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Why to bother about the “beyond” ?

Curiosity is as old as humankind. Ever since humans exist, they
want to explore the world they are living in. They want to reach
the “Edge of the World” to see what’s beyond it, even if it puts
their lives in great danger (Maggelan’s circumnavigation of the

Earth)
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Outline:

» Definitions and Resolutions

» Role of boundary conditions

» Galactocentric reference system

» Examples

» Local Group Standard of Rest (LGSR)
» Cosmological reference frame

» Gravitational potential, Gdot, Pioneer,...
» Concusions
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Basic definitions

» A reference system is the complete specification
of how a (celestial) coordinate system is to be formed.
The specification consists of a set of rules, resolutions,
recommendations, etc. which are based on a solid theory.

» A reference frame consists of a set of identifiable fiducial
points (objects) on the sky along with their coordinates, which
serve as the practical realization of a reference system.

» The current standard is the celestial reference system adopted
by the IAU. Its origin is at the barycenter of the solar system,
through appropriate modeling of VLBI observationsin the
framework of GR, with axes that are intended to be fixed with
respect to space (time-independent,kinematically-nonrotaingorientation)
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Reference System Specification m &R:
Manifold - Metric + Lonnection + Lurvature
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Field Egquations + Boundary Condifions
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The IAU 2000
paradigm:
Space-time is
flat at infinity.
The only source
of gravity is

a matter

of the solar
system.
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Galactic
Dynamics:

- stars

- globular clusters

- dark matter halo

- structure of the disc,
bulge,...

- propagation of light

- fundamental
gravitational physics
(the central BH, MIOND,
gravitational waves)




Galactocentric Reference System

* A rotational transformation of the
Barycentric Coordinate Reference System
supplemented by a translation of the
BCRS origin to the galactic center.

 The X-Y plane is the transverse plane of
the disc of the Milky Way (the galactic
plane ).

* A “small” uncertainty in the distance to
i) the galactic centre prevents this system
M. J. Reid etal., NRAO eNews: March 2009, 2, Issue 3 from being W|d€|y Used.

* Galactic coordinates (no translation to the

center of the galaxy) are much more
common.
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References to the galactocentric coordinates

* Classic works by Lindblad, Oort, Ogorodnikoff, Milne
The Hipparcos Space Astrometry Mission Team
« Ry, ®,, ®, measurementsby Reid, Ghez et al., Genzel et al.

* Relativistic aspects:

— Damour & Taylor (1991) “On the orbital period change of the binary
pulsar PSR 1913+16”, ApJ, 366,501-511

— Brumberg & Kopeikin (1990) “Relativistic time scales in the solar
system”, CMDA, 48, 23-44

— Kopeikin (1994) “Supplementary parameters in the parameterized
post-Keplerian formalism”, 434, 67-70

— Kopeikin & Ozernoy (1999) “Post-Newtonian Theory for Precision
Doppler Measurements of Binary Star Orbits”, ApJ, 523, 771-785

— Kopeikin & Makarov (2007) “Astrometric Effects of Secular Aberration”,
AJ,131,1471-1478
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Galactocentric Reference System

t - the barycentric coordinate time (T CB)
X - the barycentric spatial coordinates (TCB coordinates))
T - the galactocentric dynamical time ( TDG)

X - the galactocentric spatial coordinat es (TDG coordinates)

Spacetime at infinity is asymptotically flat. The metric tensor:

9, € X ) -the barycentric coordinates of th e solar system

G, ( X ) the galactocentric coordinates of the Milky Way

The metric tensors are found by solving the gravity field equations of
Einstein's theory of general relativity or by a valid alternative theory.
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Spacetime transformation

G, T,X =g tX X X matching the two metrics

o “ oX“ OX*

. ~I%10-15 yr-1
annual variation ~0.37s = 8.4x10 P
t_T—i[BT V- X=X, | BT =B, +B, T-T, +%B'OT—T02+...
C

i ij ' ' U i 11 i, [ij]

X =A" X=X} AV =1+ =2 8" + =12V V] + B
c’ c |2

dB 1 _’2 -
e EVO Ug time delay of TCB versus TDG
dF[IJ] - o . ) ) ;

T @aJUG -VJo'Ug, ) the de Sitter precession of Laplace's invariable plane

The precession rate is ~ 0.004 pas- yr!

Xo @ X0 @ IVo G A~ o) A, @ I-T, Dt
Vo OVo EIA G XTo D
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Light propagation

. Cygnus Arm Incoming light rays

Carina;Sagittarius Arm

Norma Arm

Crux<Scutdm Arm

Perseus Arm

<- Our Solar System
"
J0 00

“ * Local or Orion Arm

GREAT-ESF workshop

6-9 June 2011 University of Porto, Portugal




The astrometric equation

—_
K=§-d-d,—0a,—d,—a.-O0 o’
T u A E
. . non-
kinematic : .
catalogue aberration linear
parallax
terms
. . the solar e gravitational
observe system proper e e
motion

corrections
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(macrolensing)
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Numerical Estimates

. Kx V_xK i
a = © =51 mas - yr—l 1k_pc} Distanceto Sgr A*
g R | R
=51 pas - yr‘1 1 I\;pc} Distance to the Local Group
. K x A@ x K . The galactocentricacceleration
o, = . =4.2 pas - yr of the solar system
i AGM (d) Kx V_ xK ~10 pas - yr-t M(d) {1 pC}2 Macrolensing—
E c2d d 10° M@ d F. Mignard;
o, . =-6.379+0.026mas - yr (Reid and Brunthaler 2004) 100 pas -
SorA lan Browne

Probability of
a macrolensing
event—

FrancoisFinet
P=0.006
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Y (kpc)

Pulsar Timing of PSR B1913+16

Observed value of the orbital period

VI’
_ C 7 _ I 7
P o = P, 2 V =KV, +V,
V
4L Kpc
etal. 2008)
I:)b, obs _
I:)b

X (kpc)
The distribution of the dispersion
measures at the locations of pulsars. The
spiralarm locations are adopted from the

Cordes-Lazio (2002) model (Figure from
Ramesh Bhat et al., 2004)

6-9 June 2011

P-P

> % -1.0081+0.0098  Damour & Taylor, 1991
b,GR

P-P

» % =0.997+0.002  Weisberg, Nice, & Taylor, 2010
b,GR
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Fundamental galactocentric parameters and the central BH
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http://iopscience.iop.org/0004-637X/689/2/1044/75120.text.html

Mass-distance and mass-velocity
correlation relationships

R, (kpc) | | 'V: (km/sec)
Correlation of the measured mass of the central BH with

the distance to the center of the Milky Way: M ~R;® and
velocity.

A. Ghez etal.: M =4.53 +0.55 x10 ‘M _for R ,=8.36 +0.44 kpc
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The Local Group

N. Bartel — M81, K. Jonhston —4 QSOs

- 0.55£023mas/yr |10 1|
- (Piateketal.2005) » aol

Ursa Mino

Plane of Milky Way ' 7 1 Galactic Longitude = 180°

15-70 pas/yr
OIT (Darling et al. 2010)

(\) -29.3+7.6 pas/yr
(Brunthaler et al. 2007)

C
1058
AL Lv)

: _0‘.23 mas/yr
(Dinescuet al. 2004)

is/ast223/lectures/lec02.html

Measuring the proper motions and geometric distances of galaxies within the Local Group is very
important for our understanding of the history formation, evolution, and gravitational potential of the
Local Group. Measurements that yield astrometric accuracies of 10 micro-arcseconds make
determination of proper motions and angular rotation rates of galaxies out to adistance of 1 Mpc
feasible. Supplemented with radial velocity measurements it will allow us to reconstructathree-
dimensional gravitational potential and to set a stringent limits on the parameters of dark matter halo.
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Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the
Milky Way. Blue are the nearest sources (z < 0.01); green are at moderate distances (0.01 <z <
0.04) and red are the most distant sources that 2MASS resolves (0.04 < z< 0.1). The map is
projected with an equal area Aitoff in the Galactic system (Milky Way at center).
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http://en.wikipedia.org/wiki/Milky_Way

Theoretical aspects of astrometric

cosmology
(other aspects, talk by M. Lattanzi)

The standard IAU resolutions state that the space-
time is asymptotically flat at infinity.

However, we live in expanding universe, which is
described by the cosmological metric of Friedmann-
Robertson-Walker fully-symmetric and globally-
curved four-dimensional space-time manifold.

How to map cosmological space-time to the tangent
space of a local astrometric observer?

GREAT-ESF workshop
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Mapping a curved surface on a plane

6-9 June

Is not unique

Three Map Projections Centered at 39 I and 96 W

Mercator . m

Lambert Conformal Conic

Un-Projected Latitude and Longitude
Peter H. Dana 6f25/97
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Lonformal Infimty amd Astrometric Latalogue

Astrometric catalogue
(celestial reference
frame) is defined on the
celestial sphere by
directions of light rays
from a set of “non-
moving” reference
celestial objects located
at conformal null-like
past infinity of space-
time (Penrose 1963)

ds* = —c*dt® +dr* +r? (d$° +sin° 9dp?)

~
metric tensor of a unit sphere

6-9 June 2011
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Space in the Universe

Riemann space

Example: sphere

Curvature of space is positive.
Parallel lines converge to a point.
The shortest distance between two
pointsis a piece of a big circle.

6-9 June 2011

Euclid space

Example: plane

Curvature of space is flat.
Parallel lines never converges.
The shortest distance between
two points is a straight line.

GREAT-ESF workshop
University of Porto, Portugal

Lobachevsky space

Example: pseudo-sphere

Curvature of space is negative.
Parallel lines always diverge . The
shortest distance between two
pointsis a piece of a conical section
passing through the center of the
pseudo-sphere.
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Goals and targets of astrometric cosmology

* Gravitational-wave astronomy of cosmological
sources at early universe

* Cosmological gravitational lenses

* Dynamics of interacting galaxies and BBH

* Dark matter and dark energy

* Cosmological effects inside the solar system
 Cosmological PPN formalism and gravity tests

GREAT-ESF workshop
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Mathematics to solve (challenging) :

* Interaction between internal gravity and
cosmological expansion (Do planet orbits
take part in the cosmological expansion?)

e Separation of matter and metric tensor
perturbations from their background
values

* Back-reaction of the perturbations on the
background (non-linear approximations)

* Equations of motion and observables

GREAT-ESF workshop
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Binary system in flat space-time
_GM
Tl

characterizesthe strength of gravity inside the body

7

1/2 e
V GM r Characterizes: | |
Erx—= = — (1) the speed of relative motion between the
2 l )

C CTr bodies
(2) the speed of internal motion
(3) wavelength of gravitational radiation
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Post-Minkowskian approximations in asymptotically-
flat space-time

The Minkowski metric I The gravitational constantG I
=diag(-1,+1,+1 +1)

= f 5 +Gh) +G°h'Y) + ..

I N

‘ The metric tensor ‘ ‘ The metric tensor perturbations
Small GM
mallparameter: 7} =
2
cL
\"
Post-Newtonianapproximation: additional small parameter & = —
C

GREAT-ESF workshop
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Post-Friedmanian approximations in cosmology

gaﬂ — R2 (t) faﬂ

FRW metric  the scale pMinkowski
actor  metric

faﬁ =diag -1+, +1, +1

H :% - the Hubbl¢ constant
R(t) — the “radiust’ of

universe

H,=738 + 24km/s/Mpc (HST)
H,=726 £ 31kmn/s/Mpc (grav. lensing)
H,=710 + 25km/s/Mpc (WMAP)

Gaﬂ — -Faﬂ

The Einstein tensor of the The stress-energy tensor of the

background geometry qa[, T Eackgrou nd matter
-ESF workshop
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Post-Friedmanian approximation in cosmology
(Kopeikin et al. 2001; Ramirez & Kopeikin 2002; work in progress)

I ‘radius’ of the universe I I The metric tensor of the standard IAU resolutions I

N/ \

g,,(t, X) = RZ(t)[f +GhA(t, %, R(t)) +G*h2 (t, %, R(t)) +.. ]

| | |

‘ The metric tensor ‘ I The PN metric tensor perturbations I
GM r A
Three basic parameters: 7 =~ ——, O~ = = g0, and 2P
c°L R Jo,
Vv A
where e~— and o ~—
C R

GREAT-ESF workshop
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Typical values of the parameters

Binary | Solar Galaxy | Cluster | Super-
pulsar system of cluster
galaxies
N 10" |2x107110° | 107 | 10°8
e |10° [10°*]10° | 10°|10°3
¢ |10 |10 | 10" | 10° | 10°
ap 10¥ | 10 | 10° | 10° 10
P

6-9 June 2011
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How to
perturb
the
manifold?

(m)
p

T

a

The stress-energy tensor of a bare
perturbation (isolated system,
oint-like mass, localized package
avitational waves, a cluster of

7N J L_,/
r."f'\' ':, /./
phaﬂ <Ap PP L
5.7 \;-:\_\ > // < o Ly
." _’ R oD A - RS \
& 2, :}?z ,,\ Path WG N |
clean separation : 1 PRGN #
» TR AR & LN |
of a bare from.the = o N ¥
=\ : ) ' ’ g Yo \\\ .' ; J
Induced perturbation 254 & 0
\ % O N
: A“".‘ % '-/4;, ,'_/‘- ~ :
—_— . _/':;:

GaB +6Ga

X (m)
B = % Lo

NO !

— BGQB :m

TS 3G, — 0T,

af

-

_ (m)
=T, | YES!

Gup + 0G4 = Top + 0T, +
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Post-Friedmanian cosmological equations

7/05,8 = ha,B _% .I:aﬂh
08 _ : g _
00 W ] 0i Wi i WIJ
_ W _ W _ ’ W
' T 7 4c? 7T ae ¢
V? —izaf Z —2H611+2H21=— 4xG[Te"” +T™ ]
C
(G2 _ L (m) | T(m)
Vi——0; |w —2Ho, w = — 4zG[T™ + TM]
C
52 1 2\ i i 2. i oi
Vi——0; |[Ww -2Ho,w + H"w' =—4zGT,,
C
V2 —izaf w' —2Ho w" = — 42GT Y}
C
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Solving the cosmological equations
with the retarded Green functions

(D—%(%—n%) Fn, ) = 458,50 VZ\/(lga)Q—b

1. Index v =3/2

10 (W
Fne) = (=),
non\n

n—|e—a|
W(n,x) = /d3w’(1—| R '|)/ vS (v, 2" )dv .
T—x
10

2. Index v =5/2
0

rom = 5 EA()]

n—|x—a| v
W(n,z) = d3x’ (1 S ) vdv Sy, z)dy .
|:13 - x'| 70 Vo

GREAT-ESF workshop
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Impact of cosmology on the Newtonian
potential and time scale

o p(nre ’)_()R2 (nre ) N VA 1 o ot 1
hOO(n1X)=GJ. |t)_(,_)_(>.| = l_H(nret.)lx_X |+ZH2(nret.)|X_X |2 d*x
\%

v vi 1 G vi 7 vl 1
= U(”ret.’x)+Gjp(nret.'X)H(nret.)Rz(ﬂret.)dsx +ZIp(nret.’X)Hz(nret.)Rz(ﬂret.)| X—X | d X
Vv Vv

The retarded time: 7, =7 - 1 | X —=X"|
c

Baryonic restmass: M = Ip(ﬂ, X)R®(n7)d*x" = constant
Vv

G, = R0) - G, =G, -G(t-t,) where G=H, = % — Dirac's Hypothesis

H, =6x10™"yr* > current observational limit = 1x10™* yr™ (wedon'tsee it. Why?)

TCB =t corresponds to the model with an asymptotically flat space-time that is the conformal time 7 in the
cosmological model. In principle, one has to expect the quadratic divergence of the TCB time scale because

of the cosmological expansion. Pioneer "anomaly" effect? .
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Conclusions

v'Theory of the Reference Frames in the
solar system is well-understood

v'Extension beyond the IAU 2000
resolutions is required

v'Post-post-Newtonian approximation in the
solar system

v'Post-Newtonian effects and/or systematic
effectsin the Milky Way

v'Local group standard of rest

v'Astrometric cosmology is under
development.

v'More theoretical and educational efforts.
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Thank You!
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The Friedmann Universe

1

— P fa —af - faﬂ
f,=diag -1, +Lw
_ _ 1 — _
Gaﬁ = RO[/Q — §ga,8R = SWTaﬁ
Tag =P Ualp
. T a
Ua () = a ' ()& = —a(n)d, H(n) = 2(77)
a*(n)
= H, _ L _ - H
Rag = = (gaﬁ — 2alip) + 3HE, 4 R=6 (; + 2H2)
217° Ho 3Hz 2
a(n) o (n) ol p(n) el 3
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Basic Assumptions

8a5(1,%) = 8op + hap(n,x)

77boz,8 = haﬁ_ _Ea,@ h

Ba = way‘y

1
Ga/@ = Ra,@ e §ga5R e 87TTaI(3

Gog = Gap + 6Gap

Tog = Tog+6Tus

1 i _ s
5Ga13 — _5 (¢aﬂ| % s gaﬁB _— Ba\ﬁ — B,g|a)

., 2 {7 1
+ 2R (oﬂ’b,@)u = §R¢aﬁ S (Raﬂ - _ga,@R> lp

2 3

5Gos = 87 6Top
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Bianchi Identity and Gauge Invariance

(m) (©)
0Tz =T+ Taﬂ

T, 4 Tadly, — TodTls =0

1 v
5 =75 (W + 5 —hs ")

X% = x% — £%(n,x)

6G/a,8(77’ X) — 5Gaﬁ(nax) + [’faa,@(n)
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Gauge-invariant structure of

the stress-energy tensor
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Gauge-invariant equations for

cosmological perturbations
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New Cosmological Gauge
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The Field Equations
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Further Developments:
Arbitrary Cosmological
Equation of State
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 Sewes Map of voids
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Large-scale structure

Spatial distribution of around 100,000 Galaxies are formed in the centers
galaxies, revealing large-scale structures

and voids in the local Universe. of dark-matter halos.

Credit: M. Colless Credit: A. Kravtsov (University of Chicago)
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