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Abstract

Logistic regression was applied to accident-related data collected from traffic police records in order to examine the
contribution of several variables to accident severity. A total of 560 subjects involved in serious accidents were sampled. Accident
severity (the dependent variable) in this study is a dichotomous variable with two categories, fatal and non-fatal. Therefore, each
of the subjects sampled was classified as being in either a fatal or non-fatal accident. Because of the binary nature of this
dependent variable, a logistic regression approach was found suitable. Of nine independent variables obtained from police accident
reports, two were found most significantly associated with accident severity, namely, location and cause of accident. A statistical
interpretation is given of the model-developed estimates in terms of the odds ratio concept. The findings show that logistic
regression as used in this research is a promising tool in providing meaningful interpretations that can be used for future safety
improvements in Riyadh. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Accident severity is of special concern to re-
searchers in traffic safety since this research is aimed
not only at prevention of accidents but also at reduc-
tion of their severity. One way to accomplish the lat-
ter is to identify the most probable factors that affect
accident severity. This study aims at examining not
all factors, but some believed to have a higher poten-
tial for serious injury or death, such as accident loca-
tion, type, and time; collision type; and age and
nationality of the driver at fault, his license status,
and vehicle type. Other factors were not examined
because of substantial limitations in the data obtained
from accident reports. Logistic regression was used in
this study to estimate the effect of the statistically
significant factors on accident severity. Logistic re-
gression and other related categorical-data regression
methods have often been used to assess risk factors
for various diseases. However, logistic regression has
been used as well in transportation studies. A brief

literature review follows of the use of this type of
regression in traffic safety research.

2. Literature review

Regression methods have become an integral com-
ponent of any data analysis concerned with the rela-
tionship between a response variable and one or more
explanatory variables. The most common regression
method is conventional regression analysis (CRA), ei-
ther linear or nonlinear, when the response variable is
continuous (iid). However, when the outcome (the re-
sponse variable) is discrete, CRA is not appropriate.
Among several reasons, the following two are the
most significant:

1. The response variable in CRA must be continuous,
and

2. The response variable in CRA can take nonnegative
values.

These two primary assumptions are not satisfied when
the response variable is categorical.
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Jovanis and Chang (1986) found a number of prob-
lems with the use of linear regression in their study
applying Poisson regression as a means to predict acci-
dents. For example, they discovered that as vehicle-
kilometers traveled increases, so does the variance of
the accident frequency. Thus, this analysis violates the
homoscedasticity assumption of linear regression.

In a well-summarized review of models predicting
accident frequency, Milton and Mannering (1997) state:
‘‘The use of linear regression models is inappropriate
for making probabilistic statements about the occur-
rences of vehicle accidents on the road.’’ They showed
that the negative binomial regression is a powerful
predictive tool and one that should be increasingly
applied in future accident frequency studies.

Kim et al. (1996) developed a logistic model and used
it to explain the likelihood of motorists being at fault in
collisions with cyclists. Covariates that increase the
likelihood of motorist fault include motorist age, cyclist
age (squared), cyclist alcohol use, cyclists making turn-
ing actions, and rural locations.

Kim et al. (1994) attempted to explain the relation-
ship between types of crashes and injuries sustained in
motor vehicle accidents. By using techniques of cate-
gorical data analysis and comprehensive data on
crashes in Hawaii during 1990, a model was built to
relate the type of crash (e.g. rollover, head-on,
sideswipe, rear-end, etc.) to a KABCO injury scale.
They also developed an ‘odds multiplier’ that enabled
comparison according to crash type of the odds of
particular levels of injury relative to noninjury. The
effects of seatbelt use on injury level were also exam-
ined, and interactions among belt use, crash type, and
injury level were considered. They discussed how log-
linear analysis, logit modeling, and estimation of ‘odds
multipliers’ may contribute to traffic safety research.

Kim et al. (1995) built a structural model relating
driver characteristics and behavior to type of crash and
injury severity. They explained that the structural
model helps to clarify the role of driver characteristics
and behavior in the causal sequence leading to more
severe injuries. They estimated the effects of various
factors in terms of odds multipliers — that is, how
much does each factor increase or decrease the odds of
more severe crash types and injuries.

Nassar et al. (1997) developed an integrated accident
risk model (ARM) for policy decisions using risk fac-
tors affecting both accident occurrences on road sec-
tions and severity of injury to occupants involved in the
accidents. Using negative binomial regression and a
sequential binary logit formulation, they developed
models that are practical and easy to use. Mercier et al.
(1997) used logistic regression to determine whether
either age or gender (or both) was a factor influencing
severity of injuries suffered in head-on automobile colli-
sions on rural highways.

Logistic regression was also used by Hilakivi et al.
(1989) in predicting automobile accidents of young
drivers. They examined the predictive values of the
Cattel 16-factor personality test on the occurrence of
automobile accidents among conscripts during 11-
month military service in a transportation section of the
Finnish Defense Forces.

James and Kim (1996) developed a logistic regression
model to describe the use of child safety seats for
children involved in crashes in Hawaii from 1986
through 1991. The model reveals that children riding in
automobiles are less likely to be restrained, drivers who
use seat belts are far more likely to restrain their
children, and 1- and 2-year-olds are less likely to be
restrained.

3. Theoretical background of logistic regression

It is important to understand that the goal of an
analysis using logistic regression is the same as that of
any model-building technique used in statistics: to find
the best fit and the most parsimonious one. What
distinguishes a logistic regression model from a linear
regression model is the response variable. In the logistic
regression model, the response variable is binary or
dichotomous. The difference between logistic and linear
regression is reflected both in the choice of a parametric
model and in the assumptions. Once this difference is
accounted for, the methods employed in an analysis
using logistic regression follow the same general princi-
ples used in linear regression analysis. In any regression
analysis the key quantity is the mean value of the
response variable given the values of the independent
variable:

E(Y/x)=�0+�1x

where Y denotes the response variable, x denotes a
value of the independent variable, and the �i-values
denote the model parameters. The quantity is called the
conditional mean or the expected value of Y given the
value of x. Many distribution functions have been
proposed for use in the analysis of a dichotomous
response variable (Hosmer and Lemeshow, 1989;
Agresti, 1984; Feinberg, 1980). The specific form of the
logistic regression model is

�(x)=
e�0+�1x

1+e�0+�1x (1)

where, to simplify the notation, �(x)=E(Y/x). The
transformation of the �(x) logistic function is known as
the logit transformation:

g(x)= ln
� �(x)

1−�(x)
n

=�0+�1x (2)
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The importance of this transformation is that g(x) has
many of the desirable properties of a linear regression
model. The logit, g(x), is linear in its parameters, may
be continuous, and may range from minus infinity to
plus infinity, depending on the range of x.

Hosmer and Lemeshow (1989) summarize the main
features in a regression analysis when the response
variable is dichotomous:

1. The conditional mean of the regression equation
must be formulated to be bounded between zero
and 1 (Eq. (1) satisfies this constraint).

2. The binomial, not the normal, distribution describes
the distribution of the errors and will be the statisti-
cal distribution upon which the analysis is based.

3. The principles that guide an analysis using linear
regression will also apply for logistic regression.

In linear regression the method used most often for
estimating unknown parameters is least squares, in
which the parameter values are chosen to minimize the
sum of squared deviations of the observed values of Y
from the modeled values. Under the assumptions for
linear regression, the method of least squares yields
estimators with a number of desirable statistical proper-
ties. Unfortunately, when the method of least squares is
applied to a model with a dichotomous outcome, the
estimators no longer have these same properties. The
general method of estimation that leads to the least
squares function under the linear regression model
(when the error is normally distributed) is called maxi-
mum likelihood. This method provides the foundation
for estimating the parameters of a logistic regression
model. A brief review of fitting the logistic regression
model is given below. Further details may be found
elsewhere (Hosmer and Lemeshow, 1989).

If Y is coded as zero or 1 (a binary variable), the
expression �(x) given in Eq. (1) provides the condi-
tional probability that Y is equal to 1 given x, denoted
as P(Y=1/x). It follows that the quantity 1−�(x)
gives the conditional probability that Y is equal to zero
given x, P(Y=0/x). Thus, for those pairs (xi, yi) where
yi=1, the contribution to the likelihood function is
�(xi), and for those pairs where yi=0, the contribution
to the likelihood function is 1−�(xi), where the quan-
tity �(xi) denotes the values of �(x) computed at xi. A
convenient way to express the contribution to the likeli-
hood function for the pair (xi, yi) is through the term

�(xi)=�(xi)
yi [1−�(xi)]

1−yi

Since xi-values are assumed to be independent, the
product for the terms given in the foregoing equation
gives the likelihood function as follows:

l(�)= �
n

i=1

�(xi) (3)

It is easier mathematically to work with the log of Eq.
(3), which gives the log likelihood expression:

L(�)= ln [l(�)]

= �
n

i=1

{yi ln [�(xi)]+ (1−yi)ln [1−�(xi)]} (3.1)

Maximizing the above function with respect to � and
setting the resulting expressions equal to zero will pro-
duce the following values of � :

�
n

i=1

[yi−�(xi)]=0 (4)

�
n

i=1

xi [yi−�(xi)]=0 (5)

These expressions are called likelihood equations. An
interesting consequence of Eq. (4) is

�
n

i=1

yi= �
n

i=1

�̂(xi)

That is, the sum of the observed values of y is equal to
the sum of the expected (predicted) values. This prop-
erty is especially useful in assessing the fit of the model
(Hosmer and Lemeshow, 1989).

After the coefficients are estimated, the significance
of the variables in the model is assessed. If yi denotes
the observed value and ŷi denotes the predicted value
for the ith individual under the model, the statistic used
in the linear regression is

SSE= �
n

i=1

(yi− ŷi)2

The change in the values of SSE is due to the regression
source of variability, denoted SSR :

SSR=Total Sum of Squares (SS)

−Sum of Squares of Error term (SSE)

=
� �

n

i=1

(yi− ȳi)2n−
� �

n

i=1

(yi− ŷi)2n
where ȳ is the mean of the response variable. Thus, in
linear regression, interest focuses on the size of R. A
large value suggests that the independent variable is
important, whereas a small value suggests that the
independent variable is not useful in explaining the
variability in the response variable.

The principle in logistic regression is the same. That
is, observed values of the response variable should be
compared with the predicted values obtained from
models with and without the variable in question. In
logistic regression this comparison is based on the log
likelihood function defined in Eq. (3.1). Defining the
saturation model as one that contains as many parame-
ters as there are data points, the current model is the
one that contains only the variable under question. The
likelihood ratio is as follows:
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D= −2 ln
� likelihood of the current model

likelihood of the saturated model
n

(6)

Using Eqs. (3.1) and (6), the following test statistic can
be obtained:

D= −2 �
n

i=1

�
yi ln

��̂i

yi

�
+ (1−yi) ln

�1− �̂i

1−yi

�n
(7)

where �̂i= �̂(xi).
The statistic D in Eq. (7), for the purpose of this

study, is called the deviance, and it plays an essential
role in some approaches to the assessment of goodness
of fit. The deviance for logistic regression plays the
same role that the residual sum of squares plays in
linear regression (i.e. it is identically equal to SSE).

For the purpose of assessing the significance of an
independent variable, the value of D should be com-
pared with and without the independent variable in the
model. The change in D due to inclusion of the inde-
pendent variable in the model is obtained as follows:

G=D(for the model without the variable)

−D(for the model with the variable)

This statistic plays the same role in logistic regression as
does the numerator of the partial F-test in linear regres-
sion. Because the likelihood of the saturated model is
common to both values of D being the difference to
compute G, this likelihood ratio can be expressed as

G= −2 ln
�likelihood without the variable

likelihood with the variable
n

(8)

It is not appropriate here to derive the mathematical
expression of the statistic G. Yet it should be said that
under the null hypothesis, �1 is equal to zero, G will
follow a �2 distribution with one degree of freedom.
Another test statistic, similar to G for the purpose used
in this study, is known as the Wald statistic (W), which
follows a standard normal distribution under the null
hypothesis that �1=0. This statistic is computed by
dividing the estimated value of the parameter by its
standard error:

W=
�� 1

SE� (�� 1)
(9)

It should be mentioned that the Wald test behaved in
an aberrant manner, often failing to reject the null
hypothesis when the coefficient was significant, and
hence the likelihood ratio test should be used in suspi-
cious cases.

4. Model description

The dependent variable in this research, ACCI-
DENT, is of the dichotomous type and stands for
accident severity. It should be mentioned that the defin-

ition of injury in this study does not overlap with the
definition of fatality since the first includes those who
were involved in accidents and left the hospital within 6
months after treatment. Each accident in the sampled
data was categorized as either non-fatal or fatal. The
logistic model used is

P(non-fatal accident)=�(x)=
eg(x)

1+eg(x) (10)

and thus

P(fatal accident)=1−P(injury accident)=1−�(x)

=
1

1+eg(x)

where g(x) stands for the function of the independent
variables:

g(x)=�o+�1x1+�1x2+ ···+�nxn

Logistic regression determines the coefficients that
make the observed outcome (non-fatal or fatal acci-
dent) most likely using the maximum-likelihood tech-
nique. The independent variables could be continuous
or dichotomous, as will be discussed in the next section.
For the latter, there should be special coding with the
use of dummy variables. These dummy variables should
be defined in a manner consistent with the generalized
linear interactive modeling (GLIM) software used in
this study (GLIM, 1987). The Wald tests, together with
the deviance, will be used as criteria to include or
remove independent variables from the model. The
GLIM software has built-in routines to obtain deviance
and estimates of the model parameters.

5. Data description

The data set used in this study was derived from a
sample of 560 subjects involved in serious accidents
reported in traffic police records in Riyadh, the capital
of Saudi Arabia. Only accidents occurring on urban
roads in Riyadh were examined. Unfortunately, police
reports at accident sites do not describe injuries in
much detail because of the lack of police qualifications
and training as well as facilities needed to perform
complex examinations. Also, medical reports are hard
to obtain because police accident data and medical data
are not kept together (Al-Ghamdi, 1996). Conse-
quently, it was impossible for this study to obtain
details on the degree of severity of the accidents. All
that can be learned from the police records is that the
accident is a property damage only (PDO) accident,
injury accident (no injury classification is available), or
fatal accident. The subjects were selected in a systematic
random process from all accident records filed for the
period from August 1997 to November 1998. The data
search was done manually because of the lack of com-
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puterization. Only injury (non-fatal) and fatal accident
records were considered for the purpose of this study.
Since the study goal was to identify the factors that
might affect the severity of the accident (i.e. whether it
was a fatal or non-fatal accident), 10 variables were
summarized from the data. The description and levels
of these variables are given in Table 1. Fig. 1 shows the
age distribution for drivers in the data set.

The response variable is Variable 1, namely, ACCI-
DENT, which is binary (dichotomous) in nature. Two
levels for ACCIDENT exist: 0 if the accident results in
at least one injury but no fatality (within 6 months after
the accident), and 1 if there is at least one fatality
resulting from the accident. For the explanatory vari-
ables (independent variables), age is the only continu-
ous variable; the others are categorical. Since some of

Fig. 1. Distribution of drivers by age.

the categorical variables have several levels, identified
as 1, 2, 3, and so forth, a collection of design variables
(or dummy variables) was needed to represent the data
and match the format of GLIM (1987), the software
used in this study.

One possible way of coding the dummy variables is
to have k−1 design variables for the k levels of the
nominal scale of that variable. An example of this
coding is given in Table 2 for the variable Accident type
(ATYP), which has four levels, and hence has three
design variables. When the respondent is ‘With vehi-
cle(s)’, the three design variables, D1, D2, and D3, would
all be set to equal zero; when the respondent is ‘Fixed
object,’ D1 would be set equal to 1 whereas D2 and D3

would still equal 0; and so forth for the other respon-
dents. This coding scheme was used for the rest of the
categorical variables. It should be noted that GLIM has
the capability to do this coding automatically once the
levels of the variables have been identified by the end
user. Other software packages might use different
strategies for coding design variables. It is important to
understand the coding strategy used in the software
package in order to conduct hypothesis testing on the
variables as well as to interpret their estimates.

6. Reduction of design variables

As can be seen from Table 1, some of the categorical
variables have several levels, so several design variables
are needed for each. Generally speaking, it is more

Table 1
Description of the study variables

AbbreviationCodes/valuesDescriptionNumber

Accident1 0=Non-fatal ACCIDENT
1=Fatal

1=IntersectionLocation2 LOC
2=Non-intersection

Accident type3 1=With vehicle(s) ATYP
2=Fixed-object
3=Over-turn
4=Pedestrian

4 CTYP1=Right-angleCollision type
2=Sideswipe
3=Rear-end
4=Front
5=Unknown

Accident time5 1=Day TIME
2=Night

Accident cause6 1=Speed CAUS
2=Run red light
3=Follow too close
4=Wrong way
5=Failure to yield
6=Other

Driver age at AGE7 Years
fault

8 Nationality 1=Saudi NAT
2=Non-Saudi

Vehicle type 1=Small passenger VEH9
car
2=Large passenger
car
3=Pick-up truck
4=Taxi
5=Other

License status10 1=Yes (valid) LIC
2=Expired
3=No (no license)

Table 2
The design variables for Accident type

ATYP Design variable

D1 D2 D3

0With vehicle(s) 00
1Fixed-object 0 0

Overturn 0 1 0
Pedestrian 0 0 1
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Fig. 2. Study variables.

convenient to have as few design variables as possible
in order to simplify the model interpretation. In other
words, the more design variables the model includes,
the more difficult the interpretation becomes. Thus, an
attempt was made in the early stages of this study to
reduce the number of design variables. However, care is
needed in doing so to guarantee that the model will not
lose significant information.

Looking at the proportion of the levels for the study
variables (Fig. 2), one can see that some levels can be
neglected because of their small proportion. However,
such a cursory investigation is not enough to decide
which levels can be neglected or at least merged with
other levels. Thus, the hypothesis testing technique for
proportions was used in this study to decide whether
the number of levels for a design variable could be
reduced. The following typical test was used:

Ho: pi=0

Ha : pi�0

where pi is the proportion of class i (level i ) within the
designated design variable.

For example, the design variables for ATYP were
reduced from three (four levels) to two (three levels)
after it was shown that the proportion of fixed-object
and overturn accidents was not statistically significant
at the 5% level using the foregoing hypothesis. Table 3
summarizes the hypothesis testing results for all cate-
gorical variables in the study, and Table 4 shows the
number of design variables after reduction.

The study variables were now ready to use in the
model development stage, as discussed in the next
section.
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7. Development of logistic model

The backward selection process of logistic regression
was followed. First, all the variables with no interac-
tions (referred to here as the saturated model; Fig. 3)
were tested on the basis of the deviance and the Wald
(W) statistic as defined in Eqs. (7) and (9), respectively.
The goal was to eliminate, at the beginning, those
variables that were not significant and then continue
with testing interaction effects with only significant
variables. Table 5 presents the results from fitting all
the explanatory variables simultaneously. From the W-

values (Table 5), it appears that the variables LOC,
CAUS, AGE, NAT, and LIC show some significant
effect (AGE, NAT, and LIC are about significant);
however, further testing using deviance is needed. Be-
cause of the multiple degrees of freedom, one must be
careful in the use of the Wald (W) statistic to assess the
significance of the coefficients. For example, the vari-
able CAUS has five levels, but only two of the levels
CAUS(4) and CAUS(5) were found to be statistically
significant at the 0.05 level (Table 5). In this case, the
decision to include this variable should be made using
the likelihood ratio test. That is, the change in deviance

Table 3
Hypothesis testing for proportions

n 95% confidence limitsxDescription P-value

UpperLower

Distribution by location
0.3Intersection 159 579 0.275 0.2

Opening* 0.100.06657938
00.009 05795Circle*

0.035 0 0Exit* 20 579
357 579 0.617 0.6Road section 0.7

Distribution by accident type
605235 0.4Vehicles 0.40.388

39 605Fixed objects* 0.064 0 0.1
0.046 0 0.1Overturn* 28 605

303 605 0.501 0.5Pedestrian 0.5

Distribution by collision type
119Right angle 605 0.197 0.2 0.2
173Sideswipe 0.3605 0.30.286

Rear* 0.100.06660540
225 0.372Front 605 0.40.3

60548Unknown 0.10.079 0.1

Distribution by time
0.2122 0.2605 0.202Morning

Evening 0.7414 605 0.684 0.7
0.091605 0.155 0.1Night

14 0.023Unknown* 0 0605

Distribution by accident cause
605226Speed too fast 0.3 0.40.374
605 0.08451 0.1Run red light 0.1

18Short distance* 0605 00.03
0.10.159 0.260596Wrong way

0.2Not giving priority 80 605 0.132 0.1
0.2134 0.2605 0.221Other

By �ehicle type
0.6335 0.6560 0.598PC

Big PC* 0.100.06656037
0.20.248 0.3560139Pick-up

Taxi* 0.126 560 0.046 0
23 560 0.041 0Other* 0.1

By Licensing status
370 0.6Yes 0.661560 0.7

0.066560 037Expired* 0.1
0.273560No 153 0.30.2

* Statistically insignificant at 5% level (the 95% confidence limits include zero).
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Table 4
Number of design variables after reduction

Categorical Before reduction After reduction
variable

Design LevelsLevels Design
variables variables

4 25 1Locationa

4Accident 3 3 2
typea

5 4Collision 4 3
typea

Accident 2 1 2 1
time

6Accident 5 5 4
causea

1Nationality 22 1
Vehicle typea 5 4 2 1

3License 2 2 1
statusa

a Variables experience reduction.

were dropped from the model. On the other hand, the
variables LOC and CAUS are found to be statistically
significant at the 0.05 level (Table 6).

Therefore, the backward selection process identified
two variables (LOC and CAUS) as being significantly
related to accident severity. These two variables were
then subjected to further analysis, as will be discussed
shortly. Before that analysis, it might have been
thought that accident type (ATYP) and collision type
(CTYP) would have had a significant effect on accident
severity, yet that was not the case in this study since
they failed to meet the desired significance level (0.05).
However, it might be argued that these two variables
are implied in the two significant variables in the model,
namely, LOC and CAUS. For example, since it is
known that serious accidents occur at intersections,
right-angle collisions would be the most likely type
caused by running a red light (note that right-angle
collision type and run-red-light accident cause have
significant proportions in Table 3). Right-angle colli-
sions caused by running a red light are a common
problem in Saudi Arabia (Official Statistics, 1997). Ac-
cordingly, the presence of LOC and CAUS in the
model would imply CTYP. In the same context, an
accident occurring along a roadway section (non-inter-
section location) would imply a multiple-vehicle, fixed-
object, or pedestrian accident (ATYP).

7.1. Interaction and confounding effects

The two variables found to be statistically significant
in the current study (i.e. LOC and CAUS) were investi-
gated further with the possible term of interaction. The
process is to add each interaction term to the full model
(i.e. the model with the two significant terms). If the
added term is significant, the change in deviance be-
tween the full model and the model with the added
term (interaction) should be large enough to be statisti-
cally significant at the 0.05 level. The interaction was
found to be statistically insignificant (P=0.265), as
presented in Table 7, and hence a confounding effect
does not exist.

7.2. Age effect

Understanding and quantifying the relationship be-
tween driver characteristics, particularly age and acci-
dent risk, has long been a high priority of
accident-related research. In addition, other studies (Hi-
lakivi et al., 1989; Mercier et al., 1997) have shown that
young drivers as well as older drivers are more at risk
of being involved in serious accidents. Numerous re-
search studies have attempted to examine the complex
relationship between driver characteristics and accident
risk. Drivers’ risk-taking behavior is often defined in
terms of several variables, one of which is age. Manner-

for the model should be assessed both with the variable
and without it.

Removal of LIC from the model did not produce
much change in the deviance, and thus it is not signifi-
cant at the 0.05 level (P=0.093) as shown in Table 6.
This finding indicates that LIC is not adding useful
information to the variability in the response variable
and should be removed. Similarly, the variables VEH,
TIME, CTYP, ATYP, AGE, and NAT do not show
any major changes in deviance, and accordingly they

Fig. 3. A GLIM output for the saturated model.
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Table 5
Estimated coefficients, estimated standard errors, and Wald statistic for the model variables

Estimated standard error Wald statistic (W)Variable P-valueEstimated coefficient

0.352LOC(2) 2.570.905 0.005*
0.369 0.060.02367 0.48ATYP(2)
0.449 −0.68ATYP(3) 0.75−0.3032
0.3904 −0.82−0.3218 0.79CTYP(2)
0.306CTYP(3) −0.09−0.02615 0.54
0.4545 0.260.1194 0.40CTYP(4)
0.3917 −0.05TIME(2) 0.52−0.01806
0.5849 −0.53−0.3071 0.30CAUS(2)
0.314 0.46CAUS(3) 0.320.1447
0.4635 −1.97−0.9131 0.024*CAUS(4)
0.3217 −2.4CAUS(5) 0.01*−0.7727
0.01232 1.530.01883 0.06AGE

NAT(2) 0.27390.3469 1.27 0.10
0.2406 −1.19−0.2871 0.79VEH(2)

0.4257LIC(2) 0.2514 1.69 0.045*

* Statistically significant at 5% level.

ing (1992) indicates that age itself is really being used as
a surrogate for drivers’ risk-taking behavior. Some
researchers also indicate that age relates nonlinearly to
the response variable (Mercier et al., 1997; Hosmer and
Lemeshow, 1989). They suggest that a quadratic expres-
sion be used.

The problem with the age variable in this study appears
from the unexpected positive effect shown in the parame-

ter estimate in Table 5. It was expected that the older
the driver, the less the accident risk. Safety research in
Saudi Arabia has always indicated that age is a pri-
mary factor in risk-taking behavior (Official Statistics,
1997; Al-Ghamdi, 1996). Young drivers are involved
in about one-fifth of the accidents nationwide (Official
Statistics, 1997). Therefore, the author decided to in-
vestigate the age factor more closely, even though it
had been shown from the analysis in this study that
age was not statistically significant. The model has
shown so far that age, in a linear relation with the
dependent variable, is not statistically significant. Thus,
the possible quadratic form was tested as suggested
in past research. That is, age-squared (as a quadratic
effect) entered the model with the two significant vari-
ables (LOC and CAUS). The result showed that the
quadratic main effect of age was not statistically signifi-
cant either (P=0.52, Table 7).

8. Logit model

According to the previous analysis, the logit model
with the significant variables is as follows:

ĝ(x)

= −2.029+0.9697LOC(2)−0.3558CAUS(2)

+0.2130CAUS(3)−0.8971CAUS(4)

−0.6705CAUS(5)
Hence the logistic regression model developed in this
study is

Once the model has been fit, the process of assess-
ment of the model begins. Several tests, including
Pearson �2 and deviance, the Wald statistic, and the
Hosmer–Lemeshow tests, can be used to determine
how effective the model is in describing the re-
sponse variable, or its goodness of fit. These tests resulted
in a �2 criterion to make the decision on the model
fit. A very good source for the theory of such tests is,
for example, Hosmer and Lemeshow (1989). The valid-
ity of the model in this study was first checked by
examining the statistical level of significance for its
coefficients using deviance and the Wald statistic, as
discussed earlier.

Graphical assessment of the fit to the logistic
model developed in the study also shows that the
model appears to fit the data reasonably, as shown
in Figs. 4 and 5. Fig. 4 shows the plot of Pearson
residuals, in which no trend can be detected. Fig. 5 shows
Hi-Leverage points (outliers) in which very small points
appear to be outliers [less than 4% of the data set;
compare PRES with 1.96 (z-value at the 5% level of
significance)]. That is, 95% of the points in this plot lie
between −0.5 and 1.9.

�(x)=
e−2.029+0.9697LOC(2)−0.3558CAUS(2)+0.2130CAUS(3)−0.8971CAUS(4)−0.6705CAUS(5)

1+e−2.029+0.9697LOC(2)−0.3558CAUS(2)+0.2130CAUS(3)−0.8971CAUS(4)−0.6705CAUS(5)
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9. Model interpretation

Interpretation of any fitted model requires the ability
to draw practical inferences from the estimated
coefficients. The estimated coefficients for the
independent variables represent the slope or rate of
change of the dependent variable per unit of change in
the independent variable. Thus, interpretation involves
two issues: determining the functional relationship
between the dependent variable and the independent
variable (i.e. the link function; McCullagh and Nelder,
1982) and appropriately defining the unit change for the
independent variable. In the logistic regression model,
the link function is the logit transformation (Eq. (2)).
The slope coefficient in this model represents the
change in the logit for a change of one unit in the
independent variable x. Proper interpretation of the
coefficient in a logistic regression model depends on
being able to place a meaning on the difference between
two logits. The exponent of this difference gives the
odds ratio, which is defined as the ratio of the odds that
the independent variable will be present to the odds
that it will not be present. Thus, the relationship
between the logistic regression coefficient and the odds
ratio provides the foundation for interpretation of all
logistic regression results. It should be noted that odds
greater than 1 in this study increase the likelihood that
the accident will be fatal. Illustrations follow of the
interpretation of the model developed in this study.

9.1. Impact of location on accident se�erity

It should be noted that since LOC has two levels as
shown in Table 4, GLIM codes the first one zero and
the other 1. Hence,

Location (LOC(1))=0 (Intersection)

Location (LOC(2))=1 (Non-intersection)

According to this coding, GLIM shows only LOC(2)
in the logit model with the coefficient of 0.9697. To
interpret the parameter estimate for LOC (0.9697), the
logit difference should be computed as follows:

Logit (Fatal accident/Non-intersection)

=�o+�1+�2+�3+�4+�5

Logit (Fatal accident/Intersection)

=�o+�2+�3+�4+�5

Logit difference=�o+�1+�2+�3+�4+�5

− (�o+�2+�3+�4+�5)=�1

=0.9697

Hence the odds ratio (�) is

�=e�1=e0.9697=2.64

This value indicates that the odds of being in a fatal
accident at a non-intersection location are 2.64 higher
than those at an intersection.

Note that the logit difference (0.9697) equals the
estimated value of the parameter of the independent
variable LOC in the logit function (�1). However, the
logit difference between two levels of a dichotomous
variable does not always give the parameter estimate of
that variable. Since LOC has only two levels, the logit
difference ends up with the parameter estimate. For a
polytomous variable with more than two levels (or if an
interaction or confounding effect exists), the logit dif-
ference is not necessarily equal to the parameter esti-
mate. This is the case for the variable CAUS, shown
next.

9.2. Impact of running red light on accident se�erity

�2 (0.3558) measures the differential effect on the
logit of two causes, CAUS=run red light and
CAUS�run red light.

Table 6
A summary of P-values after dropping variables from saturated model

P-valueaVariable dropped from the saturated model df (associated with change in deviance)Change in deviance

– –Saturated mode –
2.83bLIC 1 0.093

VEH 1.04 1 0.31
NAT 3.36 1 0.067

10.73CAUS 4 0.03
TIME 0.05 0.821
CTYP 1.38 3 0.71
ATYP 0.36 2 0.55

+0.003 1AGE 0.452
+16.45 1LOC 0.000a

a Based on �2 for the log-likelihood ratio test. For example: the P-value for LIC variable is obtained such as P(�2
2�3.095)=0.213.

b The +ve sign due to backward strategy. If the Forward strategy is chosen this sign would be −ve.
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Table 7
The results of testing interactions and a quadratic effect of age

Variable dropped from the saturated model Change in deviance df (associated with change in deviance) P-value

–Full modela ––
1LOC×CAUS 0.265−1.241
10.51 0.52AGE2

a Model with the two significant variables: LOC and CAUS.

To interpret this estimate, the logit difference is
computed first; for example, for run red light (RRL)
(CAUS(2)=1), the logit is

Logit (Fatal/RRL)=�o+�1+�2

For any other cause but RRL, the logit is

Logit (Fatal/Not RRL)=�o+�1+�3+�4+�5

Logit difference= (�o+�1+�2)

− (�o+�1+�3+�4+�5)

=�2−�3−�4−�5

= −0.3558−0.2130+0.8971+0.6705

=0.9988

Hence the odds ratio is

�=e�2−�3−�4−�5=e0.9988=2.72

Thus, the odds that an accident will be fatal because of
running a red light are 2.72 times higher than for a
non-RRL-related accident.

9.3. Impact of wrong way on accident se�erity

At a non-intersection location, the odds ratio of
being involved in a fatal accident in a wrong-way-re-
lated accident are three times higher than in a failure-
to-yield-related accident. This odds ratio is computed as
shown above:

Logit difference= −0.8463+1.9564=1.1101

�=e1.1101=3.035

9.4. Odds to base le�el

The parameter estimates can also be interpreted in a
different way for CAUS by relating interpretation of
the estimate of any level to the base level (speed in our
model). For example, the odds ratio of CAUS(2) can be
obtained directly with no need for logit difference, as
follows:

�2= −0.3558

�=e�2=e0.3558=0.70

This expression indicates that the odds ratio of the
accident being fatal in an RRL-related accident is 0.70
times its being fatal in a speed-related accident, which
indicates that RRL odds decrease by a factor of 0.70.

The odds ratio of either intersection or non-intersec-
tion-related accidents under different causes can be
tabulated in matrix form for fast and easy interpreta-
tion, as shown in Tables 8–10. This tabulation helps to
draw a conclusion for any combination of the variables
in the model.

Fig. 6 presents values of the odds ratio in Table 8. It
appears from this plot that a non-intersection location
has greater influence on accident severity than an inter-
section location. One can note that all the odds for a
non-intersection location are higher than those for an
intersection regardless of cause. This finding indicates
the odds of being involved in a fatal accident related to
a non-intersection location are higher than those at an
intersection. In other words, non-intersection-related
accidents are more serious than intersection-related ac-
cidents in Riyadh.

Another interesting point that can be drawn from
Fig. 6 is that wrong-way-related accidents exhibit sig-
nificantly higher odds than do other causes. This find-
ing means that an accident with this cause is more
likely to be fatal when compared with accidents with
other causes. On the other hand, failure-to-yield acci-
dents have the lowest odds.

As shown above, the model can be used to estimate
the odds ratio in order to assess the odds of an accident
being fatal or non-fatal given a certain accident charac-
teristic. This method can help in determining the most
likely risk-taking behavior.

Fig. 4. Plot of Pearson residuals for graphical assessment.
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Fig. 5. High-leverage plot for graphical assessment.

Table 9
Odds of being in a fatal accident at non-intersection to that in a
non-intersection accidenta

Non-intersection accidentNon-intersection accident

RRLSpeed WW FTY

2.45Speed 1 1.43 0.81
RRL 1.720.5710.70

11.77 3.031.24WW
1FTY 0.41 0.58 0.33

a Example: The odds of being in a fatal accident at a non-intersec-
tion location due to WW is 1.24 times higher than that due to speed
at same type of location.

should be said that not only the relative danger as
expressed by the odds ratio, but also the absolute
density of accidents with regard to location should be
taken into account in order to develop cost-effective
strategies.

The odds presented in this paper can be used to help
establish priorities for programs to reduce serious acci-
dents. For example, since the odds of being involved in
a fatal accident at a non-intersection location because
of a wrong-way violation are relatively higher than
those for any other violation, drivers should be warned
in a specific awareness program about the possible
lethality of such a violation. The same can be said of
the impact of running a red light on the odds of being
involved in a fatal accident.

Presentation of odds in a matrix format, as described
in this study, provides a simple method for interpreta-
tion. The columns and rows of the matrix correlate the
factors in the logistic model, and each cell shows the
impact of a certain factor on the odds with respect to
another factor (a corresponding factor).

It is important to note that the odds described in this
paper were computed with no consideration for traffic
exposure or the data that are not available or difficult
to obtain in Riyadh. However, the findings of this study
can be considered as guidance for a future study when
such data become available.

10. Conclusions

Since the response variable is of a binary nature (i.e.
has two categories — fatal or non-fatal), the logistic
regression technique was used to develop the model in
this study. The intent was to provide a demonstration
of a model that can be used to assess the most impor-
tant factors contributing to the severity of traffic acci-
dents in Riyadh. On the basis of traffic police accident
data, nine explanatory variables were used in the model
development process.

Using the concept of deviance together with the
Wald statistic, the study variables were subjected to
statistical testing. Only two variables were included in
the model, namely, accident location and accident
cause. The observed level of significance for regression
coefficients for the two variables was less than 5%,
suggesting that these two variables were indeed good
explanatory variables. The results presented in this
paper show that the model provided a reasonable statis-
tical fit.

Stratifying location-related data into two classes, the
model revealed that the odds of a non-intersection
accident being fatal are higher. This finding might lead
to a greater focus on road accident sites other than
intersections, which should help agencies focus their
safety improvements more cost-effectively. However, it

Table 8
Odds of being in a fatal accident at intersection to that in a
non-intersection accidenta

Non-intersection accident Intersection accident

RRL WW FTYSpeed

3.76Speed 2.132.64 6.47
2.64 1.50RRL 4.51.85

8.02.64WW 4.663.26
2.640.871.541.08FTY

a Example: The odds of being in a fatal accident at a non-intersec-
tion location due to WW is 3.26 times higher than that due to speed
at an intersection-related accident.

Table 10
Odds of being in a fatal accident at non-intersection to that at an
intersection accidenta

Non-intersection Accident Intersection accident

Speed RRL WW FTY

0.930.38 0.31Speed 0.54
0.210.38 0.650.27RRL

WW 0.47 0.67 0.38 1.15
FTY 0.16 0.22 0.13 0.38

a Example: The odds of being in a fatal accident at a non-intersec-
tion location due to WW is far less than that due to speed at an
intersection (0.47 which is less than 1).
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Fig. 6. Odds ratio of being involved in a fatal accident at a non-inter-
section location to that of an intersection relative to cause.
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