Time delay and propagation direction of light in static, spherically symmetric space-times

P. Teyssandier* and B. Linet ${ }^{\text {\# }}$
*SYRTE/CNRS-UMR 8630,Observatoire de Paris
\#LMPT/CNRS-UMR 6083, Université François Rabelais, Tours

Workshop "QSO Astrophysics, Fundamental Physics and Astrometric Cosmology in the Gaia Era",

Porto, 6-9 June 2011

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times
- without integrating the whole set of geodesic equations

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times
- without integrating the whole set of geodesic equations
- well adapted to a ray emitted and observed at points both at a finite distance

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times
- without integrating the whole set of geodesic equations
- well adapted to a ray emitted and observed at points both at a finite distance

Le Poncin-Lafitte et al. 2004, Teyssandier \& Le Poncin-Lafitte 2008; T. 2010.

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times
- without integrating the whole set of geodesic equations
- well adapted to a ray emitted and observed at points both at a finite distance

Le Poncin-Lafitte et al. 2004, Teyssandier \& Le Poncin-Lafitte 2008; T. 2010.

These methods have the same efficiency than the traditional method, based on integration of the whole set of geodesic equations.

Introduction (1)

Overview of two methods enabling to determine the time delay and the light propagation direction

- at any order in general static, spherically symmetric space-times
- without integrating the whole set of geodesic equations
- well adapted to a ray emitted and observed at points both at a finite distance

Le Poncin-Lafitte et al. 2004, Teyssandier \& Le Poncin-Lafitte 2008; T. 2010.

These methods have the same efficiency than the traditional method, based on integration of the whole set of geodesic equations.

See, e.g., Klioner \& Zschocke 2010, and refs. therein.

Introduction (2)

Motivations:

Introduction (2)

Motivations:

- Post-post-Newtonian propagation of light required in future tests of GR (LATOR, e.g.)

Introduction (2)

Motivations:

- Post-post-Newtonian propagation of light required in future tests of GR (LATOR, e.g.)
- Remember the proverb

Introduction (2)

Motivations:

- Post-post-Newtonian propagation of light required in future tests of GR (LATOR, e.g.)
- Remember the proverb

$$
\begin{aligned}
& \text { "To understand the } n \text {-th order, know the }(n+1) \text {-th order" } \\
& \text { (popular wisdom) }
\end{aligned}
$$

- Illustrated in the context of Gaia mission by a recent analysis taking into account 'enhanced' post-post-Newtonian terms in a 3-parameter family of static, spherically symmetric space-times (Klioner \& Zschocke 2010, Zschocke 2011).

Time delay and light direction in static, spherically symmetric (s.s.s) space-times (1)

- We assume that space-time is endowed with a s.s.s. metric:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}, \quad \lim _{r \rightarrow \infty} \mathcal{A}(r)=\lim _{r \rightarrow \infty} \mathcal{B}(r)=1
$$

Time delay and light direction in static, spherically symmetric (s.s.s) space-times (1)

- We assume that space-time is endowed with a s.s.s. metric:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}, \quad \lim _{r \rightarrow \infty} \mathcal{A}(r)=\lim _{r \rightarrow \infty} \mathcal{B}(r)=1
$$

- We consider a light ray Γ emitted at \mathbf{x}_{A} and received at \mathbf{x}_{B}.

Time delay and light direction in static, spherically symmetric (s.s.s) space-times (1)

- We assume that space-time is endowed with a s.s.s. metric:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}, \quad \lim _{r \rightarrow \infty} \mathcal{A}(r)=\lim _{r \rightarrow \infty} \mathcal{B}(r)=1
$$

- We consider a light ray Γ emitted at \mathbf{x}_{A} and received at \mathbf{x}_{B}.
- To model experiments/observations with light, we have to determine

Time delay and light direction in static, spherically symmetric (s.s.s) space-times (1)

- We assume that space-time is endowed with a s.s.s. metric:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}, \quad \lim _{r \rightarrow \infty} \mathcal{A}(r)=\lim _{r \rightarrow \infty} \mathcal{B}(r)=1
$$

- We consider a light ray Γ emitted at \mathbf{x}_{A} and received at \mathbf{x}_{B}.
- To model experiments/observations with light, we have to determine

1. The time/frequency transfers

"Time transfer (or time delay) function" $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$

$$
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=t_{B}-t_{A}=\text { travel time of the photon between } \mathbf{x}_{A} \text { and } \mathbf{x}_{B}
$$

Time delay and light direction in static, spherically symmetric (s.s.s) space-times (1)

- We assume that space-time is endowed with a s.s.s. metric:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}, \quad \lim _{r \rightarrow \infty} \mathcal{A}(r)=\lim _{r \rightarrow \infty} \mathcal{B}(r)=1
$$

- We consider a light ray Γ emitted at \mathbf{x}_{A} and received at \mathbf{x}_{B}.
- To model experiments/observations with light, we have to determine

1. The time/frequency transfers

"Time transfer (or time delay) function" $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$

$$
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=t_{B}-t_{A}=\text { travel time of the photon between } \mathbf{x}_{A} \text { and } \mathbf{x}_{B}
$$

Time delay and light direction in .s.s.s. space-times (2)

2. Propagation direction of a light ray Γ

Time delay and light direction in .s.s.s. space-times (2)

2. Propagation direction of a light ray Γ

- Direction of Γ at any of its points $x(\lambda)$:

$$
\hat{\mathbf{\imath}}=\left(I_{i} / I_{0}\right), \quad I_{0}=\mathcal{A}(r) \frac{d x^{0}}{d \lambda}, \quad I_{i}=-\frac{1}{\mathcal{B}(r)} \frac{d x^{i}}{d \lambda},
$$

where $\lambda=$ arbitrary parameter of Γ.

Time delay and light direction in .s.s.s. space-times (2)

2. Propagation direction of a light ray Γ

- Direction of Γ at any of its points $x(\lambda)$:

$$
\hat{\mathbf{\imath}}=\left(I_{i} / I_{0}\right), \quad I_{0}=\mathcal{A}(r) \frac{d x^{0}}{d \lambda}, \quad I_{i}=-\frac{1}{\mathcal{B}(r)} \frac{d x^{i}}{d \lambda},
$$

where $\lambda=$ arbitrary parameter of Γ.

- Relation with the tangent vector:

$$
\widehat{\underline{\mathbf{I}}}=-\frac{1}{\mathcal{A}(r) \mathcal{B}(r)} \frac{d \mathbf{x}}{d x^{0}}
$$

Angular separation

Angular separation

- Let Γ and Γ^{\prime} be two rays arriving at \mathbf{x}_{B} at the same instant.

Angular separation

- Let Γ and Γ^{\prime} be two rays arriving at \mathbf{x}_{B} at the same instant.
- Γ and Γ^{\prime} are emitted at points \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$, respectively.

Angular separation

- Let Γ and Γ^{\prime} be two rays arriving at \mathbf{x}_{B} at the same instant.
- Γ and Γ^{\prime} are emitted at points \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$, respectively.
- Let $\mathcal{O}\left(U_{B}\right)$ be a static observer at $\mathbf{x}_{B}: \quad U_{B}=\frac{1}{\sqrt{\mathcal{A}\left(r_{B}\right)}} \frac{\partial}{\partial x^{0}}$.

Angular separation

- Let Γ and Γ^{\prime} be two rays arriving at \mathbf{x}_{B} at the same instant.
- Γ and Γ^{\prime} are emitted at points \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$, respectively.
- Let $\mathcal{O}\left(U_{B}\right)$ be a static observer at $\mathbf{x}_{B}: \quad U_{B}=\frac{1}{\sqrt{\mathcal{A}\left(r_{B}\right)}} \frac{\partial}{\partial x^{0}}$.
- Angular separation $\phi_{U_{B}}$ between \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$ as measured by $\mathcal{O}\left(U_{B}\right)$:

$$
\sin ^{2} \frac{\phi_{U_{B}}}{2}=\frac{1}{4} \mathcal{A}\left(r_{B}\right) \mathcal{B}\left(r_{B}\right)\left(\widehat{\underline{I}}_{B}-\widehat{\underline{I}}_{B}^{\prime}\right)^{2}
$$

(see T. \& Le Poncin-Lafitte 2006)

Angular separation

- Let Γ and Γ^{\prime} be two rays arriving at \mathbf{x}_{B} at the same instant.
- Γ and Γ^{\prime} are emitted at points \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$, respectively.
- Let $\mathcal{O}\left(U_{B}\right)$ be a static observer at $\mathbf{x}_{B}: \quad U_{B}=\frac{1}{\sqrt{\mathcal{A}\left(r_{B}\right)}} \frac{\partial}{\partial x^{0}}$.
- Angular separation $\phi_{U_{B}}$ between \mathbf{x}_{A} and $\mathbf{x}_{A^{\prime}}$ as measured by $\mathcal{O}\left(U_{B}\right)$:

$$
\sin ^{2} \frac{\phi_{U_{B}}}{2}=\frac{1}{4} \mathcal{A}\left(r_{B}\right) \mathcal{B}\left(r_{B}\right)\left(\widehat{\underline{I}}_{B}-\underline{\underline{I}}_{B}\right)^{2}
$$

(see T. \& Le Poncin-Lafitte 2006)

- Since $\sqrt{\mathcal{A}(r) \mathcal{B}(r) \underline{\underline{I}}}$ is a unit vector for the usual Euclidean norm

$$
\phi_{\iota_{B}}=\text { Euclidean angle }\left\langle\widehat{\mathbf{I}}_{B}, \hat{I}_{B}\right) \equiv \text { angle given by } \cos \phi_{\varphi_{B}}=\frac{\widehat{\mathbf{I}}_{B} \cdot \hat{I}_{B}}{\left|\hat{I}_{B}\right| \hat{I}_{B} \mid}
$$

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\underline{I}}_{A}$ and $\widehat{\underline{I}}_{B}$

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\underline{I}}_{A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\underline{I}}_{A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here) Two subclasses :

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Two subclasses :

- Time-delay method, based on

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Two subclasses :

- Time-delay method, based on

$$
\hat{\underline{I}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{A}^{i}}\right), \quad \hat{\underline{I}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{B}^{i}}\right)
$$

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Two subclasses :

- Time-delay method, based on

$$
\hat{\underline{I}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{A}^{i}}\right), \quad \hat{\underline{I}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{B}^{i}}\right)
$$

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Two subclasses :

- Time-delay method, based on

$$
\hat{\underline{I}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{A}^{i}}\right), \quad \hat{\underline{I}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{B}^{i}}\right)
$$

- Method involving a "Constrained integration" of one of the geodesic equations:

Methods for determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), \widehat{\mathbf{I}}_{-A}$ and $\widehat{\underline{I}}_{B}$

Two kinds of methods.

- Direct integration of null geodesic equations (the usual one)
- Methods completely/largely avoiding geodesic integrations (developed here)

Two subclasses :

- Time-delay method, based on

$$
\hat{\underline{I}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{A}^{i}}\right), \quad \hat{\underline{I}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-\left(c \frac{\partial \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial x_{B}^{i}}\right)
$$

- Method involving a "Constrained integration" of one of the geodesic equations:
$\widehat{\underline{I}}_{A}, \widehat{\underline{I}}_{B}$ and $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ are obtained independently (Goicoechea et al. 1992; under current investigation by Linet \& T .)

General post-Newtonian expansion of the metric

Metric of the form

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}(r)^{-1} \delta_{i j} d x^{i} d x^{j}
$$

General post-Newtonian expansion of the metric

Metric of the form

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}(r)^{-1} \delta_{i j} d x^{i} d x^{j}
$$

where ($m=G M / c^{2}, M=$ mass of the central body)

$$
\mathcal{A}(r)=1-\frac{2 m}{r}+2 \beta \frac{m^{2}}{r^{2}}+\sum_{n=3}^{\infty} \frac{(-1)^{n} n}{2^{n-2}} \beta_{n-1} \frac{m^{n}}{r^{n}}
$$

General post-Newtonian expansion of the metric

Metric of the form

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}(r)^{-1} \delta_{i j} d x^{i} d x^{j}
$$

where ($m=G M / c^{2}, M=$ mass of the central body)

$$
\mathcal{A}(r)=1-\frac{2 m}{r}+2 \beta \frac{m^{2}}{r^{2}}+\sum_{n=3}^{\infty} \frac{(-1)^{n} n}{2^{n-2}} \beta_{n-1} \frac{m^{n}}{r^{n}}
$$

$$
\mathcal{B}(r)^{-1}=1+2 \gamma \frac{m}{r}+\sum_{n=2}^{4} \frac{4!}{2^{n} n!(4-n)!} \gamma_{n} \frac{m^{n}}{r^{n}}+\sum_{n=5}^{\infty} \gamma_{n} \frac{m^{n}}{r^{n}}
$$

General post-Newtonian expansion of the metric

Metric of the form

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}(r)^{-1} \delta_{i j} d x^{i} d x^{j}
$$

where ($m=G M / c^{2}, M=$ mass of the central body)

$$
\mathcal{A}(r)=1-\frac{2 m}{r}+2 \beta \frac{m^{2}}{r^{2}}+\sum_{n=3}^{\infty} \frac{(-1)^{n} n}{2^{n-2}} \beta_{n-1} \frac{m^{n}}{r^{n}}
$$

$$
\mathcal{B}(r)^{-1}=1+2 \gamma \frac{m}{r}+\sum_{n=2}^{4} \frac{4!}{2^{n} n!(4-n)!} \gamma_{n} \frac{m^{n}}{r^{n}}+\sum_{n=5}^{\infty} \gamma_{n} \frac{m^{n}}{r^{n}}
$$

In GR

$$
\beta=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\cdots=1, \quad \gamma=\gamma_{2}=\gamma_{3}=\gamma_{4}=1, \quad \gamma_{5}=\cdots=0
$$

Time delay method (1)

Time delay method (1)

Two procedures for directly determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

Time delay method (1)

Two procedures for directly determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

- Derivation from Synge's world function (Le Poncin Lafitte et al 2004)

Time delay method (1)

Two procedures for directly determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

- Derivation from Synge's world function (Le Poncin Lafitte et al 2004)
- Integration of the eikonal equation

$$
c^{2} \delta_{i j} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{i}} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{j}}-\frac{1}{\mathcal{A}(r) \mathcal{B}(r)}=0
$$

Time delay method (1)

Two procedures for directly determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

- Derivation from Synge's world function (Le Poncin Lafitte et al 2004)
- Integration of the eikonal equation

$$
c^{2} \delta_{i j} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{i}} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{j}}-\frac{1}{\mathcal{A}(r) \mathcal{B}(r)}=0
$$

Assuming

$$
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{C}+\sum_{n=1}^{\infty} G^{n} \mathcal{T}(n)\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)
$$

Time delay method (1)

Two procedures for directly determining $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

- Derivation from Synge's world function (Le Poncin Lafitte et al 2004)
- Integration of the eikonal equation

$$
c^{2} \delta_{i j} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{i}} \frac{\partial \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)}{\partial x^{j}}-\frac{1}{\mathcal{A}(r) \mathcal{B}(r)}=0
$$

Assuming

$$
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\sum_{n=1}^{\infty} G^{n} \mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)
$$

we find each $\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ by iteration as an integral over the straight line joining x_{A} and x_{B} (T. \& Le Poncin 2008).

Time delay method (2)

- Very nice within the 2 PPN approximation

Time delay method (2)

- Very nice within the 2 PPN approximation
- Travel time of photons between \mathbf{x}_{A} and \mathbf{x}_{B} :

Time delay method (2)

- Very nice within the 2 PPN approximation
- Travel time of photons between \mathbf{x}_{A} and \mathbf{x}_{B} :

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\frac{(\gamma+1) m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right) \\
& +\frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\frac{\kappa \arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}-\frac{(\gamma+1)^{2}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]+\cdots,
\end{aligned}
$$

Time delay method (2)

- Very nice within the 2 PPN approximation
- Travel time of photons between \mathbf{x}_{A} and \mathbf{x}_{B} :

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\frac{(\gamma+1) m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right) \\
& +\frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\frac{\kappa \arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}-\frac{(\gamma+1)^{2}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]+\cdots
\end{aligned}
$$

$$
\mathbf{n}_{A}=\frac{\mathbf{x}_{A}}{r_{A}}, \quad \mathbf{n}_{B}=\frac{\mathbf{x}_{B}}{r_{B}}, \quad \kappa=\frac{8-4 \beta+8 \gamma+3 \gamma_{2}}{4}
$$

Time delay method (2)

- Very nice within the 2 PPN approximation
- Travel time of photons between \mathbf{x}_{A} and \mathbf{x}_{B} :

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\frac{(\gamma+1) m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right) \\
& +\frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\frac{\kappa \arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}-\frac{(\gamma+1)^{2}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]+\cdots,
\end{aligned}
$$

$$
\mathbf{n}_{A}=\frac{\mathbf{x}_{A}}{r_{A}}, \quad \mathbf{n}_{B}=\frac{\mathbf{x}_{B}}{r_{B}}, \quad \kappa=\frac{8-4 \beta+8 \gamma+3 \gamma_{2}}{4}
$$

- We use $\widehat{\underline{I}}_{A}=c \nabla_{\mathbf{x}_{A}} \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ and $\widehat{\underline{I}}_{B}=-c \nabla_{\mathbf{x}_{B}} \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$.

Schema

Post-post-Newtonian approximation (1)

Introducing

$$
\mathbf{N}_{A B}=\frac{\mathbf{x}_{B}-\mathbf{x}_{A}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}, \quad \mathbf{P}_{A B}=\mathbf{N}_{A B} \times\left(\frac{\mathbf{n}_{A} \times \mathbf{n}_{B}}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\right),
$$

Post-post-Newtonian approximation (1)

Introducing

$$
\mathbf{N}_{A B}=\frac{\mathbf{x}_{B}-\mathbf{x}_{A}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}, \quad \mathbf{P}_{A B}=\mathbf{N}_{A B} \times\left(\frac{\mathbf{n}_{A} \times \mathbf{n}_{B}}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\right),
$$

we get, e.g.,

$$
\begin{aligned}
\widehat{\underline{\underline{I}}}_{B}=- & -\mathbf{N}_{A B}-\frac{m}{r_{B}}\left\{\gamma+1+\frac{m}{r_{B}}\left[\kappa-\frac{(\gamma+1)^{2}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]\right\} \mathbf{N}_{A B} \\
+ & \frac{m}{r_{B}}\left\{(\gamma+1) \frac{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}-\frac{m}{r_{C}}\left\{\kappa \left[\frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{A}\right)\right.\right.\right. \\
& \left.\left.\left.\quad-\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{B}\right)\right]+(\gamma+1)^{2} \frac{r_{A}+r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|} \frac{1-\mathbf{n}_{A} \cdot \mathbf{n}_{B}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right\}\right\} \mathbf{P}_{A B}
\end{aligned}
$$

Post-post-Newtonian approximation (1)

Introducing

$$
\mathbf{N}_{A B}=\frac{\mathbf{x}_{B}-\mathbf{x}_{A}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}, \quad \mathbf{P}_{A B}=\mathbf{N}_{A B} \times\left(\frac{\mathbf{n}_{A} \times \mathbf{n}_{B}}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\right),
$$

we get, e.g.,

$$
\begin{aligned}
\widehat{\underline{\underline{I}}}_{B}=- & -\mathbf{N}_{A B}-\frac{m}{r_{B}}\left\{\gamma+1+\frac{m}{r_{B}}\left[\kappa-\frac{(\gamma+1)^{2}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]\right\} \mathbf{N}_{A B} \\
+ & \frac{m}{r_{B}}\left\{(\gamma+1) \frac{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}-\frac{m}{r_{C}}\left\{\kappa \left[\frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{A}\right)\right.\right.\right. \\
& \left.\left.\left.\quad-\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{B}\right)\right]+(\gamma+1)^{2} \frac{r_{A}+r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|} \frac{1-\mathbf{n}_{A} \cdot \mathbf{n}_{B}}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right\}\right\} \mathbf{P}_{A B}
\end{aligned}
$$

$$
r_{c}=\frac{r_{A} r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|=0^{t h} \text {-order "distance of closest approach". }
$$

Post-post-Newtonian approximation (2)

For geodesics in static, spherically symmetric space-times (Chandrasekhar 1983):

$$
b=|-\mathbf{x} \times \widehat{\mathbf{I}}|=\text { impact parameter of the light ray (intrinsic quantity) }
$$

Post-post-Newtonian approximation (2)

For geodesics in static, spherically symmetric space-times (Chandrasekhar 1983):

$$
b=|-\mathbf{x} \times \widehat{\mathbf{I}}|=\text { impact parameter of the light ray (intrinsic quantity) }
$$

So

$$
\begin{aligned}
b=r_{C}\{1+ & \frac{(\gamma+1) m}{r_{C}} \frac{\left|\mathbf{N}_{A B} \times \mathbf{n}_{A}\right|+\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}} \\
+ & \frac{m^{2}}{r_{C}^{2}}\left\{\kappa\left[1-\frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{A}\right)\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{B}\right)\right]\right. \\
& \left.\left.\quad-(\gamma+1)^{2} \frac{1-\mathbf{n}_{A} \cdot \mathbf{n}_{B}+\left|\mathbf{N}_{A B} \times \mathbf{n}_{A}\right| \cdot\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right\}\right\}
\end{aligned}
$$

Post-post-Newtonian approximation (3)

Using this expression for b, we get

Post-post-Newtonian approximation (3)

Using this expression for b, we get

$$
\begin{aligned}
\widehat{\mathrm{I}}_{B}=-\mathbf{N}_{A B}- & \frac{m\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{b}\{\gamma+1 \\
& \left.\quad+\frac{m}{b}\left[\kappa\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|+(\gamma+1)^{2} \frac{\left|\mathbf{N}_{A B} \times \mathbf{n}_{A}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]\right\} \mathbf{N}_{A B} \\
+ & \frac{m\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{b}\left\{(\gamma+1) \frac{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right. \\
& \left.\quad-\frac{\kappa m}{b}\left[\frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{A}\right)-\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{B}\right)\right]\right\} \mathbf{P}_{A B}
\end{aligned}
$$

Post-post-Newtonian approximation (3)

Using this expression for b, we get

$$
\begin{aligned}
\widehat{\mathrm{I}}_{B}=-\mathbf{N}_{A B}- & \frac{m\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{b}\{\gamma+1 \\
& \left.\quad+\frac{m}{b}\left[\kappa\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|+(\gamma+1)^{2} \frac{\left|\mathbf{N}_{A B} \times \mathbf{n}_{A}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]\right\} \mathbf{N}_{A B} \\
+ & \frac{m\left|\mathbf{N}_{A B} \times \mathbf{n}_{B}\right|}{b}\left\{(\gamma+1) \frac{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right. \\
& \left.\quad-\frac{\kappa m}{b}\left[\frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{A}\right)-\left(\mathbf{N}_{A B} \cdot \mathbf{n}_{B}\right)\right]\right\} \mathbf{P}_{A B}
\end{aligned}
$$

$$
\widehat{\underline{I}}_{A}=-(A \longleftrightarrow B)
$$

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

- Light deflection relative to $\mathcal{O}\left(U_{B}\right)=$ angle defined as

$$
\begin{equation*}
\Delta \chi_{B}=\angle\left(-\mathbf{N}_{A B}, \widehat{\underline{I}}_{B}\right)=\frac{\left|\mathbf{N}_{A B} \times \widehat{\mathbf{I}}_{B}\right|}{\widehat{\underline{I}}_{B} \mid}+O\left(1 / c^{6}\right) \tag{1}
\end{equation*}
$$

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

- Light deflection relative to $\mathcal{O}\left(U_{B}\right)=$ angle defined as

$$
\begin{equation*}
\Delta \chi_{B}=\angle\left(-\mathbf{N}_{A B}, \widehat{\underline{I}}_{B}\right)=\frac{\left|\mathbf{N}_{A B} \times \widehat{\mathbf{I}}_{B}\right|}{\widehat{\underline{I}}_{B} \mid}+O\left(1 / c^{6}\right) \tag{1}
\end{equation*}
$$

- Defining ϕ_{B} by $\cos \phi_{B}=\mathbf{N}_{A B} \cdot \mathbf{n}_{B}$, we get (Teyssandier 2010)

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

- Light deflection relative to $\mathcal{O}\left(U_{B}\right)=$ angle defined as

$$
\begin{equation*}
\Delta \chi_{B}=\angle\left(-\mathbf{N}_{A B}, \widehat{\underline{I}}_{B}\right)=\frac{\left|\mathbf{N}_{A B} \times \widehat{\mathbf{I}}_{B}\right|}{\widehat{\underline{I}}_{B} \mid}+O\left(1 / c^{6}\right) \tag{1}
\end{equation*}
$$

- Defining ϕ_{B} by $\cos \phi_{B}=\mathbf{N}_{A B} \cdot \mathbf{n}_{B}$, we get (Teyssandier 2010)

$$
\begin{aligned}
\Delta \chi_{B}= & \frac{(\gamma+1) G M}{c^{2} b}\left(1+\cos \phi_{B}\right) \\
& +\frac{G^{2} M^{2}}{c^{4} b^{2}}\left[\kappa\left(\pi-\phi_{B}+\frac{1}{2} \sin 2 \phi_{B}\right)-(\gamma+1)^{2}\left(1+\cos \phi_{B}\right) \sin \phi_{B}\right]+\cdots
\end{aligned}
$$

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

- Light deflection relative to $\mathcal{O}\left(U_{B}\right)=$ angle defined as

$$
\begin{equation*}
\Delta \chi_{B}=\angle\left(-\mathbf{N}_{A B}, \widehat{\underline{I}}_{B}\right)=\frac{\left|\mathbf{N}_{A B} \times \widehat{\mathbf{I}}_{B}\right|}{\widehat{\underline{I}}_{B} \mid}+O\left(1 / c^{6}\right) \tag{1}
\end{equation*}
$$

- Defining ϕ_{B} by $\cos \phi_{B}=\mathbf{N}_{A B} \cdot \mathbf{n}_{B}$, we get (Teyssandier 2010)

$$
\begin{aligned}
\Delta \chi_{B}= & \frac{(\gamma+1) G M}{c^{2} b}\left(1+\cos \phi_{B}\right) \\
& +\frac{G^{2} M^{2}}{c^{4} b^{2}}\left[\kappa\left(\pi-\phi_{B}+\frac{1}{2} \sin 2 \phi_{B}\right)-(\gamma+1)^{2}\left(1+\cos \phi_{B}\right) \sin \phi_{B}\right]+\cdots
\end{aligned}
$$

- The term in blue is currently used in high-accuracy astrometry (VLBI,...)

Light deflection

Consider now $\mathbf{N}_{A B}$ as fixed and take the limit when $\mathbf{x}_{A} \rightarrow \infty$.

- Light deflection relative to $\mathcal{O}\left(U_{B}\right)=$ angle defined as

$$
\begin{equation*}
\Delta \chi_{B}=\angle\left(-\mathbf{N}_{A B}, \widehat{\underline{I}}_{B}\right)=\frac{\left|\mathbf{N}_{A B} \times \widehat{\mathbf{I}}_{B}\right|}{\widehat{\underline{I}}_{B} \mid}+O\left(1 / c^{6}\right) \tag{1}
\end{equation*}
$$

- Defining ϕ_{B} by $\cos \phi_{B}=\mathbf{N}_{A B} \cdot \mathbf{n}_{B}$, we get (Teyssandier 2010)

$$
\begin{aligned}
\Delta \chi_{B}= & \frac{(\gamma+1) G M}{c^{2} b}\left(1+\cos \phi_{B}\right) \\
& +\frac{G^{2} M^{2}}{c^{4} b^{2}}\left[\kappa\left(\pi-\phi_{B}+\frac{1}{2} \sin 2 \phi_{B}\right)-(\gamma+1)^{2}\left(1+\cos \phi_{B}\right) \sin \phi_{B}\right]+\cdots
\end{aligned}
$$

- The term in blue is currently used in high-accuracy astrometry (VLBI,...)
- $\Delta \chi_{B}$ is a coordinate-independent quantity.

Method of "constrained integration"(1)

We use now spherical coordinates:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r)\left(d r^{2}+r^{2} d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

Method of "constrained integration" (1)

We use now spherical coordinates:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r)\left(d r^{2}+r^{2} d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

For a null geodesic, $x^{0}(r)$ satisfies the equation

$$
\frac{d x^{0}}{d r}= \pm \frac{1}{\sqrt{\mathcal{A}(r) \mathcal{B}(r)}} \frac{r}{\sqrt{r^{2}-b^{2} \mathcal{A}(r) \mathcal{B}(r)}}
$$

Method of "constrained integration" (1)

We use now spherical coordinates:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r)\left(d r^{2}+r^{2} d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

For a null geodesic, $x^{0}(r)$ satisfies the equation

$$
\frac{d x^{0}}{d r}= \pm \frac{1}{\sqrt{\mathcal{A}(r) \mathcal{B}(r)}} \frac{r}{\sqrt{r^{2}-b^{2} \mathcal{A}(r) \mathcal{B}(r)}}
$$

Assume

$$
b=r_{c}\left[1+\sum_{n=1}^{\infty} q_{n}\left(\frac{m}{r_{c}}\right)^{n}\right]
$$

Method of "constrained integration" (2)

Then

$$
\frac{d x^{0}}{d r}= \pm \frac{r}{\sqrt{r^{2}-r_{c}^{2}}} \pm \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

Method of "constrained integration" (2)

Then

$$
\frac{d x^{0}}{d r}= \pm \frac{r}{\sqrt{r^{2}-r_{c}^{2}}} \pm \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

It is sufficient to consider the case where $\mathbf{N}_{A B} . \mathbf{n}_{A}>0$,

Method of "constrained integration" (2)

Then

$$
\frac{d x^{0}}{d r}= \pm \frac{r}{\sqrt{r^{2}-r_{c}^{2}}} \pm \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

It is sufficient to consider the case where $\mathbf{N}_{A B} \cdot \mathbf{n}_{A}>0$, i.e.,

Method of "constrained integration" (2)

Then

$$
\frac{d x^{0}}{d r}= \pm \frac{r}{\sqrt{r^{2}-r_{c}^{2}}} \pm \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

It is sufficient to consider the case where $\mathbf{N}_{A B} \cdot \mathbf{n}_{A}>0$, i.e.,

(In the case $\mathbf{N}_{A B} \cdot \mathbf{n}_{A}<0$, be careful! We have to introduce the pericenter $P \ldots$...)

Method of "constrained integration" (3)

$$
c \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\underbrace{\int_{r_{A}}^{r_{B}} \frac{r d r}{\sqrt{r^{2}-r_{C}^{2}}}}_{=\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}+\sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{C}, q_{1}, \ldots, q_{n}\right) d r
$$

Method of "constrained integration" (3)

$$
c \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\underbrace{\int_{r_{A}}^{r_{B}} \frac{r d r}{\sqrt{r^{2}-r_{C}^{2}}}}_{=\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}+\sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{C}, q_{1}, \ldots, q_{n}\right) d r
$$

where

$$
X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} A_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

Method of "constrained integration" (3)

$$
c \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\underbrace{\int_{r_{A}}^{r_{B}} \frac{r d r}{\sqrt{r^{2}-r_{C}^{2}}}}_{=\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}+\sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{C}, q_{1}, \ldots, q_{n}\right) d r,
$$

where

$$
X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} A_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

- We know that $r_{C}=\frac{r_{A} r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|$

Method of "constrained integration" (3)

$$
c \mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\underbrace{\int_{r_{A}}^{r_{B}} \frac{r d r}{\sqrt{r^{2}-r_{C}^{2}}}}_{=\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}+\sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r,
$$

where

$$
X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} A_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

- We know that $r_{C}=\frac{r_{A} r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|$
- We have to determine $q_{1}=q_{1}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right), q_{2}=q_{2}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$, etc.

Method of "constrained integration" (4)

Using the geodesic eq. satisfied by φ

$$
\frac{d \varphi}{d r}= \pm^{\prime} \frac{b}{r} \frac{\sqrt{\mathcal{A}(r) \mathcal{B}(r)}}{\sqrt{r^{2}-b^{2} \mathcal{A}(r) \mathcal{B}(r)}}
$$

Method of "constrained integration" (4)

Using the geodesic eq. satisfied by φ

$$
\frac{d \varphi}{d r}= \pm^{\prime} \frac{b}{r} \frac{\sqrt{\mathcal{A}(r) \mathcal{B}(r)}}{\sqrt{r^{2}-b^{2} \mathcal{A}(r) \mathcal{B}(r)}}
$$

we get the expansion

$$
\frac{d \varphi}{d r}= \pm^{\prime} \frac{r_{c}}{r} \frac{1}{\sqrt{r^{2}-r_{c}^{2}}} \pm^{\prime} \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

Method of "constrained integration" (4)

Using the geodesic eq. satisfied by φ

$$
\frac{d \varphi}{d r}= \pm^{\prime} \frac{b}{r} \frac{\sqrt{\mathcal{A}(r) \mathcal{B}(r)}}{\sqrt{r^{2}-b^{2} \mathcal{A}(r) \mathcal{B}(r)}}
$$

we get the expansion

$$
\frac{d \varphi}{d r}= \pm^{\prime} \frac{r_{c}}{r} \frac{1}{\sqrt{r^{2}-r_{c}^{2}}} \pm^{\prime} \sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)
$$

\Downarrow

$$
\varphi_{B}-\varphi_{A}=\underbrace{ \pm^{\prime} \int_{r_{A}}^{r_{B}} \frac{r_{c}}{r} \frac{d r}{\sqrt{r^{2}-r_{C}^{2}}}}_{=\varphi_{B}-\varphi_{A}} \pm^{\prime} \underbrace{\sum_{n=1}^{\infty}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{C}, q_{1}, \ldots, q_{n}\right) d r}_{=0}
$$

Method of "constrained integration" (5)

So we have the infinite system

$$
\int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r=0 \quad \text { for } \quad n=1,2, \ldots
$$

Method of "constrained integration" (5)

So we have the infinite system

$$
\int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r=0 \quad \text { for } \quad n=1,2, \ldots
$$

with

$$
Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} B_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

Method of "constrained integration" (5)

So we have the infinite system

$$
\int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r=0 \quad \text { for } \quad n=1,2, \ldots
$$

with

$$
Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} B_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

$$
\int_{r_{A}}^{r_{B}} Y_{1}\left(r, r_{c}, q_{1}\right) d r=0 \rightarrow q_{1}
$$

Method of "constrained integration" (5)

So we have the infinite system

$$
\int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r=0 \quad \text { for } \quad n=1,2, \ldots
$$

with

$$
Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} B_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

$$
\begin{aligned}
& \int_{r_{A}}^{r_{B}} Y_{1}\left(r, r_{c}, q_{1}\right) d r=0 \rightarrow q_{1} \\
& \int_{r_{A}}^{r_{B}} Y_{2}\left(r, r_{c}, q_{1}, q_{2}\right) d r=0 \rightarrow q_{2}
\end{aligned}
$$

Method of "constrained integration" (5)

So we have the infinite system

$$
\int_{r_{A}}^{r_{B}} Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r=0 \quad \text { for } \quad n=1,2, \ldots
$$

with

$$
Y_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)=\sum_{s=1-n}^{n(n-1) / 2+2} B_{s}\left(r_{c}, q_{1}, \ldots, q_{n}\right) \frac{r^{s}}{\left(r^{2}-r_{c}^{2}\right)^{(2 n+1) / 2}}
$$

- $\int_{r_{A}}^{r_{B}} Y_{1}\left(r, r_{c}, q_{1}\right) d r=0 \rightarrow q_{1}$
- $\int_{r_{A}}^{r_{B}} Y_{2}\left(r, r_{C}, q_{1}, q_{2}\right) d r=0 \rightarrow q_{2}$
- etc.

Method of "constrained integration" (6)

Moreover

$$
\begin{aligned}
& \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r \\
& =\int_{r_{A}}^{r_{B}}\left[X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)-\sum_{p=1}^{n} k_{n p} Y_{p}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)\right] d r \quad \forall n \quad \forall k_{n p}
\end{aligned}
$$

Method of "constrained integration" (6)

Moreover

$$
\begin{aligned}
& \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r \\
& =\int_{r_{A}}^{r_{B}}\left[X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)-\sum_{p=1}^{n} k_{n p} Y_{p}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)\right] d r \forall n \quad \forall k_{n p}
\end{aligned}
$$

- A judicious choice of the $k_{n p}$ simplifies the integrals

Method of "constrained integration" (6)

Moreover

$$
\begin{aligned}
& \int_{r_{A}}^{r_{B}} X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right) d r \\
& =\int_{r_{A}}^{r_{B}}\left[X_{n}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)-\sum_{p=1}^{n} k_{n p} Y_{p}\left(r, r_{c}, q_{1}, \ldots, q_{n}\right)\right] d r \forall n \quad \forall k_{n p}
\end{aligned}
$$

- A judicious choice of the $k_{n p}$ simplifies the integrals
- For $n=2$ and $n=3, q_{2}$ and q_{3} are not involved
\Rightarrow considerable simplification of the expressions

Schwarzschild space-time within the 3PN approximation

For the Schwarzschild space-time in isotropic coordinates, this method yields:

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\frac{2 m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right) \\
& +\frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\frac{15}{4} \frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}-\frac{4}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right]
\end{aligned}
$$

Schwarzschild space-time within the 3PN approximation

For the Schwarzschild space-time in isotropic coordinates, this method yields:

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\frac{2 m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right) \\
& +\frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\frac{15}{4} \frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}-\frac{4}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}\right] \\
& +\frac{1}{2} \frac{m^{3}}{r_{A} r_{B}}\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right) \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c} \frac{1}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}} \\
& \times\left[9+\frac{16}{1+\mathbf{n}_{A} \cdot \mathbf{n}_{B}}-15 \frac{\arccos \left(\mathbf{n}_{A} \cdot \mathbf{n}_{B}\right)}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\right]+\cdots
\end{aligned}
$$

Conclusion

- The two kinds of methods presented here work well at the 2 nd order.

Conclusion

- The two kinds of methods presented here work well at the 2 nd order.
- Within the 2PPN approximation, we give a coordinate-independent characterization of the light deflection relative to a static observer located at a finite distance.

Conclusion

- The two kinds of methods presented here work well at the 2 nd order.
- Within the 2PPN approximation, we give a coordinate-independent characterization of the light deflection relative to a static observer located at a finite distance.
- The method based on a "constrained integration" straightforwardly yields the 3rd order terms for the Schwarzschild space-time.

Conclusion

- The two kinds of methods presented here work well at the 2 nd order.
- Within the 2PPN approximation, we give a coordinate-independent characterization of the light deflection relative to a static observer located at a finite distance.
- The method based on a "constrained integration" straightforwardly yields the 3rd order terms for the Schwarzschild space-time.
- This method may be easily extended to more general s.s.s. metrics. The algorithm is very easy to handle with Mathematica at any order.

Conclusion

- The two kinds of methods presented here work well at the 2 nd order.
- Within the 2PPN approximation, we give a coordinate-independent characterization of the light deflection relative to a static observer located at a finite distance.
- The method based on a "constrained integration" straightforwardly yields the 3rd order terms for the Schwarzschild space-time.
- This method may be easily extended to more general s.s.s. metrics. The algorithm is very easy to handle with Mathematica at any order.
- We confirm the recent discussion of "enhanced post-post-Newtonian terms" in the Gaia context.

References

- N. Ashby \& B. Bertotti 2010 Class. Quantum Grav. 27145013.
- S. Chandrasekhar 1983 The Mathematical Theory of Black Holes Clarendon Press.
- L. J. Goicoechea, E. Mediavilla, J. Buitrago \& F. Atrio 1992 Mont. Not. R. Astron. Soc. 259281.
- S. A. Klioner \& S. Zschocke 2010 Class. Quantum Grav. 27075015.
- C. Le Poncin-Lafitte, B. Linet \& P. Teyssandier 2004 Class. Quantum Grav. 214463.
- P. Teyssandier \& C. Le Poncin-Lafitte 2006 arXiv:gr-qc/0611078.
- P. Teyssandier \& C. Le Poncin-Lafitte 2008 Class. Quantum Grav. 25 145020.
- P. Teyssandier 2010 arXiv:1012.5402.
- S. Zschocke \& S. A. Klioner 2010 arXiv:1007.5175.
- S. Zschocke 2011 arXiv:1105.3621.

