathscinet-getitem?mr=2322738
http://www.ams.org/mathscinet-getitem?mr=2322738
http://www.ams.org/mathscinet-getitem?mr=2047452
http://www.ams.org/mathscinet-getitem?mr=2047452
http://www.ams.org/mathscinet-getitem?mr=2111109
http://www.ams.org/mathscinet-getitem?mr=2111109
http://www.ams.org/mathscinet-getitem?mr=2133688
http://www.ams.org/mathscinet-getitem?mr=2133688
http://www.ams.org/mathscinet-getitem?mr=2245660
http://www.ams.org/mathscinet-getitem?mr=2245660
http://www.ams.org/mathscinet-getitem?mr=588448
http://www.ams.org/mathscinet-getitem?mr=588448
http://www.ams.org/mathscinet-getitem?mr=1441698
http://www.ams.org/mathscinet-getitem?mr=1441698
http://www.ams.org/mathscinet-getitem?mr=1357764
http://www.ams.org/mathscinet-getitem?mr=1357764
http://www.ams.org/mathscinet-getitem?mr=1301036
http://www.ams.org/mathscinet-getitem?mr=1301036
http://www.ams.org/mathscinet-getitem?mr=1121113
http://www.ams.org/mathscinet-getitem?mr=1121113
http://www.ams.org/mathscinet-getitem?mr=1243637
http://www.ams.org/mathscinet-getitem?mr=1243637
http://www.ams.org/mathscinet-getitem?mr=1715517
http://www.ams.org/mathscinet-getitem?mr=1715517
http://www.ams.org/mathscinet-getitem?mr=1631261
http://www.ams.org/mathscinet-getitem?mr=1631261
http://www.ams.org/mathscinet-getitem?mr=2294999
http://www.ams.org/mathscinet-getitem?mr=2294999
http://www.ams.org/mathscinet-getitem?mr=1176129
http://www.ams.org/mathscinet-getitem?mr=1176129
http://www.ams.org/mathscinet-getitem?mr=2306561
http://www.ams.org/mathscinet-getitem?mr=2306561
http://www.ams.org/mathscinet-getitem?mr=0280522
http://www.ams.org/mathscinet-getitem?mr=0280522


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

222 CHRISTIAN LOMP

[48] H.-J. Schneider, Lectures on Hopf algebras, Trabajos de Matemática [Mathematical Works],
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