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How the measurement 
process is modeled in the 

context of General  
Relativity?

(GR=default)



1: Spacetime
Select the background spacetime  

metric to model specific astrophysics   
situations (the physical phenomena,  
i.e. the “system” under consideration).



Absolute formulation of physics laws, unifying aspects of GR, 
Geometrical, elegant …

but 

not too much useful for our “classical” understanding of physical phenomena: 
The latter are in fact something  happening somewhere in space and having 
a definite duration in time (enough to perform  measurements), i.e. it is usually 
Meant as having a 3d+1d characterization istead of a 4d characterization.

SPACETIME (=4d point of view):



2: Observables
Select the obervables (specific measurements to 

be performed).

Electromagnetic field strenght

Path deflections on particle or 
photon motion

Gravitational radiationFluid pressure, energy density, 
dynamics

ScatteringPrecessions



3: Observers
Select the observer family  suited for the chosen 

measurement (specific kinematical status of the 
observer family with respect to the background 
spacetime).

u=Observer four velocity vector

Spacetime (tangent space) splitting associated with u

Systematic use of
projectors for tensor 
and equations



(Geometric) Measurements

Measurement of a vector

Measurement of a tensor

Examples: splitting of tensors

1+3 decomposition = geometric measurement



The “splitting game” with both tensor 
(familiar) and tensorial differential operators 
(unfamiliar) is a necessary tool to reproduce 
formal “3+1” expressions having also a 
geometric consistency and meaning.

A note:



Splitting of differential operators

4 3+1





3d notation
… less familiar

… less familiar



Geometrical properties and 
kinematics of the observer 

congruence
Acceleration, vorticity,
expansion (shear)

The obervers with their 
timelike world lines fill 
An (open)  region of 
spacetime.
The boudary of such a region
corresponds to causality 
changings, i.e. marks the 
location where they are no 
more “useful.”



4: Observer-adapted frames
Select the most convenient spatial frame for the 

chosen observer family (specify e.g. the 
geometrical properties of such spatial axes).



Natural frames: FS
(observer’s world line unit tangent vector)

Absolute FS frames, to be distinguished from relative FS frames



But also…other similarly natural  
frames

Adapted frames with spatial axes undergoing special transport laws along the
observers world lines:

Parallel transport law
Fermi-Walker transport law
Lie transport law
…

Actually the choice of the spatial frame is a free choice!!!
It depends on specific applications only…



Local Rest Space 

A note: among all the steps necessary to characterize the  measurement process in 
GR the choice of a spatial frame adapted to selected family of observers is not so 
fundamental as the previous ones and it can be (eventually) post-poned. In other 
words one still has a freedom in the choice



“1+3” TRASLATION of “4”: a 
tutorial example



Relative-observer formulation 
of the physics laws:  

examples



Changing (boosting) the 
observers and re-adpting the 
frames: these are now well 

established techniques!



More than one observer 
family present?



How to connect two different 
LRSs

Projections and Boosts



Projections



Spacetime map

Restriction to LRSs

Associated tensors needed 
for its representation 

Boosts



Composition laws

without introducing frames or components….

and related…



An explicit example

Poynting-Robertson  effect in bhs 
(scattering of light by massive 
particles, deflections, etc.)



PR effect: a short introduction
(Poynting 1903, Newtonian gravity; 

Robertson 1937, linearized GR).

Consider a small body orbiting a star. 

The light emitted by the star exerts a  radiation pressure on the body 
whose direct effect is a drag force,  which causes the body to fall 
into the star, unless the body is so small that it is pushed away from the star itself. 

Radiation from the star (S) and thermal radiation from  a particle seen 
(a) from an observer moving with the particle
(b) from an observer at rest with respect to the star.
The effect can be understood in two ways, depending on the reference frame 
chosen.

From the perspective of the “body” circling the star, the star's radiation 
appears to be coming from a slightly forward direction (aberration of light). 
Therefore the absorption of this radiation leads to a force with a component 
against the direction of motion. 
(The angle of aberration is extremely small since the radiation is moving at the 
speed of light while the body is moving much slower than that.)

From the perspective of the “star,” the body absorbs light entirely 
in a radial direction, thus the body's angular momentum remains unchanged. 
However, in absorbing photons, the body acquires added mass via mass-energy 
equivalence.  In order to conserve angular momentum (which is proportional to 
mass), the body  must drop into a lower orbit.

“The body”

“The star”

http://en.wikipedia.org/wiki/File:Poynting-Robertson_effect.png�


PR effect
The drag force is “naively” understood as an aberration effect: if the 
body is in a circular orbit, for example, the radiation pressure is 
radially outward from the star, but in the rest frame of the body, the 
radiation appears to be coming from a direction slightly towards its 
own direction of motion, and hence a backwards component of force 
which acts as a drag force is exerted on the body. If the drag force 
dominates the outward radial force, the body falls into the star.

For the case in which a body is momentarily at rest, a critical 
luminosity (similar to the Eddington limit) exists at which the inward 
gravitational force balances the outward radiation force, that is there 
exists a critical value separating radial infall from radial escape. 

Similarly for a body initially in a circular orbit, there are two possible  
solutions: those in which the body spirals inward or spirals outward, 
depending on the strength of the radiation pressure.



Modeling the phenomenon, object of 
current study (PR effect and bh)

We consider this problem in terms of a test body in orbit first 
in a spherically symmetric Schwarzschild spacetime without 
the restriction of slow motion, and then in the larger context of 
an axially symmetric Kerr spacetime. 

The finite size of the radiating body is ignored. 

The photon flux from the central body is modeled by test 
photons in outward radial motion with respect to the locally 
nonrotating observers, namely photons with vanishing 
conserved angular momentum (later on we will generalize this 
request). 

The basic equations are developed for a stationary 
axisymmetric spacetime. Explicit examples  then follow for the 
Schwarzschild and Kerr spacetimes.



GR setting of the problem

Metric

Lapse-Shift notation

Fiducial observers:
ZAMOs

the associated 
kinematical properties
and an OAF

Background 
spacetime



Photon field, superposed as
a test field to the 
gravitational backgroundPhoton

(test) field



Test  particle

4-acceleration (frame components)



Equations 
of motion

Equations of motion, 
to be integrated numerically.



Further specification of the 
background spacetime 



Schwarzschild



Geos in green



Geos in green



Kerr



Kerr

i.e. it rotates wrt to the coords with 
the ZAMO angular velocity







Generalizations

Photons with nonzero angular momentum

Test body endowed with intrinsic angular momentum 

Radiation field as an exact solution of the Einstein’s field equations
(Vaidya spacetime)

Energy flux at infinity

Finite size of the emitting star

Etc.



b=L/E

Kerr with superposed 
radiation field with 
nonzero angular 
momentum



Generalizations

Photons with nonzero angular momentum

Test body endowed with intrinsic angular momentum 

Radiation field as an exact solution of the Einstein’s field equations
(Vaidya spacetime)

Energy flux at infinity

Finite size of the emitting star

Etc.



Generalization to the case of spinning test particles undergoing PR effect

MP- model for spinning test particles

Explicit calculations in the Schwarzschild background, linearization in spin





F spin << F rad









Details…







Numbers



Generalizations 

Photons with nonzero angular momentum

Test body endowed with intrinsic angular momentum 

Radiation field as an exact solution of the Einstein’s field equations
(Vaidya spacetime)

Energy flux at infinity

Finite size of the emitting star

Etc.



Vaidya spacetime



Equations of motion

Mass function interpolating
between two Schwarzschild



Vaidya: ingoing radiation



Vaidya: outgoing radiation



Generalizations 

Photons with nonzero angular momentum

Test body endowed with intrinsic angular momentum 

Radiation field as an exact solution of the Einstein’s field equations
(Vaidya spacetime)

Energy flux at infinity

Finite size of the emitting star

Etc.



Parameters: M=1, A/M=0.01, r(0)=10, phi(0)=0, 
nu(0)=nuK=0.3535, alpha(0)=0. 

(Peak= lensing; gobba = redshift)

Apparent position of the direct image

Realistic orbit on the equatorial plane
of the Schwarzschild spacetime
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Thanks for your kind attention!
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