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Modelling of positional observations  
in Newtonian physics 
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Astronomical observation 

physically preferred  
global inertial 
coordinates 

observables are 
directly related to 
the inertial 
coordinates 



Modelling of positional observations  
in Newtonian physics 

•  Scheme: 
•     aberration 
•     parallax 
•     proper motion 

•  All parameters of the model are defined 
  in the preferred global coordinates: 

(α,δ), (μα ,μδ ), π, …
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Accuracy of astrometric observations 

1 mas 

1 µas 
10 µas 

100 µas 

10 mas 

100 mas 

1“ 

10” 

100” 

1000” 

1 µas 
10 µas 

100 µas 

1 mas 

10 mas 

100 mas 

1” 

10” 

100” 

1000” 

1400 1500 1700 1900 2000 2100 0 1600 1800 

Ulugh Beg 

Wilhelm IV 
Tycho Brahe 

Hevelius 
Flamsteed 

Bradley-Bessel 

FK5 

Hipparcos 

Gaia 

ICRF 

GC 

naked eye telescopes space 

1400 1500 1700 1900 2000 2100 0 1600 1800 

Hipparchus 

1 μas is the thickness of a sheet of paper seen from the other side of the Earth 



Astronomical observation 

physically preferred  
global inertial 
coordinates 

observables are 
directly related to 
the inertial 
coordinates 
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Astronomical observation  

no physically 
preferred coordinates 

observables have 
to be computed as 
coordinate 
independent  
quantities 
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General-relativistic modeling of astronomical data 

Astrometric catalogs 
are realizations of 
some reference systems 

A relativistic reference  
system 

Equations of 
signal 

propagation 

Astronomical 
reference 
frames 

Observational  
data 

Relativistic 
equations 
of motion 

Definition of 
observables 

Relativistic 
models  

of observables 
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Astronomical relativistic reference systems 



11 

The IAU 2000 framework 

•  Three standard astronomical reference systems were defined 

•  BCRS (Barycentric Celestial Reference System) 

•  GCRS (Geocentric Celestial Reference System) 
•  Local reference system of an observer  

•  All these reference systems are defined by  
   
 the form of the corresponding metric tensors. 

Technical details: Brumberg, Kopeikin, 1988-1992 
                                Damour, Soffel, Xu, 1991-1994 
                                Klioner, Voinov, 1993 
         Soffel, Klioner, Petit et al., 2003 
                                Klioner,Soffel, 2000; Kopeikin, Vlasov, 2004 

BCRS 

GCRS 

Local RS 
of an observer 
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Relativistic Astronomical Reference Systems 

particular reference systems in the curved space-time of the Solar system 

•  One can 
  use any 

•  but one 
  should 
  fix one 



Barycentric Celestial Reference System 

The BCRS is suitable to model processes in the whole solar system  

g00 = −1+ 2
c2

w(t, x) − 2
c4

w2 (t, x) ,

g0i = −
4
c3

wi (t, x) ,

gij = δij 1+ 2
c2

w(t, x)
⎛

⎝
⎜

⎞

⎠
⎟ .

relativistic gravitational potentials 

Using the laws of GRT one can derive  

                equations of motion and  
                definitions of observables 
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Why the BCRS is inconvenient for the Earth? 
•  Imagine a sphere (in inertial coordinates of special relativity),  
  which is then forced to move in a circular orbit around some point… 

•  What will be the form of the sphere for an observer at rest  
  relative to that point? 

  Lorentz contraction deforms the shape… 

Additional effect due to acceleration (velocity is not constant) 
                                      gravity (general relativity, not special one) 

Direction of 
the velocity 



Geocentric Celestial Reference System 

The GCRS is suitable to model physical processes in the vicinity of the Earth: 

A: The gravitational field of external bodies is represented only in the form of  
     a relativistic tidal potential. 
B: The internal gravitational field of the Earth coincides with the  
     gravitational field of a corresponding isolated Earth. 

G00 = −1+ 2
c2

W (T , X ) − 2
c4

W 2 (T , X ) ,

G0a = −
4
c3

W a (T , X ) ,

Gab = δab 1+ 2
c2

W (T , X )
⎛

⎝
⎜

⎞

⎠
⎟ .

internal + inertial + tidal external potentials 



Local reference system of an observer 

The version of the GCRS for a massless observer:  

A: The gravitational field of external bodies is represented only in the form of  
     a relativistic tidal potential. 

•  Modelling of any local phenomena:  
                                                        observation,  
                                                        attitude, 
                                                        local physics (if necessary) 

internal + inertial + tidal external potentials 

observer 
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Local reference system of an observer 

•  The local coordinate basis at the origin of that reference system is 
  is a BCRS-induced tetrad: (        are the local coordinates) 

•  The computations of the observed direction are equivalent (Klioner, 2004): 
  - from the tetrad formalism: 

-  projecting on the local axes: 

gμν =ηαβeμ
(α )eν

(β )
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Further developments after 2000 

•  Local reference systems in the PPN formalism: 

 Klioner, Soffel, 2000; Kopeikin, Vlasov, 2004 

•  BCRS for the non-isolated Solar system:  

 Kopeikin et al., 2000-…; Klioner, Soffel, 2004; … 

•  BCRS and GCRS in the post-post-Newtonian approximation  
   for the light propagation 

 Xu et al, 2005; Minazzolli, Chauvineau, 2009; Klioner et al., 2011 
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The BCRS for non-isolated Solar system 

•  The standard BCRS considers the Solar system isolated 

g00 = −1+ 2
c2

w(t, x) − 2
c4

w2 (t, x) ,

g0i = −
4
c3

wi (t, x) ,

gij = δij 1+ 2
c2

w(t, x)
⎛

⎝
⎜

⎞

⎠
⎟ .

w(t, x) = G d 3 ′x∫
σ(t, ′x )
| x − ′x |

+
1

2c2
G ∂2

∂t2
d 3 ′x∫ σ(t, ′x ) | x − ′x | , wi (t, x) = G d 3 ′x∫

σ i (t, ′x )
| x − ′x |

,

σ = T 00 +T kk( ) / c2 , σ i = T 0i / c, T μν is the BCRS energy-momentum tensor

⇒     Isolated system! 
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The BCRS for a non-isolated Solar system 

I. Any “localized” sources: stars, galaxies, etc.  

•    solar system can be considered as “one body” among many 

•    a “GCRS”-like reference system can be constructed for that “one body”: 
    gravitational influence of outer matter is effaced as much as possible 

•   the tidal gravitational potentials and the inertial forces have been 
   estimated numerically and found to be negligible 
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The BCRS for a non-isolated Soalr system 

I. Any “localized” sources: stars, galaxies, etc. 

Tidal quadrupole moment can be represented by two fictitious bodies:   
Body 1 Body 2 

Mass 1.67 Msun 0.19 MSun 

Distance 
(chosen) 

1 pc 1 pc 

α 221.56° 285.11° 

δ -60.92° 13.91° 

δX a ≤ 4×10−17 m / s−2
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The BCRS for a non-isolated Solar system 

II. Cosmological influences 

Question: Does the cosmological expansion influence local physics? 

Long history:  McVittie(1933), …, Einstein, Straus (1945), …  
                       a lot of newer papers using different approaches and… 
                       giving different answers 

A contribution of Klioner & Soffel (2004): 

              - The answer depends crucially on the model for the Universe  

              - But the “worst-case” answer can be given 
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The BCRS for a non-isolated Solar system 

A general Robertson-Walker metric  

can be transformed into 
an local reference system 

by a coordinate transformation 

G00 = −1+ As R / c( )2s

s=1

∞

∑ ,

G0a = 0,

Gab = δab 1+ Bs R / c( )2s

s=1

∞

∑⎛

⎝
⎜

⎞

⎠
⎟

T = t + Cs (a(t)r / c)2s ,
s=1

∞

∑

X a = δ aixia(t) 1+ Ds (a(t)r / c)2s

s=1

∞

∑⎛

⎝
⎜

⎞

⎠
⎟.
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The BCRS for a non-isolated system 

Unknown functions can 
be uniquely defined from 
matching: 
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The BCRS for a non-isolated Solar system 

Equations of motion in the local coordinates               get the correction 

δX a =
a
a

X a = −q H 2 X a ≈ 3.2×10−36 s−2 X a

This gives for  

δX a = 2×10−23 m / s−2

For comparison: the tidal force due to all matter of the Galaxy (same place)  

δX a 5×10−17 m / s−2

(T,X)
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The post-post-Newtonian metric for light rays 

The metric tensors get additional terms: 

BCRS:  

GCRS: 

plus the coordinate transformation BCRS-GCRS and  
a set of matching conditions, e.g.: 

Applications:  
 post-post-Newtonian light propagation with multipoles and motion 

 marginally interesting for Gaia,  
 important for next-generation projects 

gij = δij 1+ 2
c2

w(t, x) + 2
c4

w2 (t, x)
⎛

⎝
⎜

⎞

⎠
⎟ +

4
c4

qab(t, x).

Gab = δab 1+ 2
c2

W (T ,X) + 2
c4

W 2 (T ,X)
⎛

⎝
⎜

⎞

⎠
⎟ +

4
c4

Qab(T , X ).
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Application for  
high-accuracy positional observations 
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General structure of the model 

•  s  the observed direction  
•  n  tangential to the light ray 

 at the moment of observation 
•  σ  tangential to the light ray  

 at  
•  k  the coordinate direction  

 from the source to the observer 
•  l  the coordinate direction  

 from the barycentre to the source 

•  π  the parallax of the source  
 in the BCRS 

The model must be optimal: 

observed 
related to the light ray 
defined in the BCRS coordinates 

Klioner, AJ, 2003; PhysRevD, 2004: 
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Sequences of transformations 
•  Stars: 

s ↔
(1)

n ↔
(2)

σ ↔
(3)

k ↔
(4)

l(t), π(t) ↔
(5)

l0 , π0 , μ0 , π0 ,…

•  Solar system objects: 

s ↔
(1)

n ↔
(2,3)

k ↔
(6)

orbit

(1) aberration 
(2) gravitational deflection 
(3) coupling to finite distance 
(4) parallax 
(5) proper motion, etc. 
(6) orbit determination 
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Aberration: s ↔ n 
•  Lorentz transformation with the scaled velocity of the observer: 

s = −n + γ
c
− (γ −1) v ⋅ n

v2

⎧
⎨
⎩

⎫
⎬
⎭

v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
γ (1− v ⋅ n / c)

,

γ = 1− v2 / c2( )−1/ 2
,

v = xo 1+ 2
c2

w(t, xo )
⎛

⎝
⎜

⎞

⎠
⎟

•  For an observer on the Earth or on a typical satellite: 

•  Newtonian aberration    ∼ 20″ 
•  relativistic aberration    ∼ 4 mas 
•  second-order relativistic aberration  ∼ 1 μas 

•  Requirement for the accuracy of the orbit:   δs ≤ 1μas ⇒ δxo ≤ 1 mm/s
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Gravitational light deflection: n ↔ σ  ↔ k 

•  Several kinds of gravitational fields deflecting light 

  For the accuracy of 1 μas for an observer close to the Earth: 

•  monopole field (post-Newtonian + enhanced ppN terms) 
•  quadrupole field 
•  gravitomagnetic field due to translational motion 
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Gravitational light deflection: n ↔ σ  ↔ k 

body Monopole 
Sun 1.75×106 180 ° 
(Mercury) 83 9 ′ 
Venus 493 4.5 ° 
Earth 574 125 ° 
Moon 26 5 ° 
Mars 116 25 ′ 
Jupiter 16270 90 ° 
Saturn 5780 17 ° 
Uranus 2080 71 ′ 
Neptune 2533 51 ′ 

ψmax

•  The monopole effects due to the major bodies of the solar system in μas 
•  The maximal angular distance to the bodies where the effect is still >1 μas 
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Analytical theory of light propagation for 
numerical accuracy of 1 μas 

When the theory meets the practice… 

•  only numerical magnitude is interesting for practical work  

•  analytical orders of magnitude are often used 

Detailed investigation of numerical magnitudes of various terms 
In the equations of light propagation 

Klioner & Zschocke, 2010 
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Schwarzschild field: the big formula 
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Schwarzschild field: estimates 
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Schwarzschild field: simplified formula 

Second-order effect at very low computational costs:  

The enhanced ppN term in μas:   
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Gravitational light deflection: n ↔ σ  ↔ k 

•  A body of mean density ρ produces a light deflection not less than δ  
  if its radius: 

R ≥
ρ

1 g/cm3

⎛

⎝
⎜

⎞

⎠
⎟

−1/ 2

×
δ

1μas
⎛

⎝
⎜

⎞

⎠
⎟

1/ 2

× 650 km

Ganymede  35 
Titan   32 
Io   30 
Callisto   28 
Triton   20 
Europe   19 

Pluto   7 
Charon   4 
Titania   3 
Oberon  3 
Iapetus   2 
Rea   2 
Dione   1 
Ariel   1 
Umbriel  1 
Ceres   1 
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Gravitational light deflection: n ↔ σ  ↔ k 
body Quadrupole 
Jupiter 240 152 ″ 
Saturn 95 46 ″ 
Uranus 8 4 ″ 
Neptune 10 3 ″ 

ψmax•  Quadrupole light deflection: 

•  Efficient evaluation (Zschocke, Klioner, 2011): 

quadrupole deflection      monopole deflection 

Only 3 multiplications are needed!  
The mean value of the estimate is 0.494… of the real quadrupole deflection. 

radius of the body  

impact parameter of the light ray  
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Parallax and proper motion: k ↔ l ↔ l0, μ0, π0 

•  All formulas here are formally Euclidean: 

•  Expansion in powers of several small parameters: 
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Parallax and proper motion: k ↔ l ↔ l0, μ0, π0 

•  All formulas here are formally Euclidean, but the finite light velocity 
  should be taken into account: 

•  “superluminal effect”: light emission by a moving source 

•  “Roemer effect” due to the barycentric motion of the observer: 
  up to 150 μas for high-proper-motion stars 

The BCRS coordinates of the observer 
at the moment of observation and at some  
reference epoch 
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Celestial Reference Frame 
•  All astrometrical parameters of sources obtained from astrometric  
  observations are defined in BCRS coordinates: 

•   positions 
•   proper motions 
•   parallaxes 
•   radial velocities 
•   orbits of minor planets, etc. 
•   orbits of binaries, etc. 

•  These parameters represent a realization (materialization) of the BCRS 

•  This materialization is „the goal of astrometry“ and is called  

            Celestial Reference Frame 
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The concept of ICRS 

•  It is assumed that on average quasars do not rotate with respect to  
  our global reference system, BCRS 

•  This is a cosmological assumption to be verified by dynamical observations 

•  This concept will by tested by millisecond pulsars and Gaia   
   with unprecedented accuracy  



Testing Relativity with Gaia 
•  Each effect included in the model can be used to test the theory (of relativity) 

•  Many tests are planned: 



Is nanoarcsecond astrometry possible? 
•  Leaving aside all the source structure of quasars and stars… 

•  Leaving aside the stability of the instruments 

•  At which level of accuracy does the relativistic model becomes chaotic 
  or too complicated to apply in practice? 

 BCRS velocity at the level of   ?  (position to 0.1 m?) 
 Is it possible to do astrometry without knowing velocity? 
 (Butkevich, Klioner, 2006-)  

 Microlensing as noise (too many unknown objects in the Galaxy) 

 Deflection on small asteroids (from R=500 m) – chaotic? 

10−6 m / s
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Is nanoarcsecond astrometry possible? 
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1 nas is the size of 1 CCD pixel on Gaia as seen from the Earth 1 nas ? 




