

QSOs with Gaia

F. Mignard Observatory of the Côte d'Azur (Nice)

Outline

- QSOs fact sheet
- QSO recognition with Gaia
- Astrometric observation of QSOs with Gaia
- Properties of the Gaia Reference Frame

Fact Sheet on QSOs

- Most luminous objects in the Universe
 - $-~10^{11}$ $10^{14}~L_{sun}$; ~1~ to 1000 L_{galaxy} ; M_B ~ -23 ~ to -30 ; $10^{37}\text{-}10^{41}~W$
- Radio loud (*quasars*) or radio quiet (*QSO*)
 - no fully agreed terminology
- Variability over days to months
 - size of the emitting core $\,$ ~ few solar systems to 0.1 pc
- Seen at great distance, then large redshift (compared to galaxies)
 - 0 < z < 5 ; > 10 billions years in the past
- Paradigm for their structure
 - accretion onto a massive black hole (10⁸ solar mass)
 - one Sun per year is swallowed to sustain the luminosity

F. Mignard

Fact Sheet II

- Difficult to identify from the stars:
 - point like source, with faint and diffuse host galaxy
 - Faint, rare and starlight aspect on plates or CCDs
- Energy distribution : different from stars
 - $10^{11} 10^{14} L_{sun}$; 1 to 1000 L_{galaxy} ; $M_B \sim -23$ to -30
 - Strong and broad emission lines (E.W. ~ 60 Å ~ 10 000 km/s)
 - Blue bump
- This difference is the key feature for identification with Gaia
 - and similarly for other surveys

Energy distribution

6

Gaia

Energy distribution

Gaia

GREAT WS, Porto, 6 June 2011

Gaia and QSOs: Relevant activities I

- Identification and discrete classification
 - survey to G = 20 (~ R = 20)
 - clean subset (contaminant-free) for reference frame
 - automated classification of QSOs
- Supply of a well documented and clean initial QSO catalogue
- Extension of the potential sources usable for the orientation
 - additional ground based observations
- Survey of all the potential causes for tangential motion
 - timescale for these motion is crucial
- Theoretical studies related to the Inertial Frame
 - implementation in the Gaia processing

- Investigation on source stability
 - acquisition of basic data relevant for this issue
 - more theoretical investigations would be useful as well
- Photocentre radiocentre offset
- Simulation of a Gaia ICRF
 - rotation, orientation, cosmic-acceleration
- Photometric redshifts with Gaia data
- Lensing and multiple imaging

- Gaia DPAC
- Production of a realistic simulated QSO list for simulation
 - good position distribution
 - fully representative photometric and z distribution
 - synthetic spectra
 - astrometric effect relevant for the reference frame

GREAT WS, Porto, 6 June 2011

- ~ 2/3 of the QSOs of the Gaia survey will be new
- They must be identified by a built-in mechanism
- The baseline is photometric identification
 - use of the BP/RP dispersed images
- Additional hints
 - proper motion
 - parallaxes (of non QSOs)
 - host galaxy ?
 - ground based data

QSO recognition with Gaia- II

- Intensive activity over the last five years
 - led initially by J.F. Claeskens (Univ. of Liège, Belgium)
 - then continued by C. Bailer Jones and his team
- Two purposes:
 - Select a clean small sample of QSOs free of stellar contaminants
 - Identify the majority of the QSOs in not a so clean sample
- Remaining possible contaminants:
 - very red (M stars), or highly reddened stars
 - peculiar white dwarfs
- Classification methods very successful
 - see talk of Y. Damerdji

- An object will be a star, a galaxy or a QSO with a probability p
- Population with frequency f of QSOs and H_0 : source is a QSO
 - The test can wrongly reject a QSOs $\,:\,$ risk of the test α
 - 1- α : significance level
 - The test can keep a star in the QSO sample : risk of contamination β
 - 1 β : power of the test

	State		
		QSO	Star
	QSO	1-α	β
Found			
	Star	α	1- β

P(Q/FQ): this is a QSO when Found as a QSO

if $f < \beta$ then P(S/FQ) ~ 1! All purported to be guasars are indeed stars

So the efficiency β must match the frequency of the QSOs

With f ~ $1/2000 \rightarrow \beta < 0.0005$

Gaia

3REAT WS, Porto, 6 June 2011

• A survey over 100 deg⁻² with a 1% error selection test will yield :

- 2000 quasars (max) and
 - 30 000 stars at b = 0° ==> efficiency of 3%
 - 3000 stars at b = 60° ==> efficiency of 40%

- GAIA will observe ~ 500 000 QSOs G< 20
- ~ 10 9 stars \therefore so classification test better than 2x10 $^{-3}$

14

- Gaia detects and observed all the sources V < 20
- There are ~ 5×10^5 QSO observable outside the galactic plane
- They are recognized from the stars with the photometric data
 - success rate > 99.9%
- A clean subset will be used for the primary reference frame
 - One assumes that there is a frame with no global rotation
- Systematic effects will be investigated in the residuals

Observation with Gaia

Basic features

- QSOs will be observed like stars
 - point like sources
- They will be detected in the Sky Mapper when G < 20
- Sky coverage and astrometric performances will be the same as for stars of same magnitude
 - no specific colour problems are expected
- They will be observed about 80 times
 - distributed more or less regularly during the mission
- Astrometric and photometric processing will be standard
 - global solution for astrometry
 - epoch photometry at each transit
- With enough photometric data, these sources will be flagged as non stellar

GREAT WS, Porto, 6 June 2011

GREAT WS, Porto, 6 June 2011

Sky Scanning with Gaia

Sky coverage over 4 months and one year:

- 4 months (one colour per month)
- One full year (one scan per day plotted)

Sky coverage

Time average is a combination of the sky distribution and the scanning law

- two different symmetries: galactic plane and eclitpic plane

• Histogram of the gaplengths between two short sequences

Photometric accuracy

- Epoch photometry : 1 transit over Astro CCDs or BP/RP
 - performances for photometric stability

F. Mignard

Credit : J. de Bruijne

How many QSOs ?

How many QSOs:

With a flawless selection : GAIA will observe on ~ 60% of the sky

200
25 000

 $- \ B \le 20 \qquad 550 \ 000$

toire

F. Mignard

- Density in local deep surveys used to compute the expected number of QSOs per bin of magnitude
- On subtracts the number in the current general catalogue
- assumption: QSOs have a uniform distribution on the celestial sphere
- |b| > 25°

В	# new QSOs	
< 17	0	
17-18	15,000	
18-19	100,000	
19-20	300,000	
20-20.5	200,000	
17-20	415,000	

Bourda, Mignard, Andrei, 2009

Latest QSO compilation

- Catalogue Veron-Cety & Veron V13 (2010)
 - Plots in galactic coordinates
 - similar results with LQAC (Souchay et al., 2008)

QSOs distribution with Gaia

Based on the simulation used in the DPAC Universe model

– about 400,000 observable to G = 20

Magnitude distribution

• Magnitude distribution in Veron-Cety catalogue

unrealistic drop at V ~ 20

coire

Magnitude distribution with Gaia

- Cumulated distribution over G magnitude
 - based on simulation by Slezak & Mignard, 2007

F. Mignard

29

Redshift distribution

- data from Veron-Céty & Veron
- Artificial separation between AGN and QSOs

• Redshift in abscissa, V in ordinate

- GWP-S- 335- 13000: Initial QSO catalogue
 - PI: A. Andrei \rightarrow his talk later this morning
- Produce the minimum clean sample from existing data
 - to train and validate the supervised classifiers
 - to assess the astrometry on QSOs with reference data
- Version 1.0 issued on December 2007 with 105,000 sources
 - based on LQAC (Large Quasar Astrometric Catalogue, Souchay et al., 2008)
 - several fields to be specialised for Gaia purpose

Reference frame properties

Reference frame

- Dense (> 15000 stars /deg²) net of reference stars
 - Direct observations of extragalactic sources
 - ~ 500,000 quasars observable
 - kinematically non-rotating system (~0.3 muas/yr)
 - acceleration of the Solar System Barycentre in cosmological frame
 - Long-lived reference system:
 - based on a clean subset ~ 20,000 QSOs V < 18
 - 18 mag positions good to <1 mas over 1995 2035</p>
- QSO physics
 - largest homogeneous survey to V ~ 20
 - Investigation of transverse motion to 20 muas/yr (individual),
 <1muas/yr (systematic)

Assumptions :

- QSOs observed with the same accuracy as a normal star
- Additional noise included for source jitter : 20 µas/yr
 - larger than $\sigma_{\rm pos}$ for V < 16
- \cdot QSOs have no peculiar transverse motion
- Observed PM reveal the global rotation of the GAIA sphere

$$\mu_{\alpha} \cos \delta = \omega_x \sin \delta \cos \alpha + \omega_y \sin \delta \sin \alpha - \omega_z \cos \delta$$
$$\mu_{\delta} = -\omega_x \sin \alpha + \omega_y \cos \alpha$$

- Space and magnitude distribution from existing catalogues
- Inversion of the weighted normal matrix

Example of a typical rotation

toire

More likely with Gaia

- With the simulated distribution
 - uniform outside |b| > 25 deg

Transverse motions

- So far no systematic transverse motion detected
 - QSOs have fixed comoving coordinates
- If $V_t \sim H_0 D \rightarrow \mu \sim 10 \mu as/yr$
 - VLBI in 20 yrs with $\sigma_{\rm pos}$ ~ 1 mas \rightarrow μ < 50 $\mu{\rm as}$
 - but sub-mas structure instabilities (P. Charlot, 2003)
- Other sources :
 - microlensing P = 10^{-6} (Belokurov) \rightarrow only a handful
 - matter ejection, superluminous motion
 - Variable galactic aberration
 - Macrolensing P = 10^{-2} (Mignard, 2003) \rightarrow long timescale
 - Accelerated motion in the local group

Galactic Aberration

- The solar system is in motion in the Galaxy, V ~ 220 km s⁻¹
 - constant aberration of ~ 250" for the QSO wrt to comoving frame
 - not detectable (principle of relativity)
 - δ**u = v/**c

' But the solar motion is not uniform

- ~ circular motion of radius R ~ 8.5 kpc and period 250×10^6 yrs
- the aberration is then variable

$$\delta\mu = \frac{d(\delta\mathbf{u})}{dt} = \frac{\Gamma}{c} = \frac{V^2}{cR} \approx 4\mu as / yr$$

Global pattern for galactic rotation

:oire

• For any acceleration of the SS wrt Quasars :

- Equations similar to global rotation.
- Precision of ~ 0.4 μ as/an (2 prad/yr) on Γ/c = 0.2x 10⁻¹⁰ m s⁻² (γ Pionner/40)
- Galactic rotation (µ ~ 4 µas/yr)
- Acceleration of the Local Group \rightarrow CDM ?

- No split between rotation and cosmic acceleration
- Orientation must be determined at the same time
 - cosmic proper motions to be included in the ICRF positions
 - they are not known, but can be computed
- Needs to carry out the alignment:
 - small subset of sources with positions in ICRS
 - ICRF sources and other observed in VLBI → alignment
 - larger subset of EGSs with statistically zero proper motions
 - not necessarily observed with VLBI -> rotation

- There are 9 reference frame parameters
 - 3 for the orientation $\epsilon_x,\,\epsilon_y,\,\epsilon_z$
 - 3 for the rotation ω_x , ω_y , ω_z
 - 3 for the cosmic acceleration a_x , a_y , a_z
- They are all determined within the astrometric global solution
 - attitude, position, proper motion will be referred to this frame
 - hopefully the ephemeris is given in a frame nearly identical
 - however the coupling is weak, and an error of 10 mas is acceptable
- This should be carried out in post-astrometric processing
- Full mathematical framework proposed by L. Lindegren

Radio-Optic offset

- No observational evidence
 - offset < 0.1 to 1 mas
- Emission model can provide insights
- For a distance of 0.1 pc between photocentre and radiocentre → angular distance > 10 µas (z > 1)
 - becomes relevant for the alignment on radio ICRF

Apparent diameter

Observatoire

Conclusions

Conclusions

- Extragalactic sources will be well observed by Gaia
 - resolved galaxies (eg : 5 to 10 Mios stars in LMC)
 - unresolved galaxies (~ 10^7 expected)
 - QSOs & AGNS
- QSOs will be recognised from stars primarily by photometry
 - astrometry will be used as well for difficult cases
- This will be the largest and most systematic full sky survey
- Classification of QSOs will be a major input for further physical studies
- A clean subset will be used as defining sources for the reference frame
- Imaging lensed QSOs will help constrain cosmological models

Thanks for your attention