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How the measurement
process Is modeled in the
context of General
Relativity?

(GR=default)



1. Spacetime

- Select the background spacetime
metric to model specific astrophysics
situations (the physical phenomena,
l.e. the “system” under consideration).




SPACETIME (=4d point of view):

Absolute formulation of physics laws, unifying aspects of GR,
Geometrical, elegant ...
but

not too much useful for our “classical” understanding of physical phenomena:
The latter are in fact something happening somewhere in space and having

a definite duration in time (enough to perform measurements), i.e. it is usually
Meant as having a 3d+1d characterization istead of a 4d characterization.



2: Observables

- Select the obervables (specific measurements to
be performed).

Path deflections on particle or
photon motion

Electromagnetic field strenght

Fluid pressure, energy density,
dynamics

Gravitational radiation

Precessions



3: Observers

- Select the observer family suited for the chosen
measurement (specific kinematical status of the
observer family with respect to the background
spacetime).

u=Observer four velocity vector

4

I'(u) = — R u’ Spacetime (tangent space) splitting associated with u
Plu) = I, +uv*@u

. . YO L 'r'fr....
Systematic use of Plu)’g---57

projectors for tensor o . y
and equations T(w)S]* 5. =T (u)* ---T(u)---S"5 .



(Geometric) Measurements

1+3 decomposition = geometric measurement

S5 = {w- 5, [P(u)S]} Measurement of a vector
ST {2y ST, Plu)®, 57}
1
Measurement of a { 1} tensor

5% {ua TRIAFS F{tajﬂa,-ué.?ﬁ. F(ufjéﬂte,-,-ﬁ""a, P(u}ﬂa,-P['ufjég.Sqﬁ}

Examples: splitting of tensors

gaf = Plu)ag +T(t)ag  Magys = —2upen(u)gps — 2upn(v)sas

D) agy = 1 Nias



A note:

The “splitting game” with both tensor
(familiar) and tensorial differential operators
(unfamiliar) Is a necessary tool to reproduce
formal “3+1” expressions having also a
geometric consistency and meaning.




Splitting of differential operators

(i) The Lie derivative of T" along the direction of a given vector field X :

(ii) The covariant derivative of T: VT

(1i1) The absolute derivative of T" along a curve with unit tangent vector
X and parameterized by s: VxT = DT /ds.

(1v) The Fermi-Walker derivative of T along a non-null curve with unit
tangent vector X and parameterized by s Digg x)1/ds.

Finally if 5 is a p-form, one has

(v) The exterior derivative of 5: 45.




(1)

(i)

(iii)

(iv)

The spatially projected Lie derivative along a vector field X
[E(u)xT]" 5. = Plu)% ... Plu)Ps...[£xT" o.; (3.26)
when X =« we use also the notation
Vi) ey D = £lu)yT (3.27)
and this operation will be termed “spatial-Lie temporal derivative’.

The spatially projected covariant derivative along any ey frame di-
rection

Viwj, I = Plu)V, T, (3.28)
natmely
[V () T1%5... = P(u)ay ... P(u) 5. . . P(u)7, VoT g, .. (3.20)
The spatiallv projected absolute derivative along a curve with unit
tangent vector X
[Plu)VxT]" 5. = Plu), .. .P(Mjﬁlﬁ VXTI, (3.30)

The spatially projected “Fermi-Walker derivative” along a curve with
unit tangent vector X and parameterized by s

D e 0T
{P{ ta]—(fﬂd'f:'

the spatially projected exterior derivative of a p-form 5

[ D ) ]— iT...
5. = Ptujﬂg...PQaLJﬂg---[%} (3,31)

diu)S = Plu)dS, (3.32)
natmely

[d(1)S)ay...aps = P(u)a, ... P(u)”3[dS]s,..0. (3.33)



3d notation

X Y = Plu)ys XoY# ... less familiar
_ X oy, A% = plu) 2o X AP
Ay Bl = A, B,
egrad, f = Viulf . Tr[A-, B] = A.aB*".
curly, X' = Viuw) = X
divy, X = Viu) X .

[Seurl,, ‘{]ﬂﬁ =7l “:JTH&T(“:JT ‘;1_5':'5 ... less familiar

divy X% = V(u)e X7, X = P(u)X



Geometrical properties and
kinematics of the observer
congruence

Acceleration, vorticity,

_ | expansion (shear)
alu) = Plu)Vyu,

Flu) = —Vi{iuju=wlu)—0u).
The obervers with their
timelike world lines fill
[wlu)lag = —Plu)hPlu)iViu , An (open) region of
A2 — P 'J'JP-' TR Spacetlme.
6(w)]ag | (o P(u)5V (uin) The boudary of such a region
— _i[i?(u]uP(u}],&g 1 corresponds to causality
2 changings, i.e. marks the

location where they are no
more “useful.”



4. Observer-adapted frames

-> Select the most convenient spatial frame for the
chosen observer family (specify e.g. the
geometrical properties of such spatial axes).

(ziven a field of observers u, a frame {e, | with oo = 0,1, 2, 3 (with dual &%)
is termed adapted to w if ep = v and e, with a = 1,2, 3 are orthogonal to
w, namely u - e, = 0. From this it follows that % = —u”. Obviously the
components of u relative to the frame are simply «»® = 45 and the metric
tensor reads

q = —u’ @ u’ + Pla) g™ & WP,



Natural frames: FS

by =0 (observer’s world line unit tangent vector)
DE: DE.-
0 _ 1
= w5, —_— =kl + 1T Es,
dTys : dTyr o
DE: DE.
E — E-’ B 3 — o
— _I _|_ T .E L] _ _I .E L]
dryr Rt e dryr 42

Absolute FS frames, to be distinguished from relative FS frames

Dy 17,0

ETy— v(Uu) = K, rr.u)(fw,U) s U = ~(U,w)u+ (U, u)]
Ditw ) . o .
d':FI: {Iu?’_:l Ij‘(f‘-‘i.ﬂLf,uj = —Jt'-'(fw,U‘uj L-‘[ LI-| H] T T[fw,U,u]l "glsz,lr_-'___uj .
D (fw ) - ) o .
dfl:{luj Ilj(f'-'i.’,Lf,ﬂ:l = _Tl:f'-'l'__{."__'i‘.l',j I?I:f'-'i.’_.[,,’,ﬂ:l - %{;ﬂj — ,}_(Lr‘ ?.L] ) di{:{;ﬂ — "r’li{z". u” |I«"[.[»'T., H-:l ||



But also...other similarly natural
frames

Adapted frames with spatial axes undergoing special transport laws along the
observers world lines:

Parallel transport law
Fermi-Walker transport law
Lie transport law

Actually the choice of the spatial frame is a free choice!!!
It depends on specific applications only...



Local Rest Space

A note: among all the steps necessary to characterize the measurement process in
GR the choice of a spatial frame adapted to selected family of observers is not so
fundamental as the previous ones and it can be (eventually) post-poned. In other
words one still has a freedom in the choice



“1+3” TRASLATION of “4": a
tutorial example

allly = fiL7) U = ~(U u)fut+ (U, u)]
plll u) = 5, u)
Dt rupp(Us 1) Ll |
dTl:U H:I — Fl E..',I H-J + Fl:f'-'l’,[-'r_-u:]
dE (U, w) - . .
= y(Uow) U u) + FE ]
dT[L’__uj e
F((fﬁ:i{-".-ﬂ]l = —~ylalu) 4+ wie) =y (U a) + 0(w) (U, u)]
o D G P .
F( HJF{J = _F(Efw:.lL’,uj Plu, U AUy = ~F(U, uj
P(U,u) = P(U)P(u) : LRS, — LRSy
PQELJDﬂY — ":r[PI:i'.L:ITH,Y +v(u}u({f,uj*¥ dT[U ) df(ﬂ ) ) ) )
dry = = (U, u), ——— = (U, u)|[v(U,u)|
T

D g7,y X drys
drr '




Relative-observer formulation
of the physics laws:
examples

F' =dA =u"nE(u) + @B(u) d?A" =0, *d'F =4xJ

divy, Blu) + 2wiu) o Elu) =0,
curly Elu) +alu) «<y Elu) =
[ £(w)y + O ()] B(u)
divy Elu) — 2wiu) - Blu) =4wplu) ,
curly, Blu) +alu) <y Blu) — [£lu)y + S u)|Elu) =
drwd{u) ,
J = plu)u+ J(u)



Changing (boosting) the
observers and re-adpting the
frames: these are now well
established techniques!

=




More than one observer
family present?

U = (U, u)[uA (U, )]
= AU w)fu || U w)| e (U, )]

w = lu, U)[U+w{u, )]

=yl U J[U 4 | oo (e, U7 ) || e, T7)] . “, __
I|
B(U,wju = U /7
= u+ (U u)l [ em

B(U, w)ir(U,u) = —irfu, 1)
= ~le(U, u)+ru].



How to connect two different
LRSS

Projections and Boosts

The spatial measurements of two ohservers in relative motion can be com-
pared only relating their respective LRSs. Let U7 and » be two such observers
and L RS and LRS, their LRSs. There exists several maps between these
LESs, as we are going to diseuss now.

Combining the projection operators P(L7) and P(«) one can form the
following “mixed projection” maps:



Projections

(1) P{U, u) from the LRS, into L RSy, defined as
P(U,u)=P(U)P(u): LRS, — LRES,
with inverse:
P(U,u)' :LRSy — LRSy;
(ii) Plu,U) from the LRESy into LRES,. defined as
Plu,U)=Plu)P(U): LRS;; — LRS, ,
with inverse:
P(u,U) ' :LRS, — LRSy.
Note that P(U,u) # P(u, 7)1 as it follows from their representations

L uJ — PLLI',J + "]-'L-‘L'T ',:,' I}{LT, H] ¥
PU,u)™t = PU)+vU @o(ul),
Plu, ) P(U) 4+ ~vu@v(u, U),
Plu, Uy = Plu)+rvuco(U,u) .
P(U, w)i(U, )

Plu, U)LY (U, w)

—~rr(w, U],
——(u, U7} .



B(U,uwu = U BOOStS

y[u + v (U, u)]

BU,ujp(U,u) = —v(u,U) Spacetime map
= ~[e(U, u)+vu].

By (U, u) = P(U)B(U,w)Plu) : LRS, — LRSy Restriction to LRSs

The representations of the boost and its inverse can be given in terms of
the associated tensors

Bl:lrs:lﬂ [ IU., u:.I .

defined by: Associated tensors needed
for its representation

Busyo(U,u) - Buyu(u, U) s Bpysyur (u, U),

B{lrsjﬂl'i'["r‘ ) = P{[f‘ uj_ll—Bl:]Isjl-i[“T! ) .
Bumyr(U,u) = B (U, u)LP(U, u,:,l_l.

with the corresponding expressions for the inverse boost obtained simply by
exchanging the role of U7 and « and with

By (U, w) = Byeeyor (U, w) LP(U, ) = P(U, u) LB{jyeyu (U, ) -

The explicit expression of Bilmju({a’, u), for example, is given by

—_
T
¥

Busyu(U,u) = Plu) +

(U u) @ e, u).
¥



Composition laws

I = ~(U,u)[u+ (U, u)]
= (U w)fu+ |0 w)| (U, u)]

e(U, w) — el e, u)

. v —1 = TT =%
P, u) (@ ur(U, ) 1 — (U, w) -, u)

- i -
alll) = ~Plul) IF[{fw?L’_.u]I T EP[D, u;'ﬂ[fmr,L’,uj
= 2 Pla, ) Hale) +wlu) xu (U, u) + 8(u) Lo (U, u)]

—P(U, t.',]ﬂ(f-.g__{.",u]l} '

without introducing frames or components....

and related...



An explicit example

Poynting-Robertson effect in bhs
(scattering of light by massive
particles, deflections, etc.)



PR effect: a short introduction

(Poynting 1903, Newtonian gravity;
Robertson 1937, linearized GR).

Consider a small body orbiting a star.

The light emitted by the star exerts a radiation pressure on the body
whose direct effect is a drag force, which causes the body to fall
into the star, unless the body is so small that it is pushed away from the star itself.

Radiation from the star (S) and thermal radiation from a particle seen

(a) from an observer moving with the particle

(b) from an observer at rest with respect to the star.

The effect can be understood in two ways, depending on the reference frame
chosen.

From the perspective of the “body” circling the star, the star's radiation
appears to be coming from a slightly forward direction (aberration of light).
Therefore the absorption of this radiation leads to a force with a component
against the direction of motion.

(The angle of aberration is extremely small since the radiation is moving at the
speed of light while the body is moving much slower than that.)

From the perspective of the “star,” the body absorbs light entirely

in a radial direction, thus the body's angular momentum remains unchanged.
However, in absorbing photons, the body acquires added mass via mass-energy
equivalence. In order to conserve angular momentum (which is proportional to
mass), the body must drop into a lower orbit.

“The star”

(a) o (b)

“The body”



http://en.wikipedia.org/wiki/File:Poynting-Robertson_effect.png�

PR effect

The drag force is “naively” understood as an aberration effect: if the
body is in a circular orbit, for example, the radiation pressure is
radially outward from the star, but in the rest frame of the body, the
radiation appears to be coming from a direction slightly towards its
own direction of motion, and hence a backwards component of force
which acts as a drag force is exerted on the body. If the drag force
dominates the outward radial force, the body falls into the star.

For the case in which a body is momentarily at rest, a critical
luminosity (similar to the Eddington limit) exists at which the inward
gravitational force balances the outward radiation force, that is there
exists a critical value separating radial infall from radial escape.

Similarly for a body initially in a circular orbit, there are two possible
solutions: those in which the body spirals inward or spirals outward,
depending on the strength of the radiation pressure.



Modeling the phenomenon, object of
current study (PR effect and bh)

We consider this problem in terms of a test body in orbit first
In a spherically symmetric Schwarzschild spacetime without
the restriction of slow motion, and then in the larger context of
an axially symmetric Kerr spacetime.

The finite size of the radiating body is ignored.

The photon flux from the central body is modeled by test

# hotons In outward radial motion with respect to the locally
nonrotatlng observers, namely photons with vanishing
conserved angular momentum (later on we will generalize this
request).

# The basic equations are developed for a stationary
axisymmetric spacetime. Explicit examples then follow for the
Schwarzschild and Kerr spacetimes.



GR setting of the problem

Stationary, axisymmetric and reflection-symmetric spacetimes

> 0 0 0 0 Metric
ds” = gudt” + 2g:4dtde 4+ gpedd™ + grrdr” + goedl

N — N—l(at B N¢8¢.) N — (_gtt)—l/? N¢ — 916/ 9o Lapse-Shift notation

1 1 SR :
er=1. es= o er = Oy. €= e Fiducial observers:
T g Y e Y \/gqb ZAMOs
the associated
7 0 kinematical properties
a(n =a(n)"e; +a(n)’e; = 0x(In Nes + 9;(In N)e, ,
(n) = a(n)e; +a(n)’e; = 0;(In N)es + 9(ln N)ey e s

7 ) \/gqb
qu(n) :9(;3(71) 6@+9q3(?1)96é = [8 N¢ T—F(‘? N¢€9]
kqie) (1) = Kqie)(n)rer + Kqic) (n)geg = [ 07 (In \/gge)er + 05(In \/Gop) €]



T = O2kkP, K%k, =0 Photon field, superposed as
a test field to the
gravitational background

where k is assumed to be tangent to an affinely parametrized outgoing null geodesic in
the equatorial plane, i.e., k*V,k” = 0 with kY = 0. We will only consider photons in
the equatorial plane which are in outward radial motion with respect to the ZAMOs,
namely with 4-momentum

k= E(n)n+v(k,n), vik,n) = ez,

where F/(n) = E/N is the relative energy of the photon and E = —k; is the conserved
energy associated with the timelike Killing vector field and L = k4 = 0 is the vanishing
conserved angular momentum associated with the rotational Killing vector field, while
v(k,n) defines the unit vector direction of the relative velocity. For the Schwarzschild
case, these orbits are radial geodesics with respect to the static observers tied to the
coordinate system, but for the Kerr case, they are dragged azimuthally by the rotation
of the spacetime with respect to the coordinates.

Tﬂfﬁ;ﬁ — 0 > QL

[960960) 1/




Consider now a test particle moving in the equatorial plane 8 = /2 accelerated
by the radiation field, i.e., with 4-velocity

U=~vUn)n+vUn), vUn)=rve + rﬂge& = vsinaey + v cos ae

where y(U,n) = 1/4/1 — ||v(U,n)||? is the Lorentz factor and the abbreviated notation
v% = v(U,n)? has been used. In a similarly abbreviated notation, v = ||v(U, n)|| and
a are the magnitude of the spatial velocity v(U,n) and its polar angle measured
clockwise from the positive ¢ direction in the r-¢ tangent plane, while o = (U, n)
is the associated unit vector. Note that o = 0 corresponds to azimuthal motion
with respect to the ZAMOs, while o = +7/2 corresponds to (outward/inward) radial
motion with respect to the ZAMOs.

] . . d
a(U)! =~?vsina [a(n)’" + 2v cos a Q(n)rqg] + 731/—1/
) ) ) dr ) 4-acceleration (frame components)
a(U)" =~*la(n)" + kqie)(n)" v cos® a + 2v cos a 0(n)" ;]
+ 2Sina%+vcosad—a
T dr dr
a(U) =0,

" " d d
a(U)? = — y*v2sinacos akqiey (n)" + 7 (72 oS aé — vsin ad—i)

-~ A7



Scattering of radiation as well as the momentum-transfer cross section o (assumed
to be a constant) of the particle is independent of the direction and frequency of the
radiation; therefore the associated force is given by

Fraay(U)* = —aP(U)* s T7, U*

where P(U)%g = o5 + U*Up projects orthogonally to U. The equation of motion of
the particle then becomes

ma(U) = f(rad)(U) ]

where m is the mass of the particle and a(U) = VU is its 4-acceleration.

dv sin «v A R A
— = - a(n)" +2vcosaf(n) ;| + ————=(1 —vsina)(sina — v),
&=~ laln) )31+ et )(sina—)
d . ) ) . .
d_a — _Te»a la(n)" +2vcosab(n)" 5 + v kiey(n)"] Equations of motion,
T v ) to be integrated numerically.
A (1 —vsina)cosa

+ ;
N2, /G669 v

ﬁ __yvsina

dr — Vgm ’

where the positive constant A is defined by
A= J@%Ez




Further specification of the
background spacetime



The Schwarzschild spacetime is characterized by the metric functions

9tt=_N2; gtCD:O g?"?"=1/N2: 999=T21 g¢¢5=?‘25in261

where the lapse function is
2M M
N=yJ1-22 v1-— |
T T

in which the approximate expression represents the asymptotic value at 7 — oo and to
first order in M. In this case as well the ZAMOs are aligned with the coordinate time
world lines; however, they form an accelerated (a(n)” = M/(rv/r2 —2Mr) ~ M/r?)
and expansionfree (6(n) = 0) congruence. The Lie curvature of the ¢ loops has only
a radial component with value kge)(n)” = —N/r ~ —1/r + M /r?. Radially outgoing
(geodesic) photons on the equatorial plane have 4-momentum

Ty —1
H[(%) 00+,

Egs. (2.29) reduce to

d y ; A
v_ ?k(lic)(n)r”%’ + W(I —vsina)(sina —v) ,

= E(n)[n +e;].

dr

da yeosa, P A . .
E = — » ,(lie)(n) (U —UK)+m(1 —UBIHO&)COSQ,
dr =~vNsina,

dr

where we have used the relation a(n)” = —kgie) (n) v,

Lo M
K=\ 7 —"am

is the Keplerian speed associated with circular geodesics. If one is only interested in
the spatial orbit of the particle, one can choose 7 or ¢ as the parameter along its path,
re-expressing the above equations using the chain rule.

For the case v = 0 of a particle at rest, these equations reduce to the single
condition Eq. (2.33) representing the balancing of the gravitational attraction and the
radiation pressure at constant r and ¢, namely

A L _2M 172 ) oM
] —_— — — ity = ——————.
M - " e = T A2

Schwarzschild
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Figure 1. The orbit of the particle in the Schwarzschild spacetime with M =1,
A/M = 0.6, r() = 3.125M. The inner circle is the horizon r = 2M, while
the outer circle is at the critical radius which is inside the initial data position.
Initial conditions have (r(0),®(0),«(0)) = (4M,0,0) and »(0) = 0.2,0.5,0.8. The

corresponding geodesics A/M = 0 are in gray.



Geos in green

Figure 2. The orbit of the particle in the Schwarzschild spacetime with
M =1, A/M = 0.8, P(crit) = 9.5M. The inner circle is the horizon r = 2M,
while the outer circle is at the critical radius which is outside the initial data
position. Initial conditions have (r(0),#(0),a(0)) = (4M,0,0) and for the left
figure v(0) = 0.2,0.3,...,0.7 while for the right figure 0.71,0.72,...,0.75. The
corresponding geodesics A/M = 0 are in gray.



In the equatorial plane of the Kerr metric, the metric is

2M 2aM 3+ aZr + 2a2M
g — — 1—f v Gt — T Yoo — — )
T T T
e
Yrr A Goo '
so that

B \/ rA M N — 2aM 2aM
V3 4 a?r + 202M r P34 alr 4 202M 73

where A = 72 4 a? —2M7r and the approximate expressions represent their asymptotic
values (r — o0) to first order in M. The ZAMOs are timelike outside the horizon

ry = M ++M? — a?. The nonvanishing components of the ZAMO kinematical fields

" Kerr

A M|(r? + a®)? —4a’Mr] M

T
L\ = ~—
() r2VA(r3 + a?r + 2a2M) 7
7 aM (3r? + a?) 3aM
O(n)" : = ——— . . ~—_——,
? r2(r3 + a?r + 2a?M) r3
koo () VA —a?M) L, M
: ie n — T 7= F. F; F; ™~ == —_—
(lie) r2(r3 + a?r + 2a2M) r o or?
Circular geodesics correspond to orbits
a’® F 2av/Mr + r?

Uy = n+trvie:), vy = ,
+ = 7x( +€3), £ JA(a £ i3
and the following relation between v+ and the ZAMO kinematical fields hold

a,(n)": = k(“e)(n)’:v, v, —29(73)":0;) = k(lie) (n)":(m Fuvo).

Equations (2.29) can then be rewritten as

dv sin akliey (n)" A(1l —vsina)(sina — v)
— = ————— |y —veosa(v, +v.)|H _

dr ¥ 7/ 9sIN?

da 7 cos akjie) (n)” o A(1 — vsin o) cos o
= » [vyv_ —veosa(ve +v_) + v+ r TN

dr  Ausina

dr Grr



For the case v = 0 of a particle remaining at rest with respect to the ZAMOs,
these reduce to the single radial force balance condition

A [(r*+a®)? - 1a®>Mr]vVA

M r(g4)*/? ’
which cannot be solved explicitly for r. However, the right hand sid: of this equation Kerr
takes values between 0 at the horizon 7 = r4 and 1 when as » — oo s) a critical radius

T(erit) always exists for which this is satisfied for any proper fractional value of A/M.
If A/M > 1 of course no static solutions exist.

i.e. it rotates wrt to the coords with
the ZAMO angular velocity



_‘“:]_

Figure 3. The orbit of the particle in the Kerr spacetime with M =1, a = 0.5
(left figure), a = —0.5 (right figure), A/M = 0.6, r(cj;) = 3.154M. The inner
circle is the horizon » = 1.866 M, while the outer circle is at the critical radius
which is inside the initial data position. Initial conditions have (r(0), #(0),a(0)) =
(4M,0,0) and v(0) = 0.2,0.5,0.8. The corresponding geodesics A/M = 0 are in
gray.
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Figure 4. The orbit of the particle in the Kerr spacetime with M = 1,
a = 0.5 (left figure), a = —0.5 (right figure), A/M = 0.8, r(yi;) = 5.551M.
The inner circle is the horizon r = 1.866M, while the outer circle is at the
critical radius which is outside the initial data position. Initial conditions have
(r(0),0(0),a(0)) = (4M,0,0) and »(0) = 0.2,0.5,0.8 for the left figure, while in
the right figure »(0) = 0.2,0.5,0.8,0.847 for both the accelerated and geodesic
curves and then finally v(0) = 0.9 for the accelerated curve and v(0) = 0.848
for the geodesic, both of which escape to infinity. The corresponding geodesics
A/M = 0 are in gray.



Generalizations

Photons with nonzero angular momentum
Test body endowed with intrinsic angular momentum

Radiation field as an exact solution of the Einstein’s field equations
(Vaidya spacetime)

Energy flux at infinity
Finite size of the emitting star

Etc.



ke )

err with superposed
radiation field with
nonzero angular
momentum

The spacetime and photon parameters are a = 0.5, A/M = 0.3,
b/M = 3, showing two orbits moving initially from the bullet point in the two
azimuthal directions just inside the outer critical radius with 1.2 times the critical
speed for that counterclockwise critical orbit. The unit velocity direction field
(k,n) of the radiation with respect to the ZAMOs is superimposed on the plot.
The dashed circles are the two null eircular geodesics orbits. The gray filled circle
extends to the horizon. The clockwise moving orbit settles down to the critical
orbit, while the counterclockwise moving orbit quickly falls into the inner critical
orbit near the horizon. The gray circle between the null orbits 1s the unstable
critical orbit. This and all further plots show r/M on the axes.
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Generalization to the case of spinning test particles undergoing PR effect

DPH 1 ] | .
ar §Rﬁuap‘r[ﬁ'”3c"‘3 = [(spim)u
D SHv _ puyv _ prpn, MP- model for spinning test particles

dr

SH P, =0

D P~
dr

__ p(spin)p

Explicit calculations in the Schwarzschild background, linearization in spin



Let the 4-momentum P = mu be fully general, i.e. with
1

Tu:ﬁs

and introduce the spin vector associated with S, by spatial duality

S..'j —_ _uaﬂo:lﬂpv S,u,v :

u = Yu[n+ vu(sinayes +cosayey)],

where 7),5,5 = \/—g€agys is the unit volume 4-form and €,5,5 (€p123 = 1) is the
Levi-Civita alternating symbol. It is also useful to consider the scalar invariant

1
2 2
5§ = ES'U_VS'LL 5

constant along Cry because of Egs. (1.2) and (1.3). Consistency of the model requires
that the length scale |s|/m associated with the spinning particle be much smaller than
the one associated with the background spacetime, say M, namely

_ _ls]
3= mM
Let us consider Egs. (1.1) and (1.2) with U given by Eq. (2.7) and u® given by
Eq. (2.14). In the spinless case P is aligned with U, i.e. u = U, implying that v = v,,.
The presence of the spin causes a change in both U and u according to

< 1.

U="U+sU:, u= U+ Suz,
where
Up = Yo(n +vies + u[‘f’e&)

satisfies Eq. (2.12) and corrections are first order in the spin. Higher order terms in
Eqs. (1.1) and (1.2) are neglected. This leads to two different sets of equations for
zeroth and first order in spin respectively, which are listed in Appendix A.

The spin force to first order in & is given by
: ImM?, , 3, 4
Flpin) — 3 Svovg (v + ez) . <:
0

We find that the mass of the spinning particle m is a constant of motion. Furthermore,
from the evolution equations for the spin it follows that the spin vector has a single
nonvanishing and constant component along ¢ (or 2), namely

S = —Sgeg = se; .




It is convenient to introduce a friction parameter f, so that the length scale A

associated with the radiation field be much smaller than M. i.e.

Fa

=— < 1.
/ M
0,20
0,15 III
|
|
T -
e | F spin << F rad
0,054 ‘
2 4 & B 10 12
o
M

Figure 4. The ratio between the magnitudes of spin and radiation forces given
by Eq. (3.13) is plotted in units of |5/ f as a function of rg /M.



ch

Figure 1. The orbit of a spinning particle (solid curve) undergoing Poynting-
Robertson effect is shown for the choice of parameters A/M = 0.8 and § = 0.5
(X = rcos¢ and Y = rsin ¢ are Cartesian-like coordinates). The starting point

is located at rg(0) = 4M and ¢ (0) = 0 with v,0(0) = 0.7, a,o(0) =0, ts(0) =0,
rs(0) = 0 and ¢s(0) = 0, ¥2(0) = 0 and v£(0) = 0. The values of the spin

parameter has been exaggerated in order to evidentiate the difference from the
motion of a spinless particle (dashed curve). The inner circle is the horizon
r = 2M, while the outer circle is at the eritical radius ri.;) = 5.5M which
is outside the initial data position.



Figure 2. The orbit of a spinning particle (solid curve) undergoing Poynting-
Robertson effect is shown for the choice of parameters A/M = 0.6 and § = 0.5.
The starting point is located at rqg(0) = 4M and ¢g(0) = 0 with v,0(0) = 0.5,
@0(0) = 0, t<(0) = 0, rs(0) = 0 and ¢<(0) = 0, v*(0) = 0 and vZ(0) = 0.
The corresponding orbit for a spinless particle is also shown (dashed curve). The
critical radius 7(..;¢) = 3.125M is inside the initial data position.



Tl _|_4__ e

Figure 3. The orbit of a spinning particle (solid curve) undergoing Poynting-
Robertson effect is shown for the choice of parameters A/M = 0.01 and § = 0.5.
The starting point is located at ro(0) = 4M and ¢o(0) = 0 with v,0(0) = v =
0.7071, ayo(0) =0, ts(0) = 0, rs(0) = 0 and ¢s(0) = 0, uf{(}) = 0 and u}’(O) = 0.
The corresponding orbit for a spinless particle is also shown (dashed curve). In
this case r(..i) = 2M.



Details...

‘ Deviation from the circular geodesic

Consider now the corrections to geodesic circular motion, by taking the effect of the
radiation field also small.

In absence of both spin and radiation we assume the geodesic motion of the
particle to be circular at r = ry (rp > 3M in order Uk to be timelike), that is

U= UK = ‘}"K{'nzl: VKEEN.:} , (:3.1)

where the Keplerian value of speed (v ) and the associated Lorentz factor () and
angular velocity ((: 7 ) are given hy

_|ro— 2M ﬁ,
“\ro—2M w W=\ TEar KT (32)

The =+ signs in Eq. (3.1) correspond to co-rotating (+) or counter—rotatlng (—) orbits
with respect to increasing values of the azimuthal coordinate ¢ (counter-clockwise



motion as scen from above). The azimuthal direction in the local rest space of Uk
pointing in the direction of relative motion (i.e. the boost of €3 in the local rest space

of Uy ) s specified by the following unit vector orthogonal to U in the t-¢ planc
Ui = ~x (vrn £ e;). (3.3)
where the + =igns are correlated with those in U
The parametric equations of U are
itk =tg+ T = g+ Tk,
]'hﬂ
‘JT
= E = —
T rD ? 2 :

TRVK o = g £ O, )

™
where now o, ro and ¢g are constants and
T 1 Ry — i M .
ro — 3 gV mp—d4M
It 1z convement to introduce & friction parameter f, so that the length scale A
associated with the radiation ficld be much smaller than M, 1.0

=gt

'y =

A
=— 1.
f=4 < )

Thercfore, 1n the present analy=is corrections to geodesic motion will be hmated to
first order terms in both parameters 5 and f, according to

t =itk + fiptdts, r=vro+ frptara, d=dx+ Fdp+ids,

pf = _f:.-';+§t.-':, ua= +rp + _ft.-';t +§u§',

Ly = :EVK+f["uj'+§:"'u.ﬁ1 ‘1|.|.=f‘1ul|' + Scryg, |

where ty and ¢ are given by Eq. (3.4). This implics

U=Ug+ fUp + iU, B)
where
Fi 3 4 L
Uy = | —wp—=+ - i
i (eru "rxff'_f) K+ TRvEs
Us = (—wc? J:’:f?fvf) Uk +xvies. )
(]
Similarly

u=L"+_fuf+§ug, J
with I7 given by Eq. (3.8) and

ur ='3"K["'12-‘.'r"'.1r1 _"'F:'E"= g = 'r'xliuﬂxuf—ug]ea, Y
as discussed in Appendix B
To first order in # and § the spin foree and radiation foree are given by
Frispim) F Efmtfﬁ’}'?{f;?{wce,a .

Frimd] —m vk (v U —ea), 2)

K
r=rg+ fr¢+ 5r;




GA2 nﬂ
iy = F —— - |z.|n[ﬂ.npr:] DopT] ,

r.:“ Mg
_ 2 K . - e
£y = drolk v ng {|mh|:ﬂ.:p?'] 1] + T [sin(Qopt) — Qapr| + E."”.;-!.'EEFT }

g = + EFD%EFDE{RDPT] —1],

rp= — rnl:xi!l:igp {[cce-[ﬂnp r)—1] - Eru{x%[bin{f&fpr} — HEPT]} .

. LK E:x
$ﬂ=:|:y—55!, 2 = _R_i.l'r

K
0 J‘r.f[?'ﬂ —Eﬂrf]l
BV ri(ro - 3M)
15 the well known epicvelic frequency governing the radial perturbations of arcular
prodesics.

The constant term in rg represents the shght change 1in the radius of the circular
orht about which the solution oscillates with proper penod 27".-"5_3:[:- In contrast, the
presence of a secular term in vy is responsible for the deviation from geodesic motion
due to friction, which 15 measurable in pnncple. In fact, by taking the mean values
over a pertod of the perturbed radius we can estimate the amount of vanation of radial
distance

i _ O
({} % éi‘f [(] E-r;-.]qxﬂ)f:p&'lrfﬂxﬁxhul.

where

*



Numbers

For instance, for the motion of the Earth about the Sun we find

5 | |
# {l} FT2x o7& m™e g g T4x 1078 3% 1070, (3.18)
T

CITN

since rp & 1.5 % 100 em, M = Mz & 1.5 % 10* em and the ratio (2/m) g = 200 cm for
the Earth; the fnction parameter 15 related to the ratio between the solar lnminosity
L = 3.8 x 10* erg/s and the Eddington luminosity [20, 21| £paq = 1.3 % 10°® erg/s,
and for the Sun is given by f = 3 x 107% Therefore, in this case the effect of the
radiation ficld on the orhit dominates. Note that the estimate of the contnbution due
to spin is in agreement with [22).

‘ The cffect of the spin may become 1mportant when considening the orbating
extended body 15 a fast rotating object. To illustrate the order of magmtude of the
effect, we may consider the binary pulsar system PSR JOT37-3039 as orhiting Sgr A®,
the supermassive (M = 10 M) black hole located at the Galactic Center [23, 24], at
a distance of r = 10* Km. The PSR JO737-3039 system consists of two close neutron
stars (ther separation is only dag ~ 8% 10° Km) of comparable masses ma = 1.4 Mg,
mp == 1.2 Mz), but very different intrinsic spin period (23 ms of pulsar A vs 2.8 5 of
pulzar B) [25]. Its orbital period is about 2.4 hours, the smallest yet known for such an
ohject. Sinee the intnn=e rotations are neghgmble with respect to the orhital penod,
we can treat the binary system as a single objoct with reduced mass pgp = 0.7 M
and intrinsic rotation equal to the orhatal penod. The spin parameter thus turns out
to he equal to & &2 1.0 % 1073, The lumincsity of Sgr A® is about 10°C,, whereas its
Eddington luminosity is Cpgg = 10" L, so that f =2 3 % 107%, Therefore, in this case

ar

<T> TEx I T F1E 10 T LT R 1077, (3.19)
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Vaidya spacetime

ds* = —N?du® £ 2dudr + r*(d6” + sin® #d¢?)

oM
N = \/ g 2Mw)

r

Substituting the Vaidya metric into the Einstein equations G, = 8x1,,., one

finds that the energv-momentum tensor has only one non-zero component
M
Ty =T =F——2.
e ¥ Amrl
Such a T#¥ can be interpreted as “pure radiation,” T = ®2k*k¥, where k* is a
purely radial outgoing/ingoing null vector and $? is given by normalization chosen
for k#. For instance, if one takes k* = :I:?liriﬁ_‘ . then

52 , M,
T ¢ ~ TonTc

The above choice of k¥ means ky = gap k" = gark™ = FET6, = _»_}:i &5 . in particular,

T:l':l'

the energy of radiation particles is proportional to —k, = £k" = ;1,5 . Omne also checks
easily that & 1s tangent to a null geodesic,

1
K kY =TH, kYR = 5T =0,

expanding (k*., = ++/2/7) and having zero twist and shear.



Equations of motion

1
M(u) = My + 5 (M2 — Mi)(1 + tanh fu)

) ] ) for the outgoing- (M; > Mbs) and ingoing-radiation (M; < Ma2) case, the parameter

Mass fu nction InterpOIatlng A = const goverming the transition between the two asymptotic Schwarzschild
. spacetimes (the smaller is the value of 3 the smoother is the transition). Another

between two SChwarZSChIId possibility is that the mass decreases/increases linearly with u within certain period
(between certain finite imit values), which includes the case of a self-similar spacetime.

di sIm o Tl

&= N2 [N’N,, £ Nu(1 Fvsine)] + 2 (1 Frsina)(sinaFv)
d . _ 1 Zh,fﬂ-
£ _ ".f;?izﬂ —.""-"23'\",? TNl Frsinag) + -
Ty COS .
+ T“ Frsina).

d r

d_: = %{1 Frsina),

% =~ Nsina,

d¢p ~ywvcosa

dr r !

as well as the initial conditions u(0), r(0), ¢(0), (0} and o(0}.




Vaidya: ingoing radiation

e e e e e e e S

(a) (b)

Figure 1. The behavior of r(7) is shown in Fig. {(a) in the case of ingoing
radiation with the following parameter choice: My = 085, My =1, 5= 102 and
& = 0 {geodesic, thick dashed line) and & = 104 (solid line). The initial conditions
are for both cases w() = —1000, v(0) = 4, $(0) = 0, 1(0) =2 0.49, (D) = 0, which
correspond to a circular geodesic in the past asvmptotic Schwarzschild spacetime
with mass M. During the accretion by ingoing null dust the orbit initially
circular gets spiraling, until the apparent horizgon is reached in a finite proper
time interval (see Fig. (b)). The coupling with the background radiation field
causes the accelerated particle to cross the apparent horizon before the geodesic
one. The horizon is located at v 7 1.31 in both cases (solid circle).



Vaidya: outgoing radiation

T T T T T
i

(a) (b)

Figure 6. The behavior of »(7) is shown in Fig. (a) in the case of outgoing
radiation with the following parameter choice: My = 1, Ma = 065, 3 = 10~ 2 and
& = 0 {geodesic, thick dashed line) and & = 10% (solid line). The initial conditions
are for both cases w(0) = —1000, #{(0) = 4, &(0) = 0, w{0) = 0.707, «(0) = 0,
which correspond to a circular geodesic in the past asymptotic Schwarzschild
spacetime with mass M. During the radiating process the orbit initially circular
gets spiraling. In the geodesic case, the orbit escapes outwards after a few loops.
In constrast, the accelerated particle spirals towards the apparent horizon, which
iz reached in a finite proper time interval at r 22 2. The asvmptotic inner horizon

at r = 1.3 iz also shown.
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Normalized Flux

0

Apparent position of the direct image

Realistic orbit on the equatorial plane
of the Schwarzschild spacetime

—I\M”_. T . s e . r— \\\— ]
0 1073 2x107° 3x107°
Time (s)

Parameters: M=1, A/M=0.01, r(0)=10, phi(0)=0,
nu(0)=nuK=0.3535, alpha(0)=0.

(Peak= lensing; gobba = redshift)
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