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An MILP Approach for Short-Term
Hydro Scheduling and Unit Commitment

With Head-Dependent Reservoir
Alberto Borghetti, Senior Member, IEEE, Claudia D’Ambrosio, Andrea Lodi, and Silvano Martello

Abstract—The paper deals with a unit commitment problem of
a generation company whose aim is to find the optimal scheduling
of a multiunit pump-storage hydro power station, for a short term
period in which the electricity prices are forecasted. The problem
has a mixed-integer nonlinear structure, which makes very hard
to handle the corresponding mathematical models. However,
modern mixed-integer linear programming (MILP) software
tools have reached a high efficiency, both in terms of solution
accuracy and computing time. Hence we introduce MILP models
of increasing complexity, which allow to accurately represent most
of the hydroelectric system characteristics, and turn out to be
computationally solvable. In particular we present a model that
takes into account the head effects on power production through
an enhanced linearization technique, and turns out to be more
general and efficient than those available in the literature. The
practical behavior of the models is analyzed through computa-
tional experiments on real-world data.

Index Terms—Hydro power plants operation, hydro reservoir
management, mixed-integer linear programming, unit commit-
ment.

NOMENCLATURE:

Sets:

Set of time periods considered.

Set of turbine-pump units.

Parameters:

Predicted water inflow in period ( )
[ ].

Unit price of the power generated/consumed in
period ( ) [ ].

Period duration [h].

Startup cost of unit as a turbine ( ) [ ].

Startup cost of unit as a pump ( ) [ ].
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Min and max flow value in turbine ( )
(when the turbine is on) [ ].

Max power produced by turbine ( )
[MW].

Max ramp down and ramp up [ ].

Min and max water volume in the basin [ ].

Water volume in the basin in period 0 [ ].

Target (final) water volume in the basin [ ].

Max water spillage [ ].

Water needed to start up turbine ( )
[ ].

Water needed to start up pump ( )
[ ].

Energy needed to start up pump ( )
[MWh].

Flow in turbine in period ( ) [ ].

Status of turbine in period ( ) [1 on, 0
off].

Status of pump in period ( ) [1 on, 0
off].

Flow pumped by pump ( ; )
[ ].

Power consumed during pumping by pump
( ; ) [MW].

Min released water in each period [ ].

Variables:

Water flow in unit in period ( , ), with
[ ].

Water volume in the basin in period ( ), with
[ ].

Power generated or consumed by unit in period
( , ) [MW].

Spillage in period ( ) [ ].

Shutdown phase of turbine in period ( ,
) [1 if it is shutdown, 0 otherwise].
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Startup phase of turbine in period ( , )
[1 if it is started up, 0 otherwise].

Status of turbine in period ( , ), with
[1 on, 0 off].

Shutdown phase of pump in period ( ,
) [1 if it is shutdown, 0 otherwise].

Startup phase of pump in period ( , )
[1 if it is started up, 0 otherwise].

Status of pump in period ( , ), with
[1 on, 0 off].

Some additional parameters and variables, introduced to lin-
earize the model, are defined in Section II.

I. INTRODUCTION

W E consider a price-taker generating company that wants
to optimize the operation of a pump-storage multiunit

hydro power station for a given time horizon, typically one day
or one week. The problem is to determine the commitment and
the power generation of the plant so as to maximize the revenue
given by power selling. All the units of the plant are assumed to
be fed by the same reservoir. We assume that inflows and prices
are known as previously forecasted.

Several approaches have been proposed for the solution of
this problem. For an exhaustive overview we refer the reader
to the recent survey [1]. In [2] the problem was formulated as
a simple linear programming (LP) model by neglecting costs
and constraints relevant to startups and shutdowns. In [3] a non-
linear programming (NLP) model with some simplified assump-
tion was introduced. Ad-hoc heuristics were proposed by sev-
eral authors, such as [4] and [5]. In [6] a multistage looping op-
timization algorithm was proposed for the development of the
optimal bidding strategies of an individual pumped-storage unit
owner in a competitive electricity market. In [7] the large-scale
mixed-integer NLP problem of determining the optimal sched-
uling of hydropower plants in a hydrothermal interconnected
system is considered: the authors use Lagrangian relaxation de-
composition strategies, and a sequential quadratic programming
algorithm to solve nonlinear subproblems. Various mixed-in-
teger linear programming (MILP) approaches have been pre-
sented in the literature: for example, [8] and [9] used the inte-
rior point method within a branch-and-bound algorithm, while
[10]–[13] used the Ilog-Cplex [14] MILP solver under GAMS.

Although we limit the analysis to the case of a single reser-
voir, the problem is especially interesting because both of its
practical relevance and of the difficulties induced by its non-
linear aspects, namely the relationship between the unit elec-
trical power output and the corresponding water flow derived
from the reservoir, particularly if the so called head effect, i.e.,
the influence on power production of the water level in the reser-
voir, has to be taken into account. We focus on the modeling of
this nonlinear characteristic, and show how it can be efficiently
and accurately dealt with by using MILP techniques. Indeed, the
high efficiency of modern MILP software tools, both in terms of
solution accuracy and computing time, encourage their use also
in the solution of nonlinear problems.

The proposed MILP model allows one to accurately represent
the main technical and operating characteristics of a pump-
storage multiunit hydro power plant, and turns out to be compu-
tationally solvable for a planning horizon of one week. For the
general structure of the MILP model, we follow the one proposed
in [13]. The differences mainly refer to the following aspects: 1)
the proposed model takes into account some additional charac-
teristics of the hydro units, such as ramp transition constraints
and pump-storage operating mode; 2) we introduce a more so-
phisticated modeling of the head effect through a specialized
approximation methodology (based on two dimensional consid-
erations) for the relationship among power, volume and flow.

The paper is organized as follows. In Sections II-A and II-B
we give the main components of the proposed model, with spe-
cial emphasis on costs and constraints related to turbine and
pump startups and to the linearization of the relationship be-
tween power and water flow. The most sophisticated version of
the model, which allows a tight representation of the head ef-
fect, is presented in Section III. The model is then computation-
ally evaluated in Section IV through experiments on real-world
data. Instances where the pumps have prohibited zones are also
evaluated. Conclusions and directions for future researches are
finally given in Section V.

II. MATHEMATICAL MODEL

In our nomenclature all parameters are represented by upper
capitals and all variables by lower capitals.

Preliminary observe that the parameters allow one to handle
the pump start up in the two typical ways. If unit is started
up as a pump by using another turbine of the power plant, then
there is no energy consumption, but the relevant water spillage
is taken into account. The opposite holds if pump is started up
by using the energy provided by the external power network. In
other words, the input has either (in the former case) or

(in the latter).
Note in addition that the first four variables are subject to

the following obvious bounding constraints, for all and
:

and that, for any period , the values of and depend on
the three possible cases that can occur relative to turbine-pump
unit :

TP10: if unit is generating power (i.e., and
) then both values are positive;

TP01: if unit is pumping water (i.e., and
then both values are negative;
TP00: if unit is not operating (i.e., then
both values are zero.

The model we propose aims at maximizing the sum, over all
periods, of the profit given by power selling, minus the startup
cost of each turbine-pump unit (if it occurs). Formally, this is
represented by the linear objective function

(1)
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Note that the first term can take a negative value when the unit
works as a pump.

The model can be logically subdivided into a set of “nat-
urally” linear constraints and a set of nonlinear constraints,
that are linearized in order to handle the model through MILP
techniques.

Section II-A reports the set of “naturally” linear constraints.
Sections II-B and III are devoted to the treatment of the non-
linear relationship between power production and water flow. In
particular, we report in Section II-B an extension of the model
of [13] and in Section III an enhanced version to better take into
account the head effect.

A. Linear Constraints

The relationships among flow, volume and pumps/turbines
status can be modeled through the following linear constraints:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Constraint (2) sets the final water volume to the desired target
value at the end of the considered time horizon . Constraints
(3) impose the water conservation within two consecutive time
periods. Constraints (4) and (5) establish lower and upper
bounds on the flows in the turbines according to the three cases
discussed above. Constraints (6) and (7) limit the flow variation
within two consecutive periods. Constraints (8) impose the
water spillage needed to startup a pump or a turbine. Constraints
(9) establish a lower bound on the amount of water released
in each period. Constraints (10) and (11) [resp. (12) and (13)]
define the switch-on/switch-off rules of the turbines (resp. of
the pumps). Constraints (14) impose that, if a turbine is on,
no pump can be on and vice versa. Finally, constraints (15)
are only introduced if the pumps startup method is to use the

turbines: at least one pump is off because there are no turbines
available to startup the last pump.

Note that an equivalent model could be obtained (see [15]) by
eliminating the shutdown variables and , and replacing
constraints (10)–(13) with

(16)

(17)

Indeed, the objective function (1) ensures that in any optimal so-
lution the startup variables (resp. ) take the value 1 only if

(resp. ). The resulting model
is smaller, but this does not guarantee a better performance. In-
deed, the two LP relaxations are identical, and the behavior of
the MILP solver is unpredictable. As a matter of fact, for the
benchmarks used in our experiments, the smaller model turned
out to be equivalent to the larger one for the easy instances, but
definitely worse for the difficult ones.

B. Linearizing the Power Production Function

The performance of a hydro turbine depends on the rate of
water discharge and on the net hydraulic head. The value of
the net head depends on the water level in the reservoir, the
tail-race level and the penstock losses (that are a function of the
water flow). It follows that the power generated from a hydro
unit is related to the water flow and the reservoir characteristics.
For a generic hydro generator unit, the power output can be
expressed as a nonlinear function of the water flow and
the water volume in the reservoir, by including the nonlinear
relationship that links the net head value to the water volume and
the water flow, as well as to the electric loss of the generator, i.e.,

(18)

(Note however that each unit will be characterized by a specific
function.)
Even for a prefixed volume , the power production, as a func-

tion of the water flow, is nonlinear and nonconcave. Net head
variation can only be ignored for relatively large reservoirs, in
which case power generation is solely dependent on the water
flow. (An example of (18) is provided in [5].)

An accurate approximation of is crucial for modeling the
head effect. In [13] the function was approximated by consid-
ering a fixed number (three) of water volumes, say , ,
and interpolating, for each , the resulting function

(19)

by piecewise linear approximation. To our knowledge, this has
been the first successful modeling of the head effect. Indeed,
a more accurate approximation of (18) through meshing and
triangulation, proposed in [11], proved to be only suitable for
small systems (see [12]).

We describe the improvement we propose for approximating
(18) in two steps. In the present section we show how to 1)
slightly generalize the approach in [13] to a parametric number
of water volumes through a classical use of binary variables,
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Fig. 1. Simple approximation.

and 2) tighten the linear programming relaxation of the model
through a more precise estimation of the upper bound on the
power production. The second step, undertaken in the next sec-
tion, introduces an accurate evaluation of the power production
corresponding to intermediate water volumes.

While in [13] the piecewise linear approximation was formu-
lated through the incremental method, we adopted the convex
combination method which is mathematically equivalent (see,
e.g., [16]) but allows a more intuitive explanation of the en-
hanced linearization that will be introduced in Section III. We
consider volume intervals and coordinates (breakpoints)
along the flow axis. Let and .
Let us introduce the following additional parameters:

extreme water volumes for interval ( )
[ ];

flow in turbine at breakpoint ( ,
) [ ];

power from turbine at breakpoint for
interval ( , , ) [MW];

( , ) [MW]

where the last value, introduced for ease of notation, represents
the maximum power difference between intervals and . Fig. 1
depicts, for a given water volume, a classical power-flow char-
acteristic of a turbine (dotted line) and its piecewise-linear ap-
proximation obtained with four breakpoints (solid line).

Our linearization technique makes use of the following
variables:

membership status of volume wrt interval [1
if , 0 otherwise] ( , );

contiguity status of wrt to discretized flow
[1 if or ,
0 otherwise] ( , , );

weight of breakpoint for turbine in period
( , , ),

where the last variable must obey

The following constraints complete model (1)–(15) by ap-
proximating the power production function (18) with a para-
metric number of water volumes:

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Equations (20)–(23) express the water flow of tur-
bine/pump in period in the three possible cases seen in
Section II. If , the pump is off and the flow is either zero
(if the turbine is off as well, case TP00) or a convex combination
of breakpoint flows (case TP10); otherwise the pump is on (so

from (14)) and there is a constant negative flow (case
TP01). Observe indeed that constraints (22)–(23) are inactive
when (due to (21)), so the first and third case are directly
modeled by (20). If instead constraints (21) impose that
thebreakpointweights sumuptoone.Due toconstraints (22), any

can only be nonzero if the corresponding binary variable
is one. It follows that constraints (22) and (23) together ensure
that: 1) at most two weights can take a positive value, and 2) if
this occurs for exactly two weights then they must be contiguous.
In summary, the overall effect of constraints (20)–(23) is that

is either a constant negative value (case TP01), or null
(case TP00), or a piecewise linear approximation (case TP10).

Similarly, (24)–(25) express the power of turbine/pump
in period for volume interval , in the same three cases. Due
to (24), all ’s are zero but one. Hence, in the unique volume
interval, say , for which , the last term of (25) takes the
value 0 and (25) itself assumes the same form as (20), but with
powers instead of flows. It follows that the same considerations
used above ensure that (25) model the three possible cases. The
only difference is in the “ ” sign, which is adopted here, instead
of “ ”. However: 1) this has no effect on the power production,
since the objective function (1) ensures the constraint tightness;
2) for all the other volume intervals , for which ,
the last term of (25) takes the value , thus deactivating the
constraint. Finally, (26)–(27) define, for each time period , the
two extreme water volumes of the interval where the computed
volume lies.

Constraints (25) are the crucial difference with respect to the
way (18) is approximated in [13]:

1) it is obvious that increasing the number of volume inter-
vals improves the approximation. However, as shown in
Section IV, this number cannot be increased too much
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in practice without making the model too big to be han-
dled within reasonable CPU times;

2) constraints (25) could be deactivated (as in [13]) by using
the overestimated constant value instead of .
It is known however that adopting tighter values highly
strengthens the linear programming relaxation (as con-
firmed by the computational experiments of Section IV).

III. ENHANCING THE LINEARIZATION

In the model of the previous section, for any volume be-
longing, say, to the th interval , the power pro-
duction is approximated through a prefixed (static) value
depending on the turbine and the breakpoint (see (25)). The ac-
curacy obtainable in this way heavily depends on the number

of water volumes (corresponding to volume inter-
vals). Such a number, however, cannot be too high without sub-
stantially affecting the computational effort. We next show how
a good approximation can be obtained by keeping at an effec-
tive low value by introducing an enhanced linearization that cor-
rects the estimated power production through two dimensional
considerations.

In the enhanced model, for a volume , belonging, say, to in-
terval , instead of approximating the power produc-
tion by selecting a point on a single piecewise linear function,
we approximate it through a weighted combination of values
computed for the two extremes and . Let us introduce
the power excursion, for turbine and breakpoint , between in-
tervals and

[MW]

and the quantity

[MW]

(with ), which is used to deactivate constraints,
as will be shown below. Moreover, the enhanced model requires
the additional variables

to represent the weight used for combining the values computed
for the two extremes of volume interval .

The enhanced linearized power production function is then
computed by (20)–(24), and

(28)

(29)

(30)

(31)

which replace (25)–(27).
Equations (28) ensure that, for any time period , the only

nonzero weight can occur for the unique interval for which
(see (24)). As a consequence, in the summation of (31)

the only nonzero term must be equal to the value of (given by
(3)), thus uniquely determining the corresponding value

.

Equations (29) are only active when turbine is off in period
. They thus define the (negative) power consumption due to

pump (case TP01 of Section II), possibly equal to zero if pump
is off as well (case TP00).
Similarly, (30) are only active when turbine is on in period
(case TP10), since otherwise (29) impose a negative upper

bound on , hence dominating any nonnegative upper
bound produced by (30). When active, they determine the (posi-
tive) upper bound on the power production, tighter than the one
imposed by (29), which is just the variable upper bound .
As previously observed, will exactly match such a bound,
since the objective function (1) maximizes the power produc-
tion. Note that in case TP10 the two terms within brackets of
(30) play the same role as the second and fourth term of (25),
respectively. More precisely, imposes a correction to
the regular term while is used
to deactivate those constraints (30) whose breakpoint is not
used (i.e., those for which ).

The correction is depicted in Fig. 2. Since
, the power approximation obtained by the model

of the previous section would be
(with ), i.e., the value in the figure. The
enhancement given by (28)–(31) produces a better approxima-
tion, namely value in the figure. Indeed the correction pa-
rameter is computed by considering the relative position of

within the volume interval (see (31)). Note that
two constraints (30) are active at the same time: the one for
and the one for . However, to avoid an overestimation of
the correction, the tighter constraint is the one with the smallest

value. In Fig. 2 such value is , since the slope of
segment is smaller than that of segment .

We illustrate the enhanced linearization technique through
a numerical example. Consider Fig. 2, and assume that the

coordinates of the interested points are: ,
, and .

Let us compute the power production corresponding to
and . The linearization of Section II-B

would give (by
(25) with ). The enhanced linearization gives

(by (30) with ).

IV. COMPUTATIONAL RESULTS

The models presented in the previous sections were tested
by running the MILP solver Ilog-Cplex 10.0 [14] under math-
ematical programming modeling language AMPL Version
20061102. The tests were executed by sequentially running the
code on a single processor of an Intel Core2 CPU 6600 with
2.40 GHz and 1.94 GB of RAM. For each instance, a time limit
of 7200 seconds was imposed.

Three real-word instances were considered referring to a
hydro power plant with one Francis turbine fed by a reservoir of
capacity , with a maximum level of 85.25 m. We con-
sidered the water inflows and electricity market prices of a week
of three different months (namely, April, June and December),
selected so as to have considerably different scenarios, with
hourly time periods (168 periods per instance). The complete
instances are available on line at http://www.or.deis.unibo.it/re-
search_pages/ORinstances/ORinstances.htm.
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Fig. 2. Enhanced approximation.

We give the results obtained for these instances by three
models:

1) basic model, without the improvements introduced in
Section II-B (“BDLM-” in the tables), mimicking the
model in [13];

2) improved model of Section II-B (“BDLM’ in the tables);
3) final enhanced model of Section III (“BDLM+” in the ta-

bles). The models were tested with two different func-
tions, called and , for the turbine (see (18)). Each
power production function is approximated by consid-
ering three fixed values of the water volume. For
each water volume, the relationship (19) is rep-
resented by a piecewise linear approximation with five
breakpoints, as shown in Fig. 3. As already mentioned,
in pumping operating mode we assume a constant water
flow value (of 0.64 pu) as well as a constant power con-
sumption (of 0.85 pu).

The results for and are given in Tables I and II, respec-
tively. For each instance and model the entries give

a) total number of variables, the number of binary variables,
and the number of constraints after Ilog-Cplex prepro-
cessing;

b) value of the initial LP relaxation, obtained by replacing
each binary constraint of type with

;
c) value of the improved LP relaxation computed by Ilog-

Cplex at the root node through its default cutting plane
separation;

d) value of the best solution computed by Ilog-Cplex within
the time limit;

e) final percentage gap, computed as

Best upper bound Best solution value
Best solution value

f) number of branch-and-bound nodes;
g) number of unsolved nodes when the time limit is reached;
h) total CPU time spent.

Fig. 3. Piecewise approximation of the relationship (19) for three volume
values, namely, � � � , � � �� � � ���, and � � � , corresponding to
the two different functions considered in the tests: � (top) and � (bottom).

The first two lines of each instance refer to two models
(BDLM- and BDLM) that provide the same level of approxi-
mation of the system (note indeed that the best solution values
are identical). By comparing them we can observe that both the
initial and the improved LP relaxation of BDLM are much tighter
than those of BDLM-. Numbers of nodes and CPU times are
generally competitive or much lower for BDLM. Both models
produced the optimal solution for all instances within very short
CPU times. The difference in the behavior of the two models is
mainly due to the use of the tighter values in (25).

The third line of each instance refer to our most sophisticated
model (BDLM+),whichprovidesamoreaccurateapproximation
of the real system. This is confirmed by the computational results,
which show a considerably better solution value. The higher
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TABLE I
RESULTS FOR A TURBINE WITH THE � CHARACTERISTIC OF FIG. 3

TABLE II
RESULTS FOR A TURBINE WITH THE � CHARACTERISTIC OF FIG. 3

TABLE III
NUMBER OF VARIABLES AND CONSTRAINTS FOR THE THREE MODELS CONSIDERING EIGHT CONFIGURATIONS OF (�; �; �)

TABLE IV
RESULTS WITH MORE VOLUME INTERVALS FOR APRIL_T168 AND A TURBINE WITH THE � CHARACTERISTIC OF FIG. 3

complexity of this model is also reflected by the larger computing
times. In spite of this, five instances out of six were solved to
optimality. Moreover, for the two “hard” instances of Table I,
June_T168 and December_T168, the incumbent solution values
after 300 CPU seconds were already 143 619.22 and 176 508.30,
respectively, i.e., very close to the best solution values.

In Table III we examine the size of the three models by giving
the number of variables and constraints in terms of the main pa-
rameters, namely , and . The percentage of binary vari-
ables was, for all cases, between 50% and 60% of the total.

Table IV shows, for instance April_T168 of Table I, how the
level of approximation of BDLM improves with the number of
volume intervals. The best solution value considerably improves
when is increased to four and five, by still requiring acceptable
CPU times. Going to higher values (seven and ten) the improve-
ment is marginal, while the increased number of variables and
constraints makes the computational effort very heavy, and the
model is not solved to optimality within the time limit. In any

TABLE V
RESULTS FOR BDLM+ WITH AND WITHOUT THE BDLM SOLUTION ENFORCED

case, the best solution value remains far from the one produced
by BDLM+ with (shown in the last line of the table).

In order to further compare the solutions achieved by models
BDLM and BDLM+ we computed the value of the objective
function obtained in model BDLM+ when the solution attained
by the BDLM model is enforced. We considered a turbine with
function (see Fig. 3). The three columns of Table V give the
value of the solution produced by BDLM, the value produced
by BDLM+ if the values of all variables in the BDLM solution
(except ) are enforced, and the value produced by BDLM+
from scratch. The results show that the enhanced linearization
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TABLE VI
RESULTS FOR THE MILP MODEL WITH SEVEN VOLUME INTERVALS AND FIVE BREAKPOINTS

of BDLM+ allows the MILP solver to find truly improved so-
lutions wrt BDLM, i.e., the different values in the tables do not
merely correspond to different measures.

Other authors considered real cases in which the turbines have
forbidden operating zones. For example, [4] considers one mul-
tiplant daily instance (24 time periods) in which each plant has a
single forbidden flow interval. In order to test our model on such
situations, we extracted from such instance three single plant in-
stances (named S1, S2 and S3), and added to the BDLM+ model
specific constraints to forbid a flow interval, namely

(32)

(33)

where is the prohibited operating zone for turbine ,
and is a binary variable that takes the value 1 when

or the value 0 when . Note that (32)
(resp. (33)) is not active when (resp. ). The
outcome of the experiments is reported in Table VI, where the
second column tells whether constraints (32)–(33) are added to
BDLM+. The first two lines of each instance give the results ob-
tained by solving such instances with BDLM+, with and without
the new constraints. The optimal solutions only slightly differ on
instance S1, thus showing that (32)–(33) were (almost) not ac-
tive. In order to better test the model, we artificially moved the
forbidden intervals to optimal regions, thus creating more chal-
lenging instances S1A, S2A and S3A. The behavior of BDLM+
with (32)–(33), given in the third line of each instance, results
to be still satisfactory.

In order to illustrate the differences between the two proposed
models, BDLM and BDLM+, Figs. 4–7 show the scheduling re-
sults they produce for instance June_T168 with power produc-
tion function .

Fig. 4 shows the water volume values in the basin, taking into
account the minor amount of natural inflow (just fractions of

/s) and the different volume values at the beginning and at the
end of the week, imposed by the considered instance (namely

and , respectively). The horizontal
lines show the three volume intervals adopted for linearizing the
power production function. As already mentioned, the inflow
and the initial and the final values were taken from the real world
data of a power plant. Fig. 5 compares the calculated profiles of
the water flows discharged or pumped by the hydro unit during
the considered week.

Fig. 6 compares the power production levels, also giving
the considered market price profile during the week, while

Fig. 4. Water volumes.

Fig. 7 compares the curves of the accumulated profits in the
two models. Fig. 6 shows that the maximum output of the unit
calculated by BDLM+ is larger than that obtained by BDLM,
due to the more refined representation of the head effect in
function , that results in a higher profile of the calculated
water volumes in the basin. This explains 1) the larger profit
levels estimated by BDLM+, as shown in Fig. 7, and 2) the
different scheduling, mainly for the second last day (Sunday),
characterized by lower market prices. (The considered week
starts on Monday midnight and runs through the next Monday
midnight.) For Sunday morning, BDLM suggests not to pro-
duce, due to the low value of the water volume stored in the
basin (which should be saved in order to be available at the
more profitable market price levels of the following day), whilst
BDLM+ recommends to produce, allowing therefore a superior
exploitation of the natural resource.

V. CONCLUSIONS

We have considered the problem of determining the com-
mitment and the power generation of a single reservoir pump-
storage hydro power plant. Starting from the MILP model pro-
posed in [13], we have obtained an enhanced model that takes
into account relevant technological aspects, such as ramp transi-
tions, pump-storage and head effect. In particular, we have pro-
posed a sophisticated approximation of the head effect in which
the linearization is enhanced through two dimensional consid-
erations. The proposed MILP model allows to accurately repre-
sent most of the hydroelectric system characteristics, and turns
out to be computationally solvable for a planning horizon of
one week, proving the high efficiency of modern MILP software
tools, both in terms of solution accuracy and computing time.
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Fig. 5. Inflow and flows.

Fig. 6. Price and powers.

Fig. 7. Profit.

Future developments could involve the extension of the
model to represent hydrological interdependent plants in cas-
cade hydro systems. This task is far from being trivial for
various reasons. It is clear that the model would require the
continuity equations of the hydro reservoirs, taking into account

the relevant constraints such as branch flow limits and water
travel time (see, e.g., [7]–[9], [11], [13]). The main drawback,
however, could be that a cascade hydro system model for, say,

power plants would multiply by the number of variables
and constraints of BDLM+, and the computational experiments
of Section IV have shown that the performance of the model is
heavily affected by its size. In addition, the sophisticated linear
approximations introduced to model the nonlinear aspects could
deteriorate the accuracy of a much larger model. In our opinion
the extension to the modeling of schemes with a combination
of multiple reservoirs, rivers, weirs and hydroelectric plants in
series and parallel combinations could require a different use
of the MILP solver, which should not be run as a black box, but
embedded in a more involved algorithmic framework.
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