

# Detection of bright multiply imaged quasars with GAIA

F. Finet, A. Elyiv, J.Surdej





# Number of lensed Quasars in the GAIA survey?



- GAIA :
  - ~500 000 Quasars
    - G < 20
- Number of lenses?
  - Probability for a single source ?
  - Simulate catalogs

## Gravitational lensing : principle



- Light rays emitted by a background source
- Deviation of light rays due to a foreground deflector
- Multiple images, distortion, amplification

Source with known *z* and apparent magnitude:
 → Probability of a lensing event?

#### Lensing geometrical cross section



#### Function of : deflector type, redshifts

# Lensing Volume



#### • Probability of lensing :

- Integrating on effective volume
- Deflector presence
   probability density function

#### • We need to know:

- Deflector model
- Deflector distribution
- Cosmological model

#### **Amplification Bias**

Probability associated to a source with a given Gap

 $G_{ap} = G_{intr} + Dg_{ampl}$ 

- Through Cross section :
  - Amplification changes with the deflector position
  - Different amplification → source with different intrinsic magnitude!
  - During integration : weighing by the fraction of concerned sources
- Correction factor : Amplification Bias

 $\rightarrow$  Need of the QSO Number count function!

+

Geometrical Cross section

#### Probability of GL event

Lensing event probability depends on :

- Deflector model :
  - Singular isothermal Sphere
  - Spherical symmetry
- Deflector distribution :
  - Constant spatial co-moving density
  - Constant deflector luminosity function (with redshift)
- Cosmological model :
  - FLRW flat universe
  - Omega matter = 0.27 , Ho = 72 (km/s/Mpc)
- Source Number count function (  $\rightarrow$  *Bias*)

#### **Number Counts Function**



- N(g) known by
  - SDSS Dr3 (Richards 2006)
  - 2SLAQ
- Conversion  $g \rightarrow G$ 
  - $(g-i) \rightarrow (G-g)$ 
    - (Slezak & Mignard 2007)
  - Mean <g-i> from SDSS Dr3
- Fit by 2 power laws (break from Narayan 1989)

## **Catalog Simulation**

- Catalogue simulation :
  - Need of the Luminosity function of Quasars
  - G magnitude : G = MG + 25 + 5 log(Dium) + K
  - Reject sources with G >20
- Luminosity Function from SDSS i band (Richards et al. 2006)
- Using :
  - Mean <g-r> and <g-i> for each z (Slezak&Mignard 2007)
  - <g-G> = P(<g-r> ; <g-i> )
    (Slezak&Mignard 2007)
    - $\rightarrow$  <g-G>,<g-i> known as a function of z
    - $\rightarrow$  <G-i> known as a function of z
  - → LF estimation known for each redshift in G-band

#### Results

- Mean Probability : P ~ 0.0059
   → 500000 \* 0.0059 = 2950 Lenses
- Reconstruction of QSO Statistical sample:
  - From Gaia QSO catalog:
    - Unlensed sources
    - Lensed sources with unresolved images
    - Lensed sources with resolved and separated images
  - From Gaia extended object catalog:
    - Lensed sources with resolved and joined images
    - With QSO-like spectra

#### Perspectives

Use reconstructed QSO statistical sample

Adjust the model parameters to fit real statistics
 → constrain model parameters!

- Complexify the model
  - Deflector model
  - Deflector distribution

# The End

#### Number count function



# **Catalog Simulation**

- If we know:
  - Redshift distribution
  - Quasar LF (in G-band)
- Generate sources respecting
  - Mg distribution
    - (Luminosity Function)
  - z distribution
     (Richards 2006 SDSS DR3)
- Calculate G magnitude:  $G = M_G + 25 + 5 \log(D_{lum}) + K$



• Reject sources with G >20