VLBI Astrometry

for probing astrophysics, celestial reference frames and general relativity

Norbert Bartel York University, Toronto

Principle collaborators: M. Bietenholz (York University), D. Lebach (CfA), J.-F. Lestrade (Obs. Paris), R. Ransom (Okanagan), M. Ratner (CfA), M. Rupen (NRAO), I. Shapiro (CfA)

Outline

- Astrophysics of the core region: how close to the gravitational center of the quasar?
- Celestial reference frames: how stable?
- Tests of general relativity: how sensitive?
- Conclusions

Where is the core, the gravitational center of the quasar?

Opacity effect on locating the core

Opacity effect: Marcaide & Shapiro (1983)

Opacity study – relative to outside source: Bietenholz et al. (2004)

Opacity study relative to optically thin jet component: Sokolovsky et al. (2011)

Where is the core?

The core-jet nuclear region of M81 as an example of opacity effects in a compact AGN

Evolution of SN1993J

Position of Explosion Center known within 45µas (160AU). --Center of SN stable within

9 µas / yr

8.4 GHz, from *t* = 50d to *t* = 2787d

Free download: www.yorku.ca/bartel

The compact radio source M81* at several frequencies w.r.t. the explosion center of SN 1993J

Distribution of M81* emission positions at several frequencies w.r.t. the explosion center of SN 1993J

The core as the least jittery part of M81*

Core-jet in the center of M81

Positions w.r.t. the center of SN1993J

Rms scatter of core position: $60 \ \mu as = 160 \ AU.$

See, Reid et al. 2009 for methanol maser astrometry in Galaxy

Proper motion of geometric center of SN1993J w.r.t. core of M81

Explosion center: $\pm 45 \ \mu as \ or \pm 160 \ AU$

Proper motion: \pm 9 µas/yr or \pm 160 km/s

Peculiar proper motion: 320 ±160 km/s to south

Celestial reference frames – how stable?

- Solar system dynamic reference frames: Saturn in ICRF 0.3 mas accuracy Jones et al. (2011) Also: pulsar timing and astrometry: Earth
- <1mas accuracy
- Extragalactic reference frames: Bartel et al. (1986) 3C 345 RA: <0.02 mas/yr, dec:<0.05 mas/yr
- Rioja, Porcas (2000): 1038+528 <0.01 mas/yr
- Fomalont et al. (2011): 4 sources RA: <0.02 mas/yr, dec: <0.03 mas/yr

Proper motion of 2 extragalagtic sources w.r.t. a CRF of ~ 4000 sources (updated ICRF)

Proper motion: <30 μas/yr (1σ) <1c

However, no fiducial reference point

Motion of 3C 454.3's jet components w.r.t. the "core," C1

Motion of "core" components

Tests of general relativity – how sensitive?

Agreement:

~10% best value, from Eddington expedition (published 1920)
0.02±0.08%, VLBI, Lebach et al. (1995)
0.006±0.026%, VLBI, Fomalont and Kopeikin (2009)

VLBI Astrometry for the NASA/Stanford Gyroscope Relativity Mission

Shapiro, I., Bartel, N., Bietenholz, M., Lebach, D.E., Lederman, J., Lestrade, J.-F.,Luca, Petrov, L., Ransom, R., Ratner, M. (2011)

Essentials of Gravity Probe B

Testing Einstein's Universe

Excerpts from a 26 min movie

www.astronomyfilms.com

c/o Norbert Bartel

IM Pegasi, the guide star for Gravity Probe B

VLBI array

Technique:

Phase-referenced VLBI mapping and use of a Kalman filter to estimate atmospheric fluctuations.

Proper motion and annual parallax of IM Pegasi relative to the ICRF

Binary orbit

Scatter of radio emission locations across disk of primary

Location of Gaussian

Location of emission peak

Radio emission structure of IM Pegasi

Movie of a star

Simulation of scatter of radio emission locations across disk of primary

Results:

Emission close to surface, 2/3 within 25% of radius

Emission preferentially along spin axis

Emission 8±3 times more frequently at poles than at equator

Emission related to optical dark zones

Results for the precession of the gyroscopes

Everitt et al. 2011

Gravity Probe B Final Experimental Results

Gyroscope N—S Geodetic W---E Frame-Dragging

Weighted-Average Results for All Four Gyroscopes:

Geodetic: -6,601.8±18.3 mas/yr

Frame dragging:

-37.2±7.2 mas/yr

Agreement With General Relativity:

Geodetic: $-0.07 \pm 0.28 \%$ Frame dragging: $5 \pm 18 \%$

Conclusions

- The core and likely gravitational center of a quasar can be best probed at sufficiently high frequencies
- (20 GHz) where opacity effects (due to synchrotron self absorption) are minimized.
- Some quasar cores have been shown to be stationary at the 30 µas/yr (1 c) level.
- IM Pegasi is the best studied radio star and shows properties related to the star's optical characteristics.
- Gravity Probe B detected frame dragging at the 5σ significance level.