J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- MOND
- Issues

Summary

Testing a non-minimal coupling between matter and curvature — and beyond

Jorge Páramos

paramos@ist.edu

Instituto de Plasmas e Fusão Nuclear - Instituto Superior Técnico

QSO Astrophysics, Fundamental Physics and Astrometric Cosmology in the Gaia era

6-9 June 2011

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles Universality
- Mimicking DE Mechanism Energy conservation Fitting q(z) profiles
- Reheating Preheating
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MOND TeVeS Issues

Summary

Outline

The model

Mimicking dark matter

Mimicking dark energy

Inflationary Reheating

Astrophysical tests

MOdified Newtonian Dynamics

Motivation

J. Páramos

Model

Mimicking DM

- Mechanism
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests Outlook

MOND

Issues

Summary

- 1. Higher-order f(R) curvature terms arise from string theory
- 2. Explore non-minimal couplings
 - Breaking the Equivalence Principle
- 3. Study analogy with multi-scalar-tensor theories
- 4. Study "dark gravity" \neq dark matter/energy

Action functional

Testing a non-minimal coupling

J. Páramos

Model

- Mimicking DI Mechanism
- Fitting DM profil
- Universality
- Mimicking DE Mechanism Energy conservation Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MOND
- TeVeS Issues

Summary

$$S = \int \left[\frac{1}{2}f_1(R) + [1 + f_2(R)]\mathcal{L}_m\right]\sqrt{-g}d^4x \tag{1}$$

• GR:
$$f_1(R) = 2\kappa R$$
 , $f_2(R) = 0$, $\kappa = c^4/16\pi G$

- Variation with respect to $g_{\mu\nu}$:
- Modified Einstein field equations

$$(F_1 + 2F_2\mathcal{L}_m) R_{\mu\nu} - \frac{1}{2}f_1g_{\mu\nu} =$$

$$\Delta_{\mu\nu} (F_1 + 2F_2\mathcal{L}_m) + (1 + f_2) T_{\mu\nu}$$
(2)

O. Bertolami, C. Boehmer, T. Harko and F. Lobo (2007)

• $\Delta_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\Box$, $F_i(R) \equiv f'_i(R)$ • Energy-momentum tensor: $T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_m)}{\delta g^{\mu\nu}}$

J. Páramos

Model

- Mimicking DM
- Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DI Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MOND
- TeVeS Issues

Summary

$$(F_1 + 2F_2\mathcal{L}_m) R - 2f_1 =$$
(3)
-3\prod (F_1 + 2F_2\mathcal{L}_m) + (1 + f_2) T

Differential, not algebraic equation

Trace of Einstein field eqs.

► Bianchi identities, $\nabla^{\mu}G_{\mu\nu} = 0$ imply Non-(covariant) conservation law

$$\nabla^{\mu}T_{\mu\nu} = \frac{F_2}{1+f_2} \left(g_{\mu\nu}\mathcal{L}_m - T_{\mu\nu}\right)\nabla^{\mu}R \tag{4}$$

- Analogy with scalar fields for non-trivial $f_1(R), f_2(R)$
- Energy exchange matter \leftrightarrow scalar fields

J. Páramos

Model

- Mimicking DM
- Mechanism Stability
- Fitting DM profile
- Universality
- Mimicking DE Mechanism Energy conservation
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS
- Summary

Motivation

- Galactic rotation puzzle
 - Missing matter to account rotation velocity of stars
 - \rightarrow Dark matter!
 - Or "Dark gravity"?
 - Maybe a non-minimal coupling of matter with geometry?

DISTRIBUTION OF DARK MATTER IN NGC 3198

J. Páramos

Model

- Mimicking DM
- Mechanis
- Fitting DM n
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Solar observables
- Post-Newtonian tests Outlook

MOND

- TeVeS
- Summar

Procedure

- Typically
 - ► Solve modified Einstein eqs.
 - Obtain additional gravitational potential
 - Fit model parameters
 - Usually, no relation with "standard" DM models

S. Capozziello, V. F. Cardone, and A. Troisi (2007)

- Our approach
 - Write modified Einstein eqs.
 - Read "dark matter" density profile
 - Compare with models of $DM \rightarrow read parameter(s)$
 - Fit remaining model parameters
 - Advantage: possible to mimic known DM models!

J. Páramos

Model

Mimicking DM

- Mechanism
- Stability
- Fitting DM profile:
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Post-Newtonian tes
- Outlook
- MOND
- TeVeS
- Issues

Summary

► For simplicity, assume power-law

$$f_2(R) = \left(\frac{R}{R_n}\right)^n$$

- Also, trivial curvature term $f_1(R) = 2\kappa R$
- Flattening of galaxy rotation curves at large distances
 - low density $\rightarrow \log R \rightarrow n < 0$
- Visible matter content: Dust
 - Perfect fluid with p = 0

•
$$T_{\mu\nu} = \rho U_{\mu\nu} U_{\nu}$$

• $\mathcal{L} = -\rho$

Mechanism

O. Bertolami, F. S. N. Lobo and J. Páramos (2008)

Assume known density profile (Hernquist)

$$\rho(r) = \frac{M}{2\pi} \frac{a}{r} \frac{1}{(r+a)^3}$$
(5)

J. Páramos

Model

Mimicking DM

- Mechanism
- Stability
- Fitting DM profil
- Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Solar observables
- Post-Newtonian test Outlook

MOND

- TeVeS
- _

Summary

$R = \frac{1}{2\kappa} \left[1 + (1 - 2n) \left(\frac{R}{R_n} \right)^n \right] \rho - \frac{3n}{\kappa} \Box \left[\left(\frac{R}{R_n} \right)^n \frac{\rho}{R} \right]$ (6)

Neglect linear ρ term \rightarrow "static" solution

$$R = R_n \left[(1 - 2n) \frac{\rho}{\rho_0} \right]^{1/(1-n)}$$
(7)

- Interpretation
 - At large distances, $R \propto \rho_{dm} \propto \rho^{1/(1-n)}$!
 - Tully-Fisher law: $M \sim M_{dm} \propto v^{2(1-n)}!$

► Substitute into modified Einstein eqs. → mimicked DM...

- is dragged by visible matter (same four-velocity U^{μ})
- has non-vanishing pressure $p_{dm} = \frac{n}{1-4n} 2\kappa R$
- Since n < 0, EOS parameter $\omega = n/(1-n) < 0$
 - ► Hint at unification with dark energy?
 - ► Dark matter matches cosmological background ~ 100 kpc!

Trace of modified Einstein eqs.

J. Páramos

Model

- Mimicking DM Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Solar observable
- Post-Newtonian tests Outlook
- MOND
- TeVeS Issues
- Summary

Stability

Well behaved model:

- No instabilities in the Newtonian regime
- ► Follows all the energy conditions
 - Weak (WEC): $\rho \ge 0$, $\rho + p \ge 0$
 - Null (NEC): $\rho + p \ge 0$
 - Strong (SEC): $\rho + p \ge 0$, $\rho + 3p \ge 0$
 - ► Dominant (DEC): $\rho \ge |p|$

O. Bertolami and M. Sequeira (2009)

Conserves energy:

$$abla_{\mu}T^{\mu
u}pprox 0$$

L Páramos

- Fitting DM profiles

- Mechanism

Fitting known dark matter profiles

- Isothermal sphere (IS) $\rho_{dm} \propto 1/r^2$
- Cusped density profiles:

$$\rho = \frac{\rho_{cp}}{\left(\frac{r}{a}\right)^{\gamma} \left(1 + \frac{r}{a}\right)^{m-\gamma}} \tag{8}$$

- Navarro-Frenk-White (NFW): $\gamma = 1, m = 3$
- Hernquist: $\gamma = 1, m = 4$

J. F. Navarro, C. S. Frenk, and S. D. M. White (1995); L. Hernquist (1990)

- ► For large distances
 - DM (NFW): ρ_{dm} ∝ r⁻³,
 Visible (Hernquist): ρ ∝ r⁻⁴ (IS) $\rho_{dm} \propto r^{-2}$
- Tully-Fisher law: : $M \sim M_{dm} \propto v^{2(1-n)} = v^{8/3} \wedge v^4$

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles

Reheating

- Preheating
- Linear coupling
- Astrophysical tests
- Solar observable
- Post-Newtonian tests Outlook

MOND

Te VeS Issues

Summary

► Sample of seven galaxies

• Type *E*0: approximately spherical

A. Kronawitter, R. P. Saglia, O. Gerhard, and R. Bender (2000, 2001)

S. M. Faber, G. Wegner, D. Burstein, R. L. Davies (1989)

H. W. Rix et al. (1997)

- ► Composite model: both *NFW* and *IS* dark matter profiles
- Objective: fit lengthscales $r_1 = R_1^{-1/2}$ and $r_3 = R_3^{-1/2}$
 - Variability \rightarrow individual fits
 - Order of magnitude analysis

J. Páramos

Model

Mimicking DM Mechanism Stability Fitting DM profiles Universality

Mimicking DE Mechanism Energy conservation Fitting q(z) profiles

Reheating

Preheating

Linear coupling

Astrophysical tests Solar observables Post-Newtonian tests Outlook

MOND TeVeS

Summary

Results

Rotation curve (observed: dash, mimicked: full) = visible (dot) + DM (observed: dash grey, mimicked: full grey)

Results

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles Universality
- Mimicking DE Mechanism Energy conservation
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observables
- Post-Newtonian test: Outlook

MOND

TeVes

Summary

Rotation curve (observed: dash, mimicked: full) = visible (dot) + DM (observed: dash grey, mimicked: full grey)

J. Páramos

Model

- Mimicking DN Mechanism Stability
- Fitting DM profiles Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observables
- Outlook
- MOND
- TeVeS

Summary

Results Table

NGC	r_1	r_3	$r_{\infty 1}$	$r_{\infty 3}$
2434	∞	0.9	0	33.1
5846	37	∞	138	0
6703	22	∞	61.2	0
7145	22.3	47.3	60.9	14.2
7192	14.8	24	86.0	18.3
7507	4.9	2.9	178	31.1
7626	28	9.6	124	42.5

- ► Units
 - r_1 : Gpc
 - $r_3: 10^5 \, Gpc$
 - Background matching distances $r_{\infty n}$: kpc

J. Páramos

Model

- Mimicking DM
- Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observable
- Post-Newtonian tests Outlook
- MOND
- TeVeS Issues

Summary

Universality

- ► Not very good...
 - Average $\bar{r}_1 = 21.5 \ Gpc$, s.d. $\sigma_1 = 10.0 \ Gpc$
 - Average $\bar{r}_3 = 1.69 \times 10^6 \; Gpc$, s.d. $\sigma_3 = 1.72 \times 10^6 \; Gpc$
- ► Reasons:
 - Deviation from sphericity
 - Relevance of $f_1(R)$ term
 - Too simplistic $f_2(R)$ power-law (Laurent series...)
 - Bad choices?
 - Visible matter density ρ
 - NFW or IS ρ_{dm} (different *n*)
 - Reconstructed density profiles
 - ► L

J. Páramos

Model

- Mimicking DM
- Mechanist
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observable
- Post-Newtonian tests Outlook
- MOND
- TeVeS
- Summary

- Accelerated expansion of the Universe
 - ► Missing energy with negative pressure → Dark energy!
 - Or "Dark gravity"?

Motivation

 $\blacktriangleright \quad Multi-scalar-tensor \ analogy \rightarrow two-field \ quintessence$

M. C. Bento, O. Bertolami and N. M. C. Santos (2002)

- Similar to galactic rotation puzzle:
 - spherically symmetric $g_{\mu\nu}(r) \leftrightarrow \text{FRW} g_{\mu\nu}(t)$
 - GR at small distances \leftrightarrow earlier times
 - Dark Universe at large distances \leftrightarrow late times $\rightarrow n < 0$

J. Páramos

Model

- Mimicking D Mechanism
- Stabilit
- Fitting DM profile:
- Universality

Mimicking DE

Mechanism

Energy conservation Fitting q(z) profiles

Reheating

- Preheating
- Linear coupling

Astrophysical tests Solar observables Post-Newtonian tests

Outlook

MOND

TeVeS Issues

Summary

► Flat *k* = 0 , isotropic and homogeneous Universe FRW metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{\sqrt{1 - kr^{2}}} + d\Omega^{2}\right)$$
(9)

- Dust filled Universe, $T^{\mu\nu} = \rho U^{\mu}U^{\nu} = (\rho, 0, 0, 0)$
- Constant deceleration parameter → a(t) = a₀(t/t₀)^β
 Expanding Universe → β > 0, accelerating β > 1

Quantities

Mechanism

$$H \equiv \frac{\dot{a}}{a} = \frac{\beta}{t}$$

$$R \equiv 6\left[\left(\frac{\dot{a}}{a}\right)^2 + \frac{\ddot{a}}{a}\right] = \frac{6\beta}{t^2}(2\beta - 1)$$

$$q \equiv -\frac{\ddot{a}a}{\dot{a}^2} = \frac{1}{\beta} - 1$$
(10)

J. Páramos

Model

- Mimicking DN Mechanism Stability
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS
- Summary

Covariant energy conservation

Energy is conserved!

Non-(covariant) conservation law, $\nu = 0$

$$\nabla^{\mu} T_{\mu 0} = \frac{F_2}{1 + f_2} \left(g_{\mu 0} \mathcal{L}_m - T_{\mu 0} \right) \nabla^{\mu} R = (11)$$
$$\frac{F_2}{1 + f_2} \left(\mathcal{L}_m + T_{00} \right) \dot{R} = 0 \rightarrow$$
$$\dot{\phi} + 3H\rho = 0$$

Matter density

$$\rho(t) = \rho_0 \left(\frac{a_0}{a(t)}\right)^3 \tag{12}$$

J. Páramos

Model

Mimicking DM

- Mechanism
- Stability
- Fitting DM profi
- Universality

Mimicking DE

- Mechanism
- Energy conservation
- Fitting q(z) profile

Reheating

Preheating

Linear couplin

Astrophysical tests

Solar observables

Outlook

MOND

TeVeS Issues

Summary

Modified dynamics

Modified Friedmann and Raychaudhuri Eqs.

$$H^{2} + \frac{k}{a^{2}} = \frac{1}{6\kappa}(\rho_{m} + \rho_{c})$$
(13)
$$\frac{\ddot{a}}{a} = \dot{H} + H^{2} = -\frac{1}{12\kappa}\left[\rho_{m} + \rho_{c} + 3(p_{m} + p_{c})\right]$$

• Curvature pressure p_c , density ρ_c depend on $f_1(R), f_2(R)$

J. Páramos

Model

- Mimicking DN Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profile
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- MONT
- TeVeS

Summary

Modified dynamics

• Use trivial $f_1(R) = 2\kappa R$ and power-law $f_2(R) = (R/R_n)^n$

Curvature density and pressure

$$\rho_{c} \approx -6\rho_{0}\beta \frac{1 - 2\beta + n(5\beta + 2n - 3)}{\left(\frac{t}{t_{0}}\right)^{3\beta} \left(\frac{t}{t_{n}}\right)^{2n} [6\beta(2\beta - 1)]^{1 - n}}$$
(14)
$$p_{c} \approx -2\rho_{0}n \frac{2 + 4n^{2} - \beta(2 + 3\beta) + n(8\beta - 6)}{\left(\frac{t}{t_{0}}\right)^{3\beta} \left(\frac{t}{t_{n}}\right)^{2n} [6\beta(2\beta - 1)]^{1 - n}}$$

• $t_n \equiv R_n^{-1/2}$ marks onset of accelerated phase

► Solve Friedmann Eq. $\rightarrow \beta(n) = 2(1-n)/3$

```
J. Páramos
```

Model

- Mimicking DN
- Mechanism
- Stability
- Fitting DM profil
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profile
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests
- Solar observable
- Post-Newtonian test Outlook
- MOND
- TeVeS
- Summary

Deceleration parameter

$$n = 1 - \frac{3}{2(1+q)}$$
, $q = -1 + \frac{3}{2(1-n)}$ (15)

• EOS parameter $p_c = \omega \rho_c$

$$\omega = \frac{n}{1-n} \tag{16}$$

- Same as in DM scenario
- $n \to \infty, \omega \to -1 \text{ and } q \to -1$
 - Cosmological constant Λ

۷

- Unobtainable with $f_2(R)$: matter term is not constant!
- Previous R_1 and R_3 for n = -1 (IS) and n = -1/3 (NFW)
 - $r_1, r_3 \ll r_H$ Hubble radius
 - No cosmological role

J. Páramos

Model

- Mimicking DM
- Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- wiechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND TeVeS
- Issues
- Summary

Fitting q(z) profiles

Numerically solve Friedmann Eq. for fixed n
Fit t_n to available q(z) curve

Y. G. Gong and A. Wang (2007)

Figure: q(z) for n = -4, $t_2 = t_0/4$ (full) and n = -10, $t_2 = t_0/2$ (dashed); 1σ , 2σ and 3σ regions shaded, best fit (white)

Motivation

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE Mechanism
- Energy conservation
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables
- Post-Newtonian tests Outlook
- MOND
- Issues

Summary

Inflation: early phase of fast expansion of the Universe

- ► Driven by scalar field slow-rolling down suitable potential
 - Or non-trivial curvature term $f_1(R)$
 - Formal equivalence with scalar tensor theory
 - Starobinsky inflation: $f_1(R) = 2\kappa R + R^2/6M^2$

A. A. Starobinsky (1980)

- Problem: at the end of inflation, Universe is too cold!
- "Old reheating": scalar field oscillates around minimum
 - Decays into particles and reheats the Universe
 - Problem: fine tuning of parameters, overproduction
- Solution: preheating

Dolgov and Kirilova (1990), Traschen and Brandenberger (1990)

Kofman et al. (1994); Shtanov et al. (1995)

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE Mechanism Energy conservation

Reheating

- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MONE
- TeVeS

Summary

Quantum field χ with mass *m* coupled to scalar curvature:

Lagrangean density

Preheating

$$\mathcal{L}_{\chi} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\chi\partial_{\nu}\chi - \frac{1}{2}m^{2}\chi^{2} - \frac{1}{2}\xi R\chi^{2}$$
(17)

• Spacetime dependent effective mass $m_{eff}^2 = m^2 + \xi R$

Fourier decomposition

$$\chi(t,\mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \int d^3k \left[a_k \chi_k(t) e^{-i\mathbf{k}\cdot\mathbf{x}} + a_k^{\dagger} \chi_k^*(t) e^{i\mathbf{k}\cdot\mathbf{x}} \right]$$
(18)

▶ Particle creation/annihilation with mass *m*, momentum **k**

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles

Reheating

- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MONE
- Issues

Summary

Parametric resonance

During oscillatory phase

$$\ddot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + m^{2} + \xi R - \frac{9}{4}H^{2} - \frac{3}{2}\dot{H}\right)\chi_{k} = 0 \rightarrow$$
(19)
$$\ddot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + m^{2} - \frac{4M\xi}{t - t_{o}}\sin\left[M(t - t_{o})\right]\right)\chi_{k} \simeq 0$$

► Varying frequency → parametric resonance → explosive particle production

Equivalent to Mathieu equation

$$\frac{\mathrm{d}^2 \chi_k}{\mathrm{d}z^2} + \left[A_k - 2q\cos(2z)\right] \chi_k \simeq 0 \tag{20}$$

J. Páramos

Model

Mimicking DN

- Mechanism
- Stability
- Fitting DM profiles
- Universality

Mimicking DE

- Mechanism
- Energy conservation
- Fitting q(z) profiles

Reheating

Preheating

Linear coupling

Astrophysical tests

- Solar observable
- Outlook

MOND

TeVeS Issues

Summary

Parametric resonance

Mathieu equation

$$\frac{\mathrm{d}^2 \chi_k}{\mathrm{d}z^2} + \left[A_k - 2q\cos(2z)\right]\chi_k \simeq 0 \tag{21}$$

Flouquet chart shows resonance bands

J. Páramos

Model

- Mimicking DM Mechanism Stability
- Universality
- Mimicking DE Mechanism
- Energy conservation
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MONI
- Issues

Summary

Generalize coupling with curvature

$$\mathcal{L}_{\chi} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\chi\partial_{\nu}\chi - \frac{1}{2}m^{2}\chi^{2} - \frac{1}{2}\xi R\chi^{2} \rightarrow \qquad (22)$$
$$\mathcal{L}_{\chi} = -\left(1 + 2\xi\frac{R}{M^{2}}\right)\left(\frac{1}{2}g^{\mu\nu}\partial_{\mu}\chi\partial_{\nu}\chi + \frac{1}{2}m^{2}\chi^{2}\right)$$

- *f*₂(*R*) couples with all matter contributions
 ▶ radiation, ultra-relativistic...
- Subdominant during slow-roll inflation: $1 < \xi < 10^4$

J. Páramos

Model

- Mimicking DM Mechanism Stability
- Fitting DM pron
- Mimicking E
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS Issues
- Summary

During oscillatory phase

$$\ddot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + m^{2} + \xi R - \frac{9}{4}H^{2} - \frac{3}{2}\dot{H}\right)\chi_{k} = 0 \to (23)$$
$$\ddot{\chi}_{k} + \left(3H + 2\xi\frac{\dot{R}}{M^{2}}\right)\dot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + m^{2}\right)\chi_{k} = 0$$

• $X_k \equiv a^{3/2} f_2^{1/2} \chi_k$: friction term transforms into mass term

Also leads to parametric resonance!

O. Bertolami, P. Frazão and J. Páramos (2011)

J. Páramos

Model

- Mimicking DM
- Mechanist
- Stabilit
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Solar observables
- Post-Newtonian tests Outlook
- MOND
- TeVeS
- Summary

Linear coupling

- Probe $f_2(R) = R/R_1$
 - Where is curvature is high, but not too much? The Sun!
 - Perturbative treatment
 - Observable: central temperature

O. Bertolami and J. Páramos (2008)

• Birkhoff theorem: spherically symmetric, static $g_{\mu\nu}$ Tolman-Oppenheimer-Volkoff equation

$$p' + G(\rho + p)\frac{m_e + 4\pi pr^3}{r^2 - 2Gm_e r} = (24)$$
$$a\left[\left(\left[\frac{5}{8}p'' - 4\pi Gp\rho\right]r - \frac{p'}{4}\right)\rho + p\rho'\right].$$

- $a \equiv 16\pi G/R_1$, $[a] = M^{-4}$
- Suitably defined effective mass m_e
- ▶ 2nd, not 1st order ODE

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests
- Solar observables
- Post-Newtonian test Outlook
- MOND
- TeVeS
- Issues
- Summary

Newtonian limit

Modified hydrostatic equilibrium

$$p' + \frac{Gm_e\rho}{r^2} = a\left[\left(\left[\frac{5}{8}p'' - 4\pi Gp\rho\right]r - \frac{p'}{4}\right)\rho + p\rho'\right] \quad . \tag{25}$$

Polytropic equation of state

$$p = K\rho_B^{(n+1)/n} \tag{26}$$

- ► *n* polytropic index
 - n = -1: isobaric
 - n = 0: isometric
 - $n \to +\infty$: isothermal
 - $n = 1/(\gamma 1)$: adiabatic ($\gamma \equiv c_p/c_V$)
 - n = 1.5: giant planets, white/brown dwarfs, red giants
 - n = 5: boundless system
 - n = 3: first solar model (A. Eddington)
- ► *K* polytropic constant

J. Páramos

Model

- Mimicking D! Mechanism Stability
- Fitting DM profiles
- -----

Mechanism

Energy conservation

Fitting q(z) profile

Reheating

Preheating

Linear coupling

Astrophysical tests

Solar observables

Post-Newtonian tests Outlook

MOND

Icenae

Summary

Modified Lane-Emden equation

$$\frac{1}{\xi^{2}} \left[\xi^{2} \theta' \left(1 + \frac{3n-1}{4(n+1)} + A_{c} \theta^{n} \left[\left\{ \frac{5}{8} \left(\theta'' + n \frac{\theta'^{2}}{\theta} \right\} - N_{c} \theta^{n+1} \right] \frac{\xi}{\theta'} \right] \right) \right]' = (27)$$
$$-\theta^{n} \left[1 + A_{c} \left(\frac{3}{8} \left[\theta'' + n \frac{\theta'^{2}}{\theta} \right] + \frac{\theta'}{4\xi} - \frac{\theta^{n}}{2} \right) \right]$$

► 3^{*rd*} order ODE! Linearize...

J. Páramos

Model

Mimicking D Mechanism Stability

Universality

Mimicking DE Mechanism

Energy conservation

Fitting q(z) profiles

Reheating

Preheating

Linear coupling

Astrophysical tests

Solar observables

Post-Newtonian tests Outlook

MOND

TeVeS Issues

Summary

Unperturbed solution $\theta_0(\xi)$ and perturbation

Central temperature bound

$$\left| rac{T_c}{T_{c0}} - 1
ight| < 6\%
ightarrow |R_1| > \left(1.53 imes 10^{-17} \ eV
ight)^2 \sim 10^{-90} M_P^2$$

► Not very interesting...

J. Páramos

Model

Mimicking 1 Mechanism Stability

Fitting DM profile

Universality

Mimicking DB

Mechanism

Energy conservation

Fitting q(z) profiles

Reheating

Preheating

Linear coupling

Astrophysical tests

Solar observables

Post-Newtonian tests Outlook

MOND

TeVeS Issues

Summary

Relative central temperature T_c deviation

Central temperature bound

$$\left|rac{T_c}{T_{c0}} - 1
ight| < 6\%
ightarrow |R_1| > \left(1.53 imes 10^{-17} \ eV
ight)^2 \sim 10^{-90} M_P^2$$

► Not very interesting...

J. Páramos

Model

Mimicking DM

- Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS Issues

Summary

- Expand metric as sum of all potentials down to $O(c^{-4})$
- ► 10 PPN parameters related to fundamental properties
 - β : nonlinearity in the superposition law for gravity
 - γ : space-curvature produced by unit rest mass
 - General Relativity: $\beta = \gamma = 1$, other parameters vanish
- ▶ Momentum conservation, no preferred-frame/location \rightarrow

PPN metric

$$g_{00} = -1 + 2U - 2\beta U^2$$
 , $g_{ij} = (1 + 2\gamma U)\delta_{ij}$

C. Will (2006)

Parameterized Post-Newtonian formalism

J. Páramos

Model

- Mimicking DM Mechanism Stability
- Universality
- Mimicking DE Mechanism Energy conservation Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables
- Post-Newtonian tests Outlook
- MONE
- TeVeS

Summary

Equivalence with a multiscalar-tensor theory

► $f(\mathbf{R})$ theories \leftrightarrow Jordan-Brans-Dicke theory with $\omega = 0$

P. Teyssandier and P. Tourranc (1983), H. Schmidt (1990), D. Wands (1994)

$f(\mathbf{R})$ action

$$S = \int \left(f(R) + \mathcal{L} \right) \sqrt{-g} \, d^4x \tag{28}$$

JBD with $\omega = 0$ action

$$S = \int \left(F(\phi)R - V(\phi) + \mathcal{L} \right) \sqrt{-g} \, d^4x \tag{29}$$

- $\blacktriangleright F(\phi) = f'(\phi) \quad , \quad V(\phi) = \phi F(\phi) f(\phi)$
- Varying action (29) w.r.t. ϕ yields $\phi = R$

J. Páramos

Model

- Mimicking D Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests

MONI TeVeS

155005

Summary

Non-minimal coupling: two scalar fields required

$$\varphi^1 \propto \log[F_1(R) + F_2(R)\mathcal{L}] \quad , \quad \varphi^2 = R$$
 (30)

 Conformal transformation from Jordan frame (F(φ)R term) to Einstein frame (R uncoupled from φ):

$$g_{\mu\nu} \to g^*_{\mu\nu} = A^{-2}(\varphi_1)g_{\mu\nu} \quad , \quad A(\varphi_1) = \exp\left(-\frac{\varphi_1}{\sqrt{3}}\right)$$

T. Damour and G. Esposito-Farese (1992)

Multi-scalar-tensor model

$$S = \int \left[R^* - 2g^{*\mu\nu}\sigma_{ij}\varphi^i_{,\mu}\varphi^j_{,\nu} - 4U + f_2(\varphi^2)\mathcal{L}^* \right] \sqrt{-g}d^4x$$

$$\mathcal{L}^* = A^4(\varphi_1)\mathcal{L} \quad , \quad U = \frac{1}{4}A^2(\varphi_1) \left[\varphi^2 - A^2(\varphi_1)f_1(\varphi^2)\right]$$

J. Páramos

Model

- Mimicking DM
- Stability
- Fitting DM prof
- Universality
- Mimicking DE Mechanism
- F
- Ellergy conservation
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND TeVeS

Summary

• Kinetic term
$$g^{*\mu\nu}\sigma_{ij}\varphi^{i}_{,\mu}\varphi^{j}_{,\nu}$$

Field metric

$$\sigma_{ij} = \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right) \tag{31}$$

- Only φ^1 is a dynamical field
- Solar System: perturbative coupling $\rightarrow F_2/f_2 \sim 0$

Non-conservation law

$$\nabla^{\mu}T_{\mu\nu} = -\frac{\sqrt{3}}{3}T\varphi^{1}_{,\nu} + \frac{F_{2}}{f_{2}}\left(g_{\mu\nu}\mathcal{L} - T_{\mu\nu}\right)\nabla^{\mu}\varphi^{2} \simeq \alpha_{i}T\varphi^{i}_{,\nu}$$

with
$$\alpha_i \equiv \frac{\partial \log A}{\partial \varphi^i} \rightarrow \alpha_1 = -\frac{1}{\sqrt{3}}$$
, $\alpha_2 = 0$

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE Mechanism Energy conservation Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS

Summary

Parameterized Post-Newtonian formalism

• Use field metric to raise/lower latin indices: $\alpha^i \equiv \sigma^{ij} \alpha_j$

$$\alpha^2 \equiv \alpha_i \alpha^i = \sigma^{ij} \alpha^i \alpha_j = 0 \quad , \quad \alpha_{i,j} \equiv \frac{\partial \alpha_j}{\partial \varphi^i} = 0$$

Since $\alpha_2 = 0$

$$\beta = 1 + \frac{1}{2} \left[\frac{\alpha^{i} \alpha^{j} \alpha_{j,i}}{(1 + \alpha^{2})^{2}} \right]_{\infty} =$$

$$\gamma = 1 - 2 \left[\frac{\alpha^{2}}{1 + \alpha^{2}} \right]_{\infty} = 1$$

- ► Same as in GR!
- If perturbative effects are considered, β ~ 1 and γ ~ 1
 Choose f₂(R), solve Einstein field eqs., expand metric

J. Páramos

Model

- Mimicking DM
- Stability
- Fitting DM profi
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS

Summary

Novel ways to break the Equivalence Principle

Non-conservation law

$$\nabla^{\mu}T_{\mu\nu} = \frac{F_2}{f_2} \left(g_{\mu\nu}\mathcal{L} - T_{\mu\nu}\right) \nabla^{\mu}R$$

- ► Where to look?
 - Very high curvature and density (magnitude and gradient)
 - ▶ Possible couplings with other sectors, *e.g.* electromagnetic
- Quasars! Accretion disk, jet emission
 - Toy models
 - Simulation

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests
- MOND
- TeVeS

Summary

Modification of Poisson equation

$$\nabla \cdot \left[\mu \left(\frac{\nabla \phi}{a_0} \right) \nabla \phi \right] = 4\pi G \rho \qquad (32)$$
$$a_0 \approx 10^{-10} \, ms^{-2} \quad , \qquad \mu(x) \approx \begin{cases} x & , & x \ll 1 \\ 1 & , & x \gg 1 \end{cases}$$

- Alternative to dark matter
- Solves puzzle of the flattening of galaxy rotation curves
- Yields Tully-Fisher law $L \propto v_{\infty}^4$
- ► Classical \rightarrow Relativistic underlying theory: TeVeS

J. Páramos

Model

- Mimicking Dl Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests Outlook

MOND

TeVeS

Summary

Tensor-Vector-Scalar theory

Action $S = S_G + S_V + S_S + S_M$

$$S_{G} = \int R\sqrt{-g} d^{4}x \qquad (33)$$

$$S_{V} = -\frac{\kappa}{2} \int \left[KU^{[\alpha,\mu]} U_{[\alpha,\mu]} - 2\lambda (U^{\mu}U_{\nu} + 1) \right] \sqrt{-g} d^{4}x \qquad (33)$$

$$S_{S} = -\frac{1}{2} \int \left[\sigma^{2}h^{\alpha\beta}\phi_{,\alpha}\phi_{,\beta} + \frac{G}{2l^{2}}\sigma^{4}F(kG\sigma^{2}) \right] \sqrt{-g} d^{4}x \qquad (33)$$

$$S_{M} = \int \mathcal{L}(\varphi_{i}, \tilde{g}_{\mu\nu}) \sqrt{-\tilde{g}} d^{4}x \qquad (33)$$

- ► Three additional fields (one vector U^{μ} , two scalars σ , ϕ)
 - ► *K*, *k* and *l* are constants specific of the theory
 - Lagrange multiplier $\lambda \to U^{\mu}$ timelike
 - F is a free function
 - σ has no kinetic term

$$\blacktriangleright h^{\alpha\beta} = g^{\alpha\beta} - U^{\alpha}U^{\beta}$$

• "physical metric" $\tilde{g} = g_{\alpha\beta} - 2U_{\alpha}U_{\beta} \sinh(2\phi)$

J. Páramos

Model

- Mimicking DM
- Mechanist
- Stability
- Fitting DM profile:
- Universality
- Mimicking DE Mechanism Energy conservation
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests Outlook

MOND TeVeS Issues

Summary

Issues with MOND

Bullet cluster

Bullet Cluster (false colors)

Angus et al. (2006)

J. Páramos

Model

- Mimicking DM Mechanism
- Stability
- Fitting DM profiles
- Universality
- Mimicking DE Mechanism Energy conservation Fitting q(z) profiles

Reheating

- Preheating
- Linear coupling

Astrophysical tests Solar observables Post-Newtonian tests Outlook

MOND TeVeS Issues

Summary

Issues with MOND

Bullet cluster

Bullet Cluster (with mass density contours)

Angus et al. (2006)

J. Páramos

Model

- Mimicking DM
- Mechanism
- Stabilit
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservatio
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- MOND TeVeS
- Summary

Issues with MOND

- Bullet cluster
 - Compatible only with heavy neutrinos m_ν ∼ 2 eV (0.07 eV < m_ν < 2.2 eV)
 - Linear superposition of *ad-hoc* MOND potentials
- ▶ Early Universe: fluctuations of $\phi \rightarrow$ structure formation
 - Inconsistent with numerical findings

Pointecouteau (2006)

- ▶ PPN parameters $\beta = \gamma = 1$, as in General Relativity
 - Assumes $U^{\mu} = (U^0, 0, 0, 0)$ (allowed, but...)
 - If instead one assumes that U^{μ} is radial (more natural)

$$\beta = 1 + \frac{k}{8\pi} + \frac{K}{4} + \phi_c \left(3 + \frac{k}{\pi K} \pm \sqrt{\frac{2k}{\pi K} + 5}\right) , \quad \gamma = 1$$

Giannios (2005)

Too complex and problematic!

Summary

J. Páramos

Model

- Mimicking DM Mechanism Stability
- Fitting DM profile
- Universality
- Mimicking DI
- Energy conser
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables Post-Newtonian tests Outlook
- MOND
- TeVeS Issues

Summary

Non-minimal coupling between matter and curvature

- ► Wide phenomenology, distinctive features
- Description of Dark Matter and Dark Energy!
- Elegant generalization of preheating
- ► Specific *n* for different regimes hints at Laurent expansion

$$f_2(R) = \sum_n \left(\frac{R}{R_n}\right)^n \tag{34}$$

- ► WIP: DM in clusters, Cosmological Constant...
- ► Clear signature of Equivalence Principle breaking → search in violent phenomena

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Universality
- Mimicking DE Mechanism
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear coupling
- Astrophysical tests Solar observables
- Post-Newtonian test
- Outlook

MOND

- TeVeS Issues
- Summary

Thank you!

Strong coupling between curvature and kitten

J. Páramos

Model

- Mimicking DM Mechanism Stability Fitting DM profiles
- Mimicking DE Mechanism
- Fitting a(z) profiles

Reheating

- Preheating
- Linear coupling

Astrophysical tests

Post-Newtonian tests Outlook

MONE

TeVeS Issues

Summary

Choice of Lagrangian density: case of a perfect fluid

Non-(covariant) conservation law

$$\nabla^{\mu}T_{\mu\nu} = \frac{F_2}{1+f_2} \left(g_{\mu\nu}\mathcal{L}_m - T_{\mu\nu}\right)\nabla^{\mu}R \tag{35}$$

In GR, L_m serves to obtain T_{µν} only
 If f₂(R) ≠ 0, L_m appears in eqs. motion!

Perfect fluid

$$T_{\mu\nu} = (\rho + p)U_{\mu\nu}U_{\nu} + pg_{\mu\nu}$$
(36)
$$p \equiv n\frac{\partial\rho}{n} - \rho$$

- U^{μ} : four-velocity
- ► *n*: particle number density
- $J^{\mu} = \sqrt{-g}nU^{\mu}$: flux vector of particle number density *n*

Action in GR

J. Páramos

Model

- Mimicking DM
- Mechanism
- Stabilit
- Fitting DM profiles
- Universality
- Mimicking DE
- Mechanism
- Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MOND
- TeVeS
- Summary

$$S_m = \int d^4x \left[-\sqrt{-g} \ \rho(n,s) + J^\mu \phi_\mu \right] \tag{37}$$

J. D. Brown (1993)

- ϕ_{μ} : contains thermodynamical potentials
 - particle number conservation
 - entropy exchange
 - definition of temperature
 - chemical free energy

Equivalent Lagrangean densities:

- Begin with $\mathcal{L}_0 = -\rho$
- Substitute eqs. motion back into action Eq. (37)
- Read "on-shell" \mathcal{L}_i :
 - $\mathcal{L}_1 = p$
 - $\mathcal{L}_2 = -na$, $a(n,T) = \rho(n)/n sT$

J. Páramos

Model

- Mimicking DM
- Mechanis
- Stabilit
- Fitting DM profile
- Universality
- Mimicking DE Mechanism Energy conservation
- Fitting q(z) profiles
- Reheating
- Preheating
- Linear couplin
- Astrophysical tests Solar observables Post-Newtonian tests
- Outlook
- MONE
- TeVeS

Summary

• How to couple $f_2(R)$ to a perfect fluid?

Modified action

$$S_m = \int d^4x \left[-\sqrt{-g} \left[1 + f_2(R) \right] \rho(n,s) + J^{\mu} \phi_{\mu} \right]$$
(38)

Equivalent to on-shell Lagrangian?

$$S_m = \int d^4x \sqrt{-g} \left[1 + f_2(R) \right] p$$
 (39)

► Yes, but...

Redefined thermodynamical quantities, *e.g.*

$$T = \frac{1}{n} \frac{\partial \rho}{\partial s} \bigg|_{n} = \frac{1}{1 + f_{2}(R)} \theta_{,\mu} U^{\mu}$$
(40)

O. Bertolami, F. S. N. Lobo and J. Páramos (2008)